Towards Multimodal Communication
with a Household Robot

P.Gieselmann, C.Fiigen, H.Holzapfel, T.Schaaf*, and A.Waibel

Interactive Systems Lab, ILKD
Universitat Karlsruhe
Am Fasanengarten 5
76131 Karlsruhe, Germany
{petra, fuegen, hartwig, tschaaf, waibel}@ira.uka.de

Abstract. This paper is about the multimodal dialogue between hu-
mans and robots in household environments. We explain the speech
recognition and the understanding and dialogue management compo-
nents. Above all, we describe how new words could be recognized and
learned in the area of speech recognition and how emotion recognition
could improve the dialogue processing. We made a first data collection
with a very simple system which serves as a base for all our further
developments. By means of this data collection, we enhanced our gram-
mars and lexicons and we found efficient ways of improving the interac-
tion between the different components in the system. We also discovered
possibilities for a promising integration of different modalities such as
gestures and emotion recognition.

1 Introduction

The biggest challenge for interaction with a household robot is its ease of use.
Everybody should be able to use this robot without any initial training; it should
work as a real housekeeper. Therefore, it is important that the user can interact
with the robot in the same way as with other humans - via speech and gestures.

This kind of multimodal human-machine interaction facilitates the commu-
nication for the user of course, whereas it is quite challenging from the robot’s
point of view. For example, we have to cope with spontaneous speech, different
dialects and even ungrammatical utterances which still have to be understood
correctly by the system. Furthermore, the speech recognition has to deal with
bad acoustic conditions in rooms with music in the background or with crying
children for example and different speakers to whom the system should adapt
very fast and easily.

The dialogue management component has to deal with elliptic utterances of
the user which could only be resolved by adding information from other knowl-
edge sources such as gestures for example. Therefore, we will explain how mul-
timodal parsing is used.
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Besides, the robot has to cope with a nearly indefinite number of user ut-
terances. Since it is impossible to construct a grammar or a concept hierarchy
which really covers all the words the user will ever utter or all the tasks the user
wants the robot to accomplish, it is important that the user can enhance the
grammar of the robot by teaching it new concepts. But first of all we want to
assure a basic coverage of the grammar and of the concept hierarchy. That’s the
reason why we made a data collection with several people to set up such a base
system and get first user results.

The acceptance of such a robot in domestic environments strongly depends
on the user’s confidence in its reliability. It is important that the robot notices
the emotional state of the human. If the user is for example already very angry,
the robot should not tell him again and again that it did not understand him,
but try to find other ways to get to know what the user wants it to do. Therefore,
we also evaluate the possibility of including emotion recognition in the human
robot dialogue.

This paper deals with speech recognition and understanding and dialogue
processing. Multimodal communication in the form of gesture and emotion recog-
nition is also explored. Section two gives an overview of our speech recognizer and
how adaptation techniques are used to improve the recognition rate even in bad
acoustic environments. The mechanisms for recognizing and learning new words
are also explained. Section three deals with the dialogue management. Section
four gives experimental details and results, and section five gives a conclusion
and outlook.

2 Speech Recognition

In this section we describe the problems occuring when humans communicate
with machines in a natural way. The problems are continuous spontaneous speech
input, different speaker dialects, bad acoustic conditions, and infinitely growing
vocabulary.

2.1 Janus and the Ibis Decoder

For speech recognition, we are using the Janus Recognition Toolkit (JRTk) [5],
jointly developed at the University of Karlsruhe and at the Carnegie Mellon
University, Pittsburgh. For decoding, we are using the Ibis single pass-decoder,
which was recently developed at Karlsruhe [16]. Ibis uses less memory and allows
higher recognition speed than the three pass search originally implemented in
Janus. In addition, it provides the option of decoding along context free gram-
mars (CFG) instead of statistical n-gram language models (LM).

The context-free grammar capabilities of the Ibis decoder allow input queries
to be directly parsed during the decoding so that there is no need for other ex-
ternal parsers. Moreover, other modules such as a dialogue manager can control
the decoding process by penalizing or excluding specific rules. It is also possible
to load several different grammars in the decoder so that you can for example



easily switch between different domain grammars without restarting the recog-
nizer. All of these features help the decoder to deal with the problems generated
by interaction with a household robot: Spontaneous speech and dialects, bad
acoustic conditions, and unknown words.

