
JANUS: TOWARDS MULTILINGUAL SPOKEN LANGUAGE TRANSLATION

B.
������� 1, P. �	� ��

� ��� 2, T. ��� ��� 2, A. ��������� 1, L. ������� ���"!$# 1, A. E. �&%(')���*� 1, I. +-,�./� � � 2, T.

� % ��� ! 

0 2,
T.
� !1,324,"#5� 2, W. 67���"# 1, M. 6�,"8 0 % 0 � � � 1, A. 67���92:�"! 1 ; 2

Interactive Systems Laboratories
1 Carnegie Mellon University (USA)

2 Karlsruhe University (Germany)

ABSTRACT
In our effort to build spoken language translation systems we have
extended our JANUS system to process spontaneous human–human
dialogs in a new domain, two people trying to schedule a meeting.
Trained on an initial database JANUS-2 is able to translate En-
glish and German spoken input in either English, German, Spanish,
Japanese or Korean output. To tackle the difficulty of spontaneous
human–human dialogs we improved the JANUS-2 recognizer along
its three knowledgesourcesacousticmodels, dictionary and language
models. We developed a robust translation system which performs
semantic rather than syntactic analysis and thus is particulary suited
to processing spontaneous speech. We describe repair methods to
recover from recognition errors.

1. Introduction
JANUS [1, 2] has been among the first systems attempting
to provide spoken language translation. While the previous
JANUS-1 system processed syntactically wellformed read
speech over a 500 word vocabulary, JANUS-2 operates on
spontaneous human–human dialogs in a scheduling domain
with vocabularies exceeding 2000 words. Currently, English
and German spoken input can be translated in either English,
German, Spanish, Japanese or Korean output. Work is in
progress to add Spanish and Korean as input languages.

This paper reports on the current status of the system and ongo-
ing efforts to extend and improve the recognition component.
Then, we describe our new approach to robust translation of
spoken language. We briefly describe and compare the alter-
native approach to parsing and translation we pursue, based
on a generalized robust LR parser and an ILT. Finally we re-
port on efforts to detect erroneous system output and provide
interactive methods to recover from such errors.

2. Current Status of JANUS

2.1. Data Collection

Data collection to establish a large database of spontaneous
human–human negotiation dialogs in English and German has
started about 18 months ago. In the meantime, several sites
in Europe, the US and Asia have adopted the Scheduling task

under several research projects and funding sources. Since the
same calendars and data collection protocols are used the data
elicited shares the same domain and procedural constraints.

English Scheduling
dialogs words

recorded 1984 505 K
transcribed 1826 460 K

German Scheduling
dialogs words

recorded 734 158 K
transcribed 534 115 K

Spanish Scheduling
dialogs words

recorded 340 79 K
transcribed 256 70 K

ATIS3
transcribed n./a. 250 K

Table 1: Comparison of Databases (as of December 1994)

Table 1 summarizes the current status of data collection.
Since Scheduling utterances typically consist of more than
one sentence, there is already more data available for English
Scheduling than ATIS 1. More data collection will establish
databases in size at least comparable to ATIS for all languages.

In Spanish, we have explored two different data collection
scenarios: To allow only one person to speak at a time the
push-to-talk scenario requires the speaker to push a button
while talking to the system. The cross-talk scenario allows
speakers to speak simultaneously without push button. The
speech of each dialog partner is recorded on separate channels.

2.2. System Overview

The main system modules are speech recognition, parsing,
discourse processing, and generation. Each module is lan-

1The about 18000 utterances in English Scheduling correspond to some
30000 sentences.



guage-independent in the sense that it consists of a general pro-
cessor that applies independently specified knowledge about
different languages.

The recognition module decodes the speech in the source lan-
guage into a list of sentence candidates, represented either as
a word lattice or Nbest list. At the core of the machine trans-
lation components is a language independent representation
of the meaning, which is extracted from the recognizer output
by the parsing module. As last step, the final language inde-
pendent representation is sent to the generator to be translated
in any of the target languages. Figure 1 shows the system
architecture.

After parsing, a discourse processor can be used to put the
current utterance in the context of previous utterances, open-
ing possibilities to integrate the speech and natural language
processing compenents of the system to resolve parsing am-
biguities and dynamically adapt the vocabulary and language
model of the recognizer based on the current discourse state.

Figure 1: System Diagram

We explore several approaches for the main processes. For
example, we are experimenting with TDNN, MS-TDNN [3],
MLP, LVQ [4], and HMM’s [5, 12] for acoustic modeling;
n-grams, word clustering, and automatic phrase detection for
language modeling [6]; statistically trained skipping pars-
ing [7, 8], neural net parsing [9] and concept spotting pars-
ing [10] for extracting the meaning; and statistical models

as well as plan inferencing for identification of the discourse
state [11]. This multi-strategy approach should lead to im-
proved performance with appropriate weighting of the output
from each strategy.

