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ABSTRACT #utterances (hours)
Language] CH | EN [ GE [ JA [ SP
Speech recognition systems based on or aided by articulatory fea- Training 8663 | 7137 [ 9259 | 9234 [ 5426
tures, such as place and manner of articulation, have been shown (26.9) | (15.0) | (16.9) | (23.9) | (17.6)
to be useful under varying circumstances. Recognizers based on Test 100 144 199 250 250
features better compensate channel and noise variability. In this 03) | 04 | 04 | 07 | (08

work we show that it is also possible to compensate for inter lan-
guage variability using articulatory feature detectors. We come to
the conclusion that articulatory features can be recognized acros

languages and that using detectors from many languages can iMg, i orove robustness with regard to noise and reverberation [3].
prove the classification accuracy of the feature detectors on a SiNRacent work [4] makes use of articulatory information by includ-
gle language. We further demonstrate how those multilingual and ing the output of AF classifiers in the front-end of an otherwise
crosslingual detectors can support an HMM based recognizer ant;o 1 qard low-resource recognizer. In [5] we proposed a more flex-
thereby significantly reduce the word error rate by up t0 12.3% e stream-based architecture, where we merge AF information
relative. We expect that with the use of multilingual articulatory iy standard CD-HMMs by computing the weighted sum of the
f_eatures it is possible to support the rapid deployment of recogni- corresponding log-likelihoods. This approach was shown to im-
tion systems for new target languages. prove performance on several LVCSR tasks.
Many current state-of-the-art LVCSR systems already use phono-
1. INTRODUCTION logical and articulatory information, albeit in a very limited way,

when constructing context-dependent acoustic models. The deci-
State-of-the-art large vocabulary continuous speech recognizerssion tree is often computed by splitting context-independent mod-
(LVCSR) usually model speech as a sequence of HMM states whosels along questions for phonetic context (“-1=VOICED", ...).
models are learned by partitioning the training data into disjoint
sets. Often the HMM states represent phonetic sounds or subpho- » . )
netic units that divide a sound into several states. This model is 1-2- Multilingual Acoustic Modelling
only a rough approximation of reality and heavily relies on the use
of statistics to model the variability of speech.

STable 1. Overview of the data used from the GlobalPhone corpus

When we talk about multilingual speech recognition in this paper
we refer to the term as defined in [6], where we examined different
techniques to combine the data from various languages to train
1.1. Articulatory Features in Speech Recognition acoustic models. This enables a recognition system to recognize
multiple languages that were presented during training and helps

The International Phonetics Association classifies the sounds of adevelopers of LVCSR to quickly initialize and train recognizers for

language by means of articulatory features (AF) [1]. A sound is new languages
despribed by a bundle of articulatory fea.tures, and a unigue sym- In this work we present our first experiments exploring the po-
ibsoil If]gfee dd tis;;?tizo;:i}gitsosirer?rrr?:r?tn;:rga?g:]edslet'oTshoirr?gg itziﬁcttential of modelling articulatory features in a multilingual way. We
Y 9 i Yshow that it is possible to reliably detect articulatory features for
a coarse model of the actual human speech production process. I

reality there are at times smooth transitions and overlaps betweery. diverse set of languages and that it is also possible to robustly

- o detect them across languages. Finally we demonstrate how mul-
features [2]. Of the articulatory features some have digital values . ; )
" . . tilingually trained AF streams can increase the performance of a
(e.g. velum position) while others have continuous values (e.g.

horizontal position of the dorsum). In our work several marked po- LVCSR system based on subphonetic units.

sitions of continuous features are modelled by binary features. So

instead of having a continuous feature for the horizontal position 2. MULTILINGUAL ARTICULATORY FEATURES

of the dorsum we have three discrete values (“FRONT”, “CEN-

TRAL”, and “BACK"). Each value is then seen as a binary feature 5 1 corpus

that is either absent or present. The fact that the marked positions

(e.g. "FRONT") consist of a whole range of values is modelled by All experiments were performed on the GlobalPhone corpus [7].