2.2 Spontaneous Speech and Dialects

Compared to statistical n-gram language models, grammars have the disadvan-
tage of an inadequate modeling of hesitations and other spontaneous effects.
Speech or non-speech noises for example can occur anywhere in a sentence. To
compensate, we model such noises as filler words in the decoder. During de-
coding the score is given implicitly to the decoder by a fixed value and not by
the language model. In addition, we have chosen semantic instead of syntactic
context-free grammars to model the system knowledge, because they are known
to be more robust against ungrammaticalities in spontaneous speech and recog-
nition errors [18].

The results of experiments in the domain of LingWear, i.e. spontaneous
speech queries for a wearable linguistic assistant for tourists, are given in ta-
ble 1. As the table shows, the sentence correct rate (SCR) and the recognition
speed (RTF = real time factor) is about 20% better when using a grammar than
with a statistical n-gram language model.

LM CFG
Word Accuracy 76.12% 77.29%
SCR 40.57% 51.64%
RTF on PIII, 1IGHz |0.20 0.15
Memory Requirements|35 MB 35 MB
Vocabulary Size 2035 2035

Table 1. Comparison of a 3-gram LM and a CFG on ~ 250 Sentences

In spontaneous speech, most of the data is influenced by the dialect of the
speaker. Therefore, we are working with pronunciation variants in the dictionary
and with dialect dependent context decision trees in the recognizer. This allows
us to automatically train and cluster mode-dependent acoustic models for dif-
ferent modes. You can use this method also with other modes than dialect, such
as the speaking rate or the signal to noise ratio of a signal. This gives a 10%
relative gain on German spontaneous speech data (GSST) [6].

2.3 Acoustic Conditions

A household robot has to cope with different kinds of environmental noise which
are recorded by the robot’s microphones. Moreover, the distance between the
microphone and the user will produce a lower signal-to-noise ratio and more



reverberations in the signal than close-talking recording conditions. All of these
contribute to worse speech recognition accuracy.

To reduce these influences we are using a model-combination-based acous-
tic mapping (MAM) which was developed in our lab for speech recognition in
car environments [17]. This method combines noise compensation together with
adaptation techniques. Figure 1 shows the results of read speech at different mi-
crophone distances. Combining maximum likelihood linear regression (MLLR)
together with MAM gives a significant gain for distant read speech.
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Baseline  -----: MAM+MLLR

Fig. 1. Results of 9 speakers on Distant Read Speech Data

2.4 Detection and Extraction of Unknown Words

Another challenge for speech recognition in our experiments is the recognition of
unknown words. Since the recognizer vocabulary cannot cover all of the words a
user may say to the robot, the robot should at least be able to learn unknown
words (OOV = out of vocabulary) together with their pronunciations and mean-
ings so that it will be possible for the user to teach the robot new words.

Therefore, it is at first necessary to detect an unknown word in a speech
signal. After this, the pronunciation of the word must be extracted, together
with its semantics so that the new word can be added to the vocabulary and the
language model.

Detection of Unknown Words We are using so called head-tail structures
of generalized word models to detect unknown words. Generalized word models
consist of a specifically modeled head and a general tail (see figure 2). The
head consists of a sequence of regular phone models and the tail consists of a
sequence of generalized phone models [15]. A generalized phone is an acoustic
unit that models all or at least a subset of the phone inventory of a language. A
generalized word is a word that contains one or more generalized phones. The
idea behind these head-tail structures is that the likelihood of such a structure



in an OOV situation is higher than the likelihood of any well-trained word from
the recognizer vocabulary.

orororo

Fig. 2. Head-Tail Structure

Table 2 shows significant gains for read and spontaneous speech. WCE is the
word class error rate, which is equal to the word error rate after replacing un-
known words in the reference with <UNK>. Generalized words in the hypothesis
are also replaced with <UNK>. Recall (REC) is the percentage of how many
of the available unknown words in the data are detected and precision (PRC)
is the percentage of how many of the recognized unknown words are correctly
detected.