2.3. Recognition Performance Analysis

The baseline JANUS-2 recognizer can be described as fol-
lows:

� Preprocessing: LDA on melscale fourier spectrum and
additional acoustic features (power, silence)

� Acoustic modeling: LVQ-2 or phonetically tied
SCHMM, no cross–word triphones, explicit noise mod-
els

� Decoder: Viterbi search as first pass, followed by a word-
dependent Nbest search, standard word bigram language
model, word lattice output

Current recognition results on the English, German and Span-
ish Spontaneous Scheduling Task (ESST, GSST, SSST) can
be seen in table 2.

ESST GSST SSST
Word Accuracy 66% 72% 61%

Table 2: JANUS-2 baseline recognition performance

The low absolute recognition accuracies are due to the chal-
lenging nature of human–human spontaneous speech. In the
official evaluation of the German VERBMOBIL project on
the GSST task, the JANUS-2 decoder outperformed all other
participating systems. In addition, recent evaluations on
the Switchboard task confirm that human–human dialogs are
much more difficult to recognize than human–machine spon-
taneous speech (like ATIS). Participating systems achieved
word accuracies between 30% and 50%.

Analysis shows that human-human dialogs (like Scheduling
or Switchboard) are more difficult to recognize than human-
machine dialogs (e.g. ATIS). Perplexities lie between 35 and
90 for ESST, SSST and GSST, and somwhat over 100 for
Switchboard. Additionally, human-human dialogs are signif-
icantly more disfluent [8]. Large variations in speaking rates
and strong coarticulation between words contribute signifi-
cantly to the difficulty of recognizing human-human sponta-
neous speech.

3. Improving the Recognition Component
We describe efforts to improve the recognition component
along its major knowledge sources acoustic models [12], dic-
tionary [13] and language models [14].



3.1. Data–Driven Codebook Adaptation

We developed methods aimed at automatic optimization of the
number of parameters for the semi-continuous phonetically
tied HMM used in JANUS-2. Usually, a fixed number of code-
book vectors is assigned to each of the phonemes. However,
as the available training data differs between phonemes and
the size of the feature space phonemes cover varies greatly,
constant codebook size leads to suboptimal allocation of re-
sources.

We have therefore suggested [12] to adapt the codebook size
of each phoneme according to the amount and the distribution
of the training data, similar to [15]. During training, the size
of the codebook is incrementally increased. Some quality
criterion determines when to stop the process of increasing
the codebook. We compared a variance criterion based on
the average distance between data points and their nearest
codebook vector with a prediction criterion which tries to
capture how well the modeling of the recognizer can predict
unseen data.

Model Codebook Size Word Accuracy
baseline 4600 66.9%
variance 4201 69.9%

prediction 1677 67.8%

Table 3: Results for Codebook Adaptation (GSST)

Table 3 compares recognition accuracies and codebook sizes
of the baseline models, with models automatically adapted
using the variance and prediction criterion. As can be seen,
codebook adaptation leads to significant error reduction if the
same number of parameters is used.The number of parameters
can be reduced by 40% with still better performance than the
baseline system.

3.2. Dictionary Learning

Due to the enormous variability in spontaneous human–
human dialogs creating adequate dictionaries with alterna-
tive pronunciations is crucial [16]. However, hand tuning and
modifying dictionaries is time consuming and labor intensive.
Pronunciations of a word should be chosen according to their
frequency. Modifications of the dictionary should not lead
to higher phonetic confusability after retraining. Therefore
we have proposed [13] a data-driven approach to improve
existing dictionaries and automatically add new words and
pronunciation variants whenever needed.

The learning algorithm requires transcripts for the whole train-
ing set and a phoneme confusability matrix of the speech rec-
ognizer used. First, phonetic transcriptions for all appearances
of each word are generated by help of a phoneme recognizer.

Then, variants which are infrequent or which would lead to
erroneous training of confusable phonemes are eleminated.
Finally, the acoustic models are retrained allowing for the
newly aquired pronunciations variants.

As can be seen in table 4, our algorithm for adapting and
adding phonetic transcriptions to a dictionary improves the
recognition accuracy of the decoder significantly and leads to
performance that is comparable to the context dependent re-
sults (cf. table 2). The baseline decoder for these experiments
uses 69 context independent phoneme models. Evaluation us-
ing context dependent models is in progress.