the use of statistics for the feature detectors. This corpus provides speech data consisting of read newspaper ar-
A recognizer system that makes sole use of articulatory fea- ticles in fifteen different languages. The recordings were collected

tures has been proposed in [2]. AF detectors have also been usedh a uniform way restricting the domain to political and economic
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Fig. 1. Average Share Factor for the Five Selected Languages
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topics. Of the fifteen languages available in the GlobalPhone cor- Place POSTALVEOLAR GE EN JA SP
pus we used the four languages “Chinese Mandarin” (CH), “Ger- RETROFLEX CHEN
man” (GE), “Japanese” (JA), and “Spanish” (SP). In addition to PALATAL CHGEEN JA SP
that we also used the Wall Street Journal corpus for English (EN) \J\E/b"]\_iR 3:’:' GE EN JASP
that served as a role model for GlobalPhone. The selected lan- GLOTTAL GEEN JA
guages display a variety of different characteristics such as the set VOWEL CHGEENJASP
of sounds they cover or traits such as tonality. Table 1 gives an ROUND CH GE EN JA SP
overview of the amount of training and test data used for the ex- UNROUND CH GE EN JA SP
periments which is roughly uniform for all languages. TONAL1-5 CH

CLOSE CHGE ENJASP

- . Vertical CLOSE-MID GE EN JA SP

2.2. Deflnlng Features for mUltlple Ianguages OPEN CH GE EN JA SP
We work under the assumption that the articulatory representations Egg“}MID g: gE Em JASP
of phonetic sounds across languages are so similar that they can gorizontal CENTRAL GEEN
be viewed as units independent of the underlying language. The BACK CH GE EN JA SP

language specific phonetic inventories of the different languages
can be combined into a single global unit set. In [6] we presented a

global unit set for the GlobalPhone languages based on the schem@&able 2. Table of the global feature set and the languages in which

of the International Phonetic Association called the International the features appear

Phonetic Alphabet (IPA) [1]. Sounds from different languages that

share the same IPA symbol share one common unit. Figure 1 shows the average share factor and its range for the
The assignment of a sound to an IPA symbol is based on theAF in comparison to the share factor of the GlobalPhone units for

articulatory features attributed to the sound. The features attributed®!l Possible subsets of fixed size from our set of five selected lan-
to consonants describe manner and place of articulation while thegu@ges. When we compare the share factor of the AF to the share
features for vowels describe the vertical and horizontal position of factor of the global phonetic units we see that the factor of the AF
the dorsum. is always larger, that it grows almost linearly, and that the variation

We can now assign the features associated with a specific ipaof the share factor for _th_e sets of a fixed siz_e is sma_ll_er. We can
symbol to the corresponding unit in the global unit set defining Fhere_for expect that training the AF de.te.ctors ina multlllngu.al way
a global set of features. We also define the language dependent® 90ing to make better use of the training data from the different
sets of feature®,., containing all the features that are associated '2hguages than the multilingual training of the phonetic units —
with at least one sound from language. Further letd,; refer even though_we QO not yet I_<now whether the linear growth of the
to the set of language independent articulatory features occurringShare factor is going to continue for larger sets of languages.
in more than one language add p, = to the set of features only
occurring in languagé,;. '

Table 2 shows the features we used as well as the languages in
which sounds exist that are attributed with the corresponding fea-3 1. Monolingual AF for Five Languages
ture. Based on that data we can calculate a feature sharing factor
in analogy to the unit sharing factor in [6]. So we define the share We trained AF detectors for the five languages mentioned above.
factors f for a set of languages as the ratio between the sum of ~ For every language and for every feature attributed to at least one
language specific articulatory features and the number of featuressound in that language we trained two models — one for feature
for a global feature set composed of the features present in lan-present and one for feature absent. The training of the models is
guages of\. The sharing factor can be interpreted as the averagedone in pretty much the same way as it is done for the acoustic
number of languages that share an articulatory feature, averagednodels of existing speech recognizers. Every feature present and
over all features. absent detector was modelled by a mixture of 256 Gaussians. The