WCE|REC| PRC|| WCE|REC| PRC
BASE ||38.9% 22.6%
GW780 ||21.1%)| 59%|100%|22.2%| 57%| 77%
CHEAT|| 0.4%| 97%|100%|21.9%| 74%|100%

Table 2. Results on Read and Spontaneous German Speech Data

Extraction of the Pronunciation and the Semantics To allow the recog-
nizer to work with a new word, the pronunciation of the word has to be generated.
If the spelling of the word is known, this can be done by looking into a large
background dictionary or by using letter-to-sound rules. But for natural commu-
nication the robot should be able to generate the pronunciation automatically,
without asking the user for help. Therefore we are using a phone recognizer,
which runs on the detected region of the unknown word in the speech signal.
The phone recognizer achieves a phone error rate of 35%.

The advantage of using head-tail structures is the possibility to add them as
words to language model classes or grammar rules. This implies that one head-
tail structure could belong to several different classes or rules. If such a head-tail
structure is recognized, the semantic information is directly given by the class
membership of the head-tail structure.



3 Dialogue Management

Once the speech is recognized, the robot must understand what the user has
said so that it can react in a reasonable way. Therefore, the dialogue component
analyses the utterance of the user and creates a semantic representation of it.
This semantic representation contains a task the robot can accomplish and all the
parameters which are necessary for this task. An example is ”take something,”
and the parameters are the object which should be taken and the place from
where it should be taken. If this semantic representation which is extracted from
the user’s utterance already specifies the task completely, instructions are passed
to the robot itself, for example moving to the place where the thing is which
should be taken. But if some information, like the object which should be taken,
is still missing, the dialogue component will ask the user for it. In this way, it is
assured that only complete task descriptions with all the necessary parameters
are sent to the other processing modules of the robot.

It is important that the user can express his wishes in different ways. It does
not matter whether he says ”I would like to get the cup from the board” or ”pick
up the cup from the board”. In both cases, the robot recognizes the dialogue
goal "to get something” and the parameters ”cup” and ”board”.

3.1 Architecture of the Dialogue Manager ARTADNE

In this project, we use the language and domain independent dialogue manager
ARIADNE developed by Matthias Denecke at Carnegie Mellon University in
Pittsburgh [1]. One of the reasons why we use this dialogue system is that the
user can formulate his commands in different ways so that he is not restricted to
one way of saying something. It achieves this by using typed feature structures
rather than a frame-based approach which puts much more restrictions on the
user utterances.

In addition, ARIADNE is specifically designed for rapid prototyping. Only
the domain and language dependent components have to be implemented for a
new application, since the general concepts are already available. This is made
possible by vectorized context-free grammars and inheritance mechanisms. Gen-
eral input and output mechanisms and methods for evaluating the dialogue state
are already implemented and can be used in the actual application.

Furthermore, multidimensional feature structures are used [3]. This means
that not only semantic information can be saved at the nodes of the tree, but
also information on the input modality and for example also confidence measures
of this input. In this way, it is possible to ask the user specifically for the words
which could only be recognized with a very low confidence measure for example.

The dialogue manager uses different kinds of task and domain dependent re-
sources (see figure 3): an ontology, a specification of the dialogue goals, database
rules, a grammar and generation templates. There is also a dialogue strategy
which decides how new information could be interpreted and integrated.
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Fig. 3. The Dialogue Manager and its Resources

Dialogue Grammar and Domain Model First of all, the input of the user
is parsed by means of a semantic grammar which also consists of some syntactic
information such as which word is a noun phrase, which is a verb, etc. Although
the semantic information is domain- and application-dependent, the syntactic
information is independent. According to the principles of rapid prototyping,
domain independent information can be reused; other dialogue managers do
not allow for this reuse because of the mixture of semantics and syntax. In
ARIADNE, the separation of syntactic and semantic information is implemented
by means of the vectorized context-free grammars which consist of non-terminals
of n-dimensional vectors of partially organized elements [4].

ohject actions properties
obj_setObject
{string - OBJ_ID:; ohj_places
ohj_ abj_ obj_destination ohj_location

crockeay| | cutlery {string: D_NAWE:} | |{string: L NAME.}
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cup cup

Fig. 4. Part of the ontology. The generic concepts are linked to the application specific
information here.