Dictionary Word Accuracy
baseline 61.7%
adapted 65.6%

Table 4: Results Dictionary Learning (GSST)

3.3. Morpheme Based Language Models

Based on our scheduling databases we noticed that in mor-
phologically rich languages such as German and Spanish,
dictionaries grow much faster with increasing database size,
compared to English (cf. figure 2). This is due to the large
number of inflections and compound words. One way to limit
this growth with increasing dictionary sizes is to use other
base units than words.
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Figure 2: Vocabulary Growth

We compared three different decomposition methods:

� strictly morpheme based decomposition, e.g. wegge-
hen (to go away) � � weg–geh–en, Spracherkennung
(speech recognition) � � Sprach–er–kenn–ung

� decomposition in root forms, e.g. weggehen (to go away)
� � weggeh@, Spracherkennung (speech recognition)
� � Spracherkenn@



� combination of strictly morpheme based decomposition
and root forms

Table 5 shows dictionary size, bigram perplexity and recog-
nition accuracy using the respective decomposition method,
based on 250 GSST dialogs. As can be seen, all decompo-
sition methods significantly reduce vocabulary size and per-
plexity. The impact on recognition accuracy is still small.
This may be due to the fact that the acoustic modeling suffers
from smaller units and thus deteriorate the gain in the lan-
guage model. In a real interface, however, this reduction in
vocabulary growth leads to a reduction of new words. Further
research will focus on finding more efficient and acoustically
less confusable decompositions automatically, and also test
the impact on translation.

Dictionary Perplexity Accuracy
Baseline 3821 88 64.7%

Morphemes 2391 46 65.4%
Root Forms 3205 79 63.5%
Combined 2998 59 65.1%

Table 5: Comparison of Decomposition Methods (GSST)

4. Concept Based Speech Translation
We have developed a robust translation system based on the
information structures inherent in the appointment scheduling
task being performed, described in detail elsewhere [10]. The
basic premise is that the structure of the information conveyed
is largely independent of the language used to encode it. Our
system tries to model the information structures in a task
and the way these structures are realized in words in various
languages. This system is an extension of the Phoenix Spoken
Language System [18]. It uses the Phoenix parser to parse
input into slots in semantic frames, and then uses these frames
to generate output in the target language.

4.1. The Parser

Unlike individual words, semantic units used in a task domain
are not language specific. Based on transcripts of scheduling
dialogs, we have developed a set of fundamental semantic
units in our parse which represent the different concepts a
speaker would use. For instance, a typical temporal token
could have date as subtoken, which could in turn consist of
month and day subtokens. The temporal could be part of a
statement of unavailability.

In contrast to previous speech translation systems, we
presently don’t perform syntactic analysis. Speaker utter-
ances, as decoded by the recognizer, are parsed into semantic
chunks which are concatenated without grammatical rules.

Original utterance:
THAT SATURDAY I’M NOT SURE ABOUT BUT YOU SAID

YOU MAY BE BACK IF YOU THINK YOU’LL BE BACK
THE THIS SUNDAY THE TWENTY EIGHTH I COULD SEE
YOU AFTER ELEVEN AM ON THAT IF YOU’RE BACK

Translated:

Saturday that’s not so good for me Sunday the twenty eighth works for me
after eleven a.m. (ENGLISH)

El sábado no me va demasiado bien pero el domingo veintiocho me va bien
después de las once de la mañana. (SPANISH)

Samstag könnte ich nur zur Not aber Sonntag der Achtundzwanzigste geht

bei mir ganz gut nach elf Uhr morgens. (GERMAN)

Figure 3: Translation Example

This approach is particularly well suited to parsing sponta-
neous speech, which is often ungrammatical and subject to
recognition errors. This approach is more robust than requir-
ing well-formed input and reliance on syntactic cues provided
by short function words such as articles and prepositions.

4.2. The Generator

The generation component of the system is a simple left-to-
right processing of the parsed text. The translation grammar
consists of a set of target-language phrasings for each token,
including lookup tables for variables like numbers and days
of the week. When a lowest-level token is reached in tracing
through the parse, a target-language representation is created
by replacing tokens with templates for the parent token, ac-
cording to the translation grammar. The result is a meaningful,
although terse translation, which emphasizes communicating
the main point of an utterance. An examples is illustrated in
figure 3.

4.3. Results

We have implemented this system for bi-directional transla-
tion between English, German and Spanish in our scheduling
task. Table 4 shows the performance of parser and subse-
quent generator on transcribed data. Evaluation of the system
based on speech decoded by the JANUS-2 recognizer is still
underway.

Parsed from Translated into
token utterance utterance

English 95.6% 90.0% 90.2%
German 92.4 89.6 87.3
Spanish 88.8 58.3 82.2

Figure 4: End–to–End evaluation on transcribed data

One disadvantage of this approach is the telegraphic and repet-



itive nature of the translations. This could be overcome by
providing multiple translation options for individual tokens in
the target-language module, different levels of politeness, etc.
However at present we feel that it is sufficient for intelligible
communcation.