32 dimensional input vectors for the mixtures were obtained from
2iea | Pri | mel frequency scaled cepstral coefficients (MFCC) combined with
| @ | dynamic features such as approximations of the first and second

3. EXPERIMENTS
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Test Set 100,00%

AFLID CH | EN | GE | JA | SP 98,00% |
CH 93.52% | 87.42% | 88.23% | 86.45% | 83.22% 96,00% -
EN 87.74% | 93.83% | 89.17% | 88.41% | 87.90% 94,00% o
GE 88.57% | 87.90% | 92.94% | 86.46% | 82.68% 92,00% - Ao
JA 87.11% | 87.65% | 86.77% | 95.22% | 87.39% 90,00% - o5
SP 84.76% | 86.36% | 83.31% | 87.76% | 93.46% 88,00% -
86,00% -|
84,00% -|
Table 3. Classification Accuracy of the AF detectors 82,00%
vy
derivative of the MFCCs. The resulting 48 dimensional feature oo‘v‘édp
vector was then reduced to 32 dimensions using an LDA transfor- ° \s‘*@,
mation. &
N

After calculating the LDA on the context independent phone
models and initialization of the parameters of the AF detectors us- o ]
ing the k-means algorithm the detectors were trained with four it- Fig. 2. Classification A_ccuracy of the AF Detectors from the Five
erations of a Viterbi training using labels for the corresponding L@nguages on the Chinese Test Set
language. The labels were obtained through a forced alignment
from CDHMM based recognizers that model phonemes with three
subphonetic units. The detectors were trained on the middle states
of the phonemes only. We restricted the training to the middle Test Set
states because we had to rely on the automatic labels due to a lack ~AF CH EN GE JA SP
of manually transcribed data. We assume that the value of a fea- native 93.52% | 93.83% | 92.94% | 95.22% | 93.46%
ture is most stable for the middle states and might be affected by ~ selected|| 95.04% | 96.13% | 96.12% | 96.26% | 96.36%
coarticulation effects for the other states.

The classification accuracy of the resulting detectors was then
determined on the middle states of the test set of their own lan-
guage. A sound was classified in terms of features by comparing
the score (negative log-likelihood) of each “feature present” detec-
tor with the score of the corresponding “feature absent” detector.
The score for the detector was calculated by adding the score fromexample for a language for which we would like to build AF de-
the trained model and a prior score estimated from the training set.tectors. Figure 2 shows us how the individual feature detectors
Additionally the detectors were tested on the test sets of the otherfrom the five languages perform on Chinese. The connected line
languages as well (“crosslingual” testing, see 3.2). in the figure shows the classification accuracy of the Chinese AF

Table 3 shows the results of the evaluation. Every row gives detectors on the Chinese test set. The additional data points show
the classification accuracy for one set of AF detectors trained with the classification accuracy of the feature detectors from the other
the data from one language tested on every one of the five selectedour languages on the Chinese test set. Every time a data point ap-
languages. Since for every language many feature detectors wer@ears above the line a feature detector from a language other than
trained — one for every feature in that language — the entries only Chinese has performed better in detecting a Chinese feature than
show the average of the classification accuracies from the differentthe corresponding Chinese AF detector.
detectors. When we tested on a language other than the language
the detectors were trained on we only tested and averaged over the  If we now choose the best feature detector for every Chinese
AF detectors for features that actually occurred in the language offeature from all five languages the overall classification accuracy

Table 4. Classification Accuracy using only detectors from the
language of the test set compared to selecting detectors from all
languages

the test set. improves from 93.52% to 95.04%, a 23.5% reduction of the clas-
As the diagonal of the table shows it is possible to reliably sification error. The AF detectors from the four languages other
detect articulatory features for a variety of languages. than Chinese cover all the features of Chinese except for TONAL1

- TONALS. When we leave out the detectors for these features the
average classification accuracy of the Chinese feature detectors on