Because of this separation, syntactic information can be reused. Therefore,
the construction of complex noun phrases such as ”the red cup” can be found in
a general part of the grammar, while the semantic instantiations of the objects
are in the domain-dependent part (see figure 4).



Furthermore, it is in this way possible to combine the domain model with
the actual grammar. The domain model determines which concepts the system
knows and how they can be combined. It is built up as an ontology with objects,
actions and properties which could inherit from each other (see figure 4). There-
fore, it is also possible to access the domain independent general ontology which
consists of concepts such as different speech acts and general goals, objects and
properties from which specific objects, actions and properties could then inherit
in the domain dependent part.

The grammar used by the dialogue manager can be converted into a non-
vectorized context-free grammar and used in this way by the speech recognizer
so that both components use the same linguistic knowledge base.

Task Model The task model specifies dialogue goals which correspond to the
services the robot can execute. A dialogue goal can be seen as the description of
a form which is filled by means of the dialogue between human and machine [1].

This means that the dialogue goals are specified by the information the user
gives in the discourse and that they consist of objects, actions and properties
which are defined in the ontology. Therefore, the dialogue goals are the con-
nection between the domain model and the services the dialogue manager can
execute.

If a dialogue goal is recognized, the dialogue manager searches for the corre-
sponding parameters in the discourse, such as objects, properties and actions. If
the feature structure is still underspecified, a clarification dialogue is initiated.

Generation Templates All the information from the robot to the user is given
in natural language through the use of generation templates. In these generation
templates, the dialogue state determines what the dialogue manager tells the
user in which situation. The dialogue state is defined by the information in the
dialogue goals as shown in figure 5 [1].

Neutral -+ Selected — Determined — Finalized

N\ NG
Deselected

Fig. 5. Dialogue States and their Transitions

At the very beginning of a dialogue, the dialogue state is neutral; then some
dialogue goals are selected, and the state becomes selected. A selected dialogue
goal becomes determined if it is the only one which is selected. The dialogue goal
becomes finalized when all information which is specified in the dialogue goal is
available in discourse - this means that all the variables are specified.



These generation templates determine on one hand what the robot asks the
user in which situation and on the other hand, what the dialogue manager ex-
pects as an answer and how this answer is integrated.

The robot also uses context knowledge so that it does not ask the user for
information which could be deduced. For example, if only one cup is in the room,
the robot does not ask the user which cup to take, but simply takes the cup.

Databases The database contains objects and their properties as they can be
found in the environment of the robot. In this way, the dialogue manager can
search for different instances of cups and their places in such a database and
if there are for example different cups in the room, a clarification question is
generated to ask the user which cup the robot should take.

Dialogue Strategy The dialogue strategy defines how different kinds of in-
formation are evaluated in a specific dialogue state. This means that here the
general proceeding mechanisms are specified. The dialogue strategy consists of
different interaction patterns which define how information can be added and
deleted in the discourse.

This strategy can normally be reused for different applications. It is only
necessary to adapt it if we want to integrate additional modalities, for example
emotion recognition.

3.2 Multimodal Parsing

Since human human communication normally consists of speech and gestures,
we also want to include gestures in our interaction. The two modalities, speech
and gestures, can be integrated by multimodal parsing. We use time stamps to
unify them. This means that when speech and gestures occur more or less at the
same time, they should be evaluated together.

In this case, it is also possible to use the confidence measures from both speech
and gesture recognizers to determine if clarification questions are necessary. For
example, if the confidence measures for the speech recognition and the ones for
the gesture recognition are both very low, but both refer to the same object, the
overall confidence measure is increased. Otherwise, the robot can ask the user
to clarify which object was intended.

An additional benefit of multimodality is that ambiguities can be resolved
by sensor fusion. When the user for example says ” Get this cup” and points at
the same time to a cup, then the system knows which cup is meant although
different cups are in the room. The unification of the semantics of speech and
gestures as explained in [10] promises good results.