5. GLR* Parser

In addition to the concept based Phoenix parser we pursue
GLR* as robust extension of the Generalized LR Parser. It
attempts to find maximal subsets of the input that are parsable,
skipping over unrecognizable parts of the input sentence [7].
By means of a semantic grammar GLR* parses input sen-
tences into an interlingua text (ILT) as language independent
representation of the meaning of the input sentence, described
in more detail elsewhere (e.g. [8]).

Compared to Phoenix parses the ILT generated by GLR*
offers greater level of detail and more specificity, e.g. different
speaker attitudes and levels of politeness. Thus, translation
based on ILTs is more natural, overcoming the telegraphic and
terse nature of concept based translation.

A drawback of GLR* was that it expected input segmented
into sentences for efficiency reasons. However, typical
Scheduling utterances consist of 2-3 sentences. To integrate
the parser with the speech decoder, we developed methods
which extend the parsing capabilities from single sentences to
multi-sentence utterances. We extended the grammar with a
high-level rule that allows the input utterance to be analyzed
as a concatenation of several sentences and developed two
methods to constrain the number of sentence breaks that are
considered by the parser. The first is a heuristic which prunes
out all parses that are not minimal in the number of sentences.
The second is a statistical method to disregard potential sen-
tence breaking points that are statistically unlikely.

For the English analysis grammar, time efficiency thus im-
proved by about 30%. As an additional benefit, the parse
quality improved because strange sentence breaks are rejected
in favor of a more reasonable location.

6. Handling Unreliability

Although research has boosted performance of speech recog-
nition and spoken language translation technology, recogni-
tion and translation errors will persist. To build a system
for use in real applications we need repair methods to re-
cover from errors in a graceful and unobstrusive way. We
have developed a speech interface for repairing recognition
errors by simply respeaking or spelling a misrecognized sec-
tion of an utterance. While much speech “repair” work has
focused on repairs within a single spoken utterance [19], we
are concerned with the interactive repair of errorful recognizer
hypotheses [20].

6.1. Identifying Errors

To be able to repair an error its location has to be determined
first. We pursue two strategies to identify misrecognitions as
subpieces of the initial recognizer hypothesis.

The automatic subpiece location technique requires the user to
respeak only the errorful subsection of the (primary) utterance.
This (secondary) utterance is decoded using a vocabulary and
language model limited to substrings of the initial erroneous
hypothesis. Thus, the decoding identifies the respoken section
in the hypothesis. Preliminary testing showed that the method
works poorly if the subpiece to be located is only one or two
words long. However, this drawback is not severe since
humans tend to respeak a few words around the error.

A second technique uses confidence measures to determine for
each word in the recognizer hypothesis whether it was misrec-
ognized. First, we applied a technique similar to Ward [21],
which turns the score for each word obtained during decoding
into a confidence measure by normalizing the score and using
a Bayesian updating technique based on histograms of the
normalized score for correct and misrecognized words. Since
we found this not to work well on our English scheduling
task, we are currently developing different methods to com-
pute confidence measures based on decoder, language model
and parser scores.

6.2. Robust Speech Repair

After locating and highlighting erroneous sections in the rec-
ognizer hypothesis misrecognitions are corrected.

The spoken hypothesis correction method uses Nbest lists for
both the initial utterance and the respoken section. The Nbest
for the highlighted section of the initial utterance is rescored
using scores from decoding the secondary utterance. Depend-
ing on the quality of the Nbest lists, most misrecognitions can
be corrected.

The spelling hypothesis correction method requires the user to
spell the highlighted erroneous section. A spelling recognizer
decodes the spelled sequence of letters. By means of a lan-
guage model we restrict the sequence of letters to alternatives
found among the Nbest from the located section.

To date, we have evaluated our methods over sentences from
the Resource Management task. Table 6 shows the improve-
ments in sentence accuracy, based on recordings from one
speaker of the February and October 1989 test data. We
selected a subset of erroneous utterances; therefore the ac-
curacy of the baseline system is significantly lower than the
94% performance our system achieves on the whole test set.
The results indicate that repeating or spelling a misrecognized
subsection of an utterance can be an effective way to repair
recognition utterances.



No Repair (baseline) 63.1%
Respeak 83.8%

Spell 88.5%
Respeak + Spell 89.9%

Table 6: Improvement of Sentence Accuracy by Repair

7. Conclusions
We have made significant advances towards building a multi
lingual translation system for spontaneous human–human di-
alogs. Beyond speech recognition of spontaneous speech
JANUS provides a framework to investigate important areas
like robust parsing, machine translation of spoken language
and developing methods to recover from recognition and pars-
ing errors. To achieve acceptance in real applications, we have
to embed the spoken language technology in a sensible and
useful user interface that is carefully designed around human
factors and common needs. To be flexible and robust, such
interfaces should not only recognize speech but also recog-
nize other communication modalities, provide freedom from
headset and push-buttons, allow for graceful recovery from
errors and miscommunications, know what they don’t know,
and model what the user does or doesn’t know [23].
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