3.2. Crosslingual AF Chinese data is 94.36%. However when we pick the best detectors
) L .. from all the languages except Chinese we get an average accuracy

We can see from the crosslingual evaluation in table 3 that it is o 95 6794 that also outperforms the Chinese AF detectors. This

possible to detect features across languages to a degree that ighos that it is possible given a set of feature detectors from dif-
less reliable than in the monolingual case but still at an acceptablegerent languages to reliably detect articulatory features on a new
level. This indicates that AF detectors trained on one language can,nseen language.

be used to detect articulatory features from other languages. The
performance of the articulatory feature detectors does not seemto  Table 4 shows for all five languages the classification accu-
severely suffer from cross language variability. racy that could be obtained by selecting the best detectors from
An examination of the performance of the individual AF de- all languages (“selected”) in comparison to the classification accu-
tectors reveals that it is possible to obtain a better performance inracy that can be achieved with only the detectors that were trained
AF detection on a single language when using the detectors fromon the training data that corresponds to the language of the test
all five languages instead of using only the detectors from the lan- set (“native”). Selecting the detectors from all languages shows
guages on which to test. To show this let Chinese serve as ansignificant improvement for all test sets.
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streams in the decoding process. First we added English AF de-
tectors to the decoder examining the monolingual case (“EN AF”).
The detectors were added in the order of their classification accu-
racy. Adding seven feature detectors resulted in a WER of 10.9%
- areduction in WER of 10.7%. Secondly we examined a crosslin-
gual scenario by adding the German AF detectors for the same
features mentioned in the English case (“GE AF”). Adding the
first two detectors leads to a WER of 10.7%, reducing the WER
of the baseline by 12.3%. As a last experiment we tried the above
using MM feature detectors trained on the languages CH, GE, JA,
and SP (“4 MM AF"). Using 2 feature detector streams yielded a
WER of 11.8% which is a reduction of 3.3% in comparison to the
h. baseline.
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Fig. 3. Classification Accuracy of the AF Detectors from the Five
Languages on the Chinese Test Set

3.3. Multilingual AF

For our first multilingual experiments we used the training tec
nique called “multilingual mixed” (MM) [6]. When training MM
models data from different languages is used to train acoustic mod-
els that are not language specific anymore but rather represent
units that are supposed to be common to all languages. Thereln this paper we addressed articulatory features in the context of
fore we trained acoustic feature detectors using the acoustic datanonolingual, crosslingual, and multilingual speech recognition.
from many languages sharing them according to our global featureOur results showed for a variety of languages that articulatory
set. Combining: languages by simply using the training mate- features can be reliably recognized within the language and even
rial from all n languages would mean that the available training across languages. Furthermore, we found that pooling feature de-
material would roughly increases fold. Therefor, in order to  tectors from multiple languages outperforms monolingual ones.
ensure that the observed effects do not just occur because of afexperiments on decoding with articulatory feature streams to sup-
increase in training material, we limited it by only taking a frac- port a conventional HMM based LVCSR gave us significant im-
tion of the training material of each involved language depending Provements. We achieved a relative error rate reduction of 10.7%
on how many languages were involved (e.g. for MM AF detec- in a monolingual setup and up to 12.3% in a crosslingual setup.
tors trained with German and English data we would use half of The results are encouraging for applying articulatory features in
the German training utterances and half of the English). Figure 3 the context of rapid deployment of LVCSR systems in new target
shows the performance of the monolingual AF detectors in com- languages.
parison to the average and range of the performance of the ten pos-
sible MM AF detectors trained on two languages. We can see that
if we choose the right combination of languages for a given test set
the performance of the MM2 detectors is only slightly worse than [1] International Phonetic AssociationHandbook of the Inter-
that of the corresponding monolingual ones. national Phonetic AssociatipnCambridge University Press,
1999.

[2] LiDeng and Don X. Sun, “A statistical approach to automatic
speech recognition using the atomic speech units constructed
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