3.3 Emotions as a Parameter of the Dialogue Strategy

Emotional cues are used to obtain some kind of user model for a better adap-
tation to the user’s wishes. So far, we have focused on the user’s emotions and



did not take into account the possibility of letting the robot express emotions.
Our model of the user’s emotional state, allows us to choose different dialogue
strategies depending on the state of the user. Therefore we use the Affective
Dialogue framework which is fully described in [9].

To use the dialogue system efficiently in different environments, robust emo-
tion recognition is required. The features used by the emotion recognizer must
be obtained with the available sensors. Besides, we only need emotions carrying
application-relevant information.
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The Nature of Emotions In literature different work can be found that gives
definitions of emotions and describes their characterizations. Also different work
has been done to recognize emotions (e.g. [13]). It is commonly agreed that
emotions have physical and cognitive aspects. Accordingly, there are two main
approaches to recognize emotions. To classify emotions according to the cognitive
model, an extensive world model is needed that models wishes, goals and possibly
fears of the user (see [12]). However, situations of every day life are generally
too complex to model. A different approach measures changes of the human’s
physical state; this includes speech, heart rate, mimics, skin conductivity, etc.
[13]. We prefer this approach, since it seems to be more domain-independent.
Measuring the physical state is most commonly combined with the arousal-
valence model to characterize emotions in a two-dimensional plane [11], see figure
6. Figure 7 shows a possible discretization as required by the dialogue system.
However, the dialogue system abstracts from the actual emotion model [8]. Thus,
an extended emotion recognizer may be used in the future which will be able to
process further cognitive cues, if they turn out valuable and improve the model’s
accuracy.

The Affective Dialogue System’s Architecture Figure 8 shows the in-
cluded components of the dialogue system in a dataflow diagram. The input
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is completely speech based. The hypothesis of the speech recognizer and the
emotion recognizer are converted into a semantic representation and sent to the
dialogue system. The semantic representation of the spoken utterance is anno-
tated with emotional information using the Multidimensional Typed Feature
Structures formalism [8], mentioned earlier.

ASR
P it

AN
e | { User [
Pl \ ‘ > | Model/ \‘Hlstory\
[ Speech/ w Hypothems \\ S \, P
- /’\‘
Emo 4 Tagged Dlalogue
User Rec 4’ [\ Input /‘} Manager

vy

( Speech ‘ TTS ‘7(R85ponse ( K"°W|3dge‘
Ny y \\ / \Resource;/

Fig. 8. Data Flow

Extending the Dialogue Strategies In order to integrate emotion recognition
in the dialogue strategy, we added new emotion variables to the dialogue state.
The following three variables are currently used to represent emotion values:

— UserEmotion: represents the current emotional state of the user.

— UserEmotionTrend: represents the trend the user’s emotion seems to take.

— SystemEmotion: represents the system’s strategy for reacting to the user’s
emotion values.

System Strategies Before starting the data collection we had some intuitive
ideas how the robot should behave. The ideal behavior of the robot varies, de-
pending on the person interacting with it. The robot should not categorically
imitate human behavior; for example, it is not clear that the robot should show
anger. In fact, angry reactions of the human interactor might indicate wrong
behavior of the robot. In response, it is the dialogue system’s task to validate
the previously executed action by re-asking the user.



4 Data Collection

The first dialogue system we implemented focused on a simple task: Setting the
table. This system serves as our baseline and works with push-to-talk interaction.
This system can be easily enhanced, and later versions will have more complex
interfaces and scenarios.

The motivation for this data collection was twofold: On one hand, we wanted
to get data for enhancing the grammar and the lexicon and to watch why and
when users show emotions and how the system should react in these cases. We
also wanted to generally test the system and its different components and see how
the users can manage the whole task and how they cope with situations where
the system did not understand them. The results of the data collection are then
used in an interactive development cycle to see where the system could be easily
improved for better interaction with the user. The three-stage development cycle
consists of pretests to ensure that the whole architecture works and that the test
subjects could generally manage the task, a test with a simple task and another
test with a more complex task for the user.

Since the real robot was not yet available for the data collection, we imple-
mented a simulation environment in which the user can see the robot in the
kitchen on-screen, along with the table to set and a board with the available
dishes and cutlery on it (see figure 9).

Fig. 9. The Simulation Program

The users were asked to make the robot set the table for one person. They
were not given any detailed instructions about what to say to the robot. This
allows them to explore everything on their own, which corresponds well to a real
kitchen scenario.



Most of the test persons were filmed on video so that we have additional
data for the emotion recognition. A small interview was done after the test to
get their general impression of the system; they were asked what they liked and
what they didn’t like and what they think should be improved.

We implemented a small dialogue grammar with different dialogue goals so
that the robot can go somewhere, take something from somewhere, put some-
thing in a given place, say hello to the user, ask the user for instructions on
how to set the table and say thanks to the user. The robot was not able to take
more than one object at a time and it informed the user of this when necessary.
The robot’s world knowledge consisted of a database with all the objects on the
table, on the board, and in the robot’s possession. In this way, the robot knows
where which object can be found.

4.1 Wizard of Oz Experiment

The data collection was done by means of a Wizard of Oz experiment so that
the user is not limited to the grammar and the vocabulary which is already
implemented. We tried to interfere as little as possible during the experiment in
order to see whether the user could still accomplish the task by himself.

For this experiment, we set up a client server architecture. On the client side,
the speech recognizer, the simulation program and the speech generation can be
found. On the server side, there is the dialogue manager and the java interface
for the experimenter as shown on the figure below (see figure 10).
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Fig. 10. Client-Server-Architecture

In pretests, we noticed that the speech recognition was quite bad at the be-
ginning because the test persons uttered only very small sentences, preventing
smooth adaptation by the recognizer to the new user. Therefore, we added a
small unsupervised adaptation phase for the speech recognizer with four sen-
tences to be read by all the test persons at the beginning of every test.

On average, the six pretest subjects needed 26 turns to make the robot set
the table, which is quite fast given the fact that a minimum of 10 turns would



be necessary to get the five different objects from the board and then put them
on the table one by one.

After the pretest we also added some new terms to the vocabulary used by
these test persons and then started the real test.

As shown in the table below (see table 3), the adaptation phase improves
the recognition significantly: Without any adaptation, we had a turn error rate
of 83%, but with this short adaptation phase, the turn error rate decreased to
approximately 53%.

without Adaptation|with Adaptation
Avg. # of Turns 26 22
Avg. # of Wrong Recognized Turns 22 12
Turn Error Rate (in %) 83 53

Table 3. Turn Error Rates with and without Unsupervised Adaptation of the Speech
Recognizer

4.2 Results

Our data collection showed that most of the people were quite happy with the
system, as table 8 shows. When the users did have problems, most of them
complained about the bad speech recognition. All users managed to make the
robot set the table. On average the test persons need 22 turns for this task and
we observed that the faster they were, the more they liked the system.

Minimum|Average Maximum
# of Turns 13 22 32
# of Wrong Recognized Turns 5 12 19
Turn Error Rate (in %) 38 53 59

Table 4. Turn Error Rates

Table 4 shows that there is a wide range in the number of turns from 13 to 32.
This can be explained by the fact that the turn number depends very much on
the result of the speech recognition. One reason for these recognition problems is
that not all the vocabulary the test persons used is already in the lexicon of the
speech recognizer, leading to bad results. A solution is to use n-gram language
models combined with grammars, which we will evaluate soon.

Speech recognizer robustness is of special importance because we see lots of
variation in expressing the same meaning: All together, there were more than
ten different ways to tell the robot to get something.



Another solution for these speech recognition problems is that more inter-
action between the speech recognizer and the dialogue manager is necessary in
the future. For example, if the user would probably answer by ”yes” or "no” to
a clarification question from the dialogue manager, other hypotheses should be
penalized by the speech recognizer.

The overall word error rate of the speech recognizer was 79.4%. Table 5 shows
the wide variation in accuracy across speakers, ranging from 42.2 to 85.5%. This
can be explained by the wide range of vocabulary used by different test persons.

Minimum|Average|Maximum
Word Error Rate| 42.2 79.4 85.5

Table 5. Speaker-Specific Word Error Rates

Uncovered Expressions The test subjects used lots of expressions not covered
by our system so far. Some of them refered to the way the table should be set,
trying to make the robot move everything to another part of the table. Some
tried to make the robot put a drink in the cup, which was also not covered in
this scenario. In this way, the users tested what the robot can do for them.

Furthermore, uncovered expressions occurred when the robot did not under-
stand what the user said. In reaction, users asked the robot whether it was still
awake, why it didn’t understand them, etc. Most of these expressions are now
included in the system so that the user gets at least some feedback; neverthe-
less, there will still be users who invent utterances not covered by the system so
far. Table 5 shows the improvement in the system’s utterance coverage in the
different stages of the development cycle.

Minimum|Average|Maximum
Pretest (in %) 18.75 44.9 79.17
Simple Task (in %) 23.08 35.6 53.33
Complex Task (in %)| 13.51 31.85 69.15

Table 6. Uncovered Expressions

In the future, we want to solve this problem of out-of-domain sentences where
the commands uttered by the user were not part of the table-setting scenario
by integrating learning techniques in the dialogue manager so that it is not only
able to learn new words, but also new concepts.



Human Robot Interaction The interaction between the human and the robot
went quite well. When a user tries to make the robot do something it cannot, it
tells the user. For example, when the user asks the robot to put the knife on the
table and the robot does not have anything in its hands, it will inform the user
that he has to tell the robot to get something before it can be placed on the table.
In this way, the users learn very fast what is possible. Unfortunately, this means
that the users adapt to the system, although our intention was that the robot
should adapt to the human and not vice versa. Nevertheless, this adaptation
effect seems to be above all due to the fact that our system was still quite small
and the task quite simple. We think that in the more complex system which we
are now building, this effect will be of minor importance; we will evaluate this
in further user studies.

In this scenario, we focused on step-by-step instructions, meaning that the
user has to tell the robot every step in setting the table. All this information is
then gathered by the robot and a context model is build up so that the robot
can later set the table by itself because it has learned all the necessary steps.
In this way, the robot will be able to execute not only simple instructions, but
also complex commands which are created out of these step by step instructions
after having learned the context model.

Since some of the users still complained that the robot does not say which
words it did not understand, we want to evaluate the confidence measures from
the speech recognizer in a more sophisticated way so that the robot can ask the
user again in all the cases where the confidence is too low.

Integrating Discourse Information At the moment, we cannot resolve pro-
nouns with the dialogue system we use. Most of the users noticed that during
the data collection and then tried to avoid pronouns, but they complained about
it in the interview. In the future, we will therefore integrate anaphora resolution
by means of the information which is already available in discourse.

In the future, context information also has to be taken into account to a
higher degree during dialogue processing. This will allow expressions such as
”back” to be resolved. To accomplish this, we will implement a context model
in the dialogue manager which could resolve these expressions.

Simulation Specific Problems Some problems we encountered were specific
to the simulation because the user does not see for example how difficult it is
for the robot to take more than one thing at a time. Nearly all the users tried
to make the robot take two objects at a time, which was not possible in our
simulation. Many users complained in the interview about that.

Using more Complex Tasks After this first test, we decided to make the task
more difficult for the user by adding another cup which was also on the board,
but which should not be put on the table. This task was especially challenging
for the test persons because the robot’s default behaviour was to pick up the



wrong cup. In this way, we wanted to provoke more emotional reactions of the
test persons and see how they cope with more difficult situations.

As expected, this task leads to an increase of the average turns to 54, because
the users got this cup and then had to put it back again. As the table below (see
table 7) shows, the users needed more turns to accomplish the more complex
tasks, but at the same time the turn error rate decreased. This is above all due
to the fact that we added all the missing vocabulary from previous tests which
lead to a better recognition rate.

Simple Task|Complex Task
Avg. # of Turns 22 54
Avg. # of Wrong Recognized Turns 12 21
Turn Error Rate (in %) 53 38

Table 7. Turn Error Rates for the Simple and the Complex Task

User Satisfaction As shown in the table below, the users were quite happy
with the system. Even in the pretest more than half of the users were satisfied
(happy or neutral) with the system. During the whole user test, the system has
been gradually adapted to the user needs so that the user satisfaction increased
up to 50% happy users.

unhappy [neutral happy
Pretest (in %) 44 28 28
Simple Task (in %) 25 25 50
Complex Task (in %)| 17 33 50

Table 8. User Satisfaction

Results of Using Emotions in Dialogue Processing One focus of the
data collection was to find out when and how users show emotions, along with
how the system should react in these situations. In the pretest the two main
emotions of the users were frustration/anger and happiness/fun (see table 8).
In the interview after the test, most of the users who responded angrily to
the system also reported that they were frustrated because the system did not
understand them. This was either because the speech recognizer did not produce
the correct hypotheses or because the dialogue manager could not recover from
an unwanted state. Happiness was mostly because the users found the system
to be “cute”.



We also discovered that the push-to-talk interaction limits the range of emo-
tions that could be recognized by the system. Different (visual) expressions like
shrugging or frowning could be observed when unexpected things happened or
the robot misinterpreted commands; some users also used their voice to express
astonishment, joy or disappointment. However, these events occurred during the
speech breaks. All users seemed to rethink their next action before pushing the
button to talk to the robot. This produced a small time slot between the users’
first (intuitive) reactions and the spoken command to the robot. The utterances
spoken to the robot seemed to be spoken without changing attitude. This means
that when the user started one utterance with an angry voice, he also completed
the utterance with an angry voice.

Seven randomly-selected users were asked to take part in a competition,
with the goal to complete the task as quickly as possible. During their task
a timer was running and counting seconds. The numbers of the counter were
well visible as can be seen in figure 9. These users were more task-focused than
the non-timed users, which means that they didn’t try many different ways to
interact with the system. However, we could not say that these users were more
stressed than others or that they reacted more angrily to errors of the dialogue
system. Three of these users reached their goal very fast because their input was
corrected by the Wizard-of-Oz control and the others interacted with the system
without interference. As we had expected, the fast ones were happy that they
had completed the task successfully. The slower users were frustrated about the
bad result, but we could not say that they were more angry or more frustrated
than non-timed users who got the same bad results.

It was interesting to see that people who complained about bad speech recog-
nition also disliked other parts of the system, such as the simulation environment
that in turn was appreciated by most of the users. This suggests that feelings
about one bad result also influence feelings about other parts of the system that
are independent of the bad result. Thus, it is very important to prevent the user
from getting angry.

We are currently developing an emotion recognizer that was not ready yet
for the evaluation. Hence, our analysis of user emotions is based solely on ex-
perimenter observations. Some strategies will be tested in the near future using
the Wizard-Of-Oz system in place of the emotion recognizer.

5 Conclusion and Outlook

In this paper, we gave an overview of our current research in multimodal human
robot interaction. Speech recognition and understanding and dialogue manage-
ment have been explained in detail and we mentioned how the components work
together. In addition, mechanisms for recognizing and learning new words have
been developed. In the future, we would like to extend our research to learn-
ing of grammar rules, ontology concepts and whole dialogue goals so that the
newly-learned words could be integrated in the whole environment easily.



Aspects of multimodal parsing have only been shortly mentioned, but they
will be an important part of our future research.

The importance of integrating emotion recognition into human robot inter-
action has been explained and we will further investigate how this can be done
in some more detail.

The results of our data collection showed that even with this simple system
the users could manage their tasks well and were content with the whole sys-
tem. We plan to enhance this system by improving the interaction between the
dialogue manager and the speech recognizer, using confidence measures in the
dialogue manager more extensively and using more effectively the single gram-
mar shared by both components. We will also include additional modalities, such
as gestures, to resolve ambiguities and emotion recognition for a more efficient
human robot interaction. Therefore, we would like to make further data collec-
tions with more complex tasks and with gesture input, to get to know whether
this additional input facilitates the task for the user and in which way both
modalities could be successfully integrated.
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