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ABSTRACT

This paper describes our research on adaptation methods applied
to articulatory feature detection on soft whispery speech recorded
with a throat microphone. Since the amount of adaptation data
is small and the testing data is very different from the training
data, a series of adaptation methods is necessary. The adaptation
methods include: maximum likelihood linear regression, feature-
space adaptation, and re-training with downsampling, sigmoidal
low-pass filter, and linear multivariate regression. Adapted artic-
ulatory feature detectors are used in parallel to standard senone-
based HMM models in a stream architecture for decoding. With
these adaptation methods, articulatory feature detection accuracy
improves from 87.82% to 90.52% with corresponding F-measure
from 0.504 to 0.617, while the final word error rate improves from
33.8% to 31.2%.

1. INTRODUCTION

Today’s real-world applications are driven by ubiquitous mobile
devices while lack keyboard functionality. These applications de-
mand new spoken input methods that do not disturb the environ-
ment and preserve the privacy of the user. Verification systems for
banking applications or private phone calls in a quiet environment
are only a few examples. As a consequence, recent developments
in the area of processing whispered speech or non-audible mur-
mur1 draw a lot of attention. Automatic speech recognition (ASR)
has been proven to be a successful interface for spoken input, but
so far, microphones have been used that apply the principle of air-
transmission to transmit the sound from the speaker’s mouth to the
input device. When transmitting soft whisper, those microphones
tend to fail, causing the performance of ASR to deteriorate.

Contact microphones, on the other hand, pick up speech sig-
nals through skin vibrations rather than by air transmission. As a
result, processing of whispered speech is possible. Research re-
lated to contact microphones includes using a stethoscopic micro-
phone for non-audible murmur recognition [1] and speech detec-
tion and enhancement with a bone-conductive microphone [2].

In our previous work, we have demonstrated how to use a
throat microphone, one of many kinds of contact microphones, for
automatic soft whisper recognition [3]. Based on that, this paper
discusses how we incorporate articulatory features (AFs) as an ad-
ditional information source to improve recognition results. Artic-
ulatory features, e.g. voicing or tongue position, have shown great
potential for robust speech recognition [4]. Since whispery speech

1The term ’non-audible murmur’ was introduced by [1]. We prefer the
term whisper because a speaker’s intention could be either monologue or
for communication.

is very different acoustically from normal speech while they share
articulatory similarities, we expect that articulatory features pro-
vide additional robust phonological information to our senone-
based HMM speech recognizer.

In order to combine the senone models and articulatory detec-
tors, we use a flexible stream architecture introduced in [5]. It em-
ploys a list of parallel feature streams, each of which contains one
of the acoustic or articulatory features. Since the AF detectors are
trained on clean normal speech while the test data is mismatched
soft whisper, we adapt the detectors with a series of adaptation
methods, similar to our work in [3].

The paper is organized as follows. Section 2 introduces the
experimental setup for the adaptation methods, which are then de-
scribed in section 3. Section 4 describes the articulatory features
we used. Then we report the experiments and analyses in section
5, followed by our conclusion.

2. EXPERIMENTAL SETUP

2.1. Recording Hardware

The throat microphone used in our experiments is made of piezo-
electric ceramics and can be mounted by wearing it around the
neck. It is a commercial product made by Voice Touch [6]. We
chose this microphone because it has the best spectral resolution
among contact microphones we have experimented with. Similar
to [2], we used a USB external sound card to record two chan-
nels simultaneously. One channel contains the throat microphone
recording, while the other contains the regular close-talking mi-
crophone recording.

2.2. Data

For the adaptation experiments and evaluation in this paper, we
collected a small sample of whispered data from four American
native speakers, two male and two female, speaking English. In a
quiet room, each person reads sentences in two different styles of
articulation: normal speech and soft whisper. The recordings of
both articulation styles were done simultaneously, using both the
throat microphone and the close-talking microphone. For each ar-
ticulation style, we collected 50 sentences, 38 phonetically-balanced
sentences and 12 sentences from news articles. The 38 phonetically-
balanced utterances are used for adaptation and the 12 news article
utterances are used for testing. The format of the recordings is 16
kHz sampling rate, 2 bytes per sample, and linear PCM. We also
used the Broadcast News (BN) data for training our speech rec-
ognizer. Table 1 lists the total amount of adaptation, testing, and
the BN training data. Note that our data was collected by different



speakers from those of BN data, and our sentences are different
from the BN ones but in the same domain.

Table 1. Data for Training, Adaptation, and Testing
# Speakers Amount Task

Training 6466 66.48 hr BN
Adaptation 4 712.8 s phonetically balanced

Testing 4 153.1 s BN

2.3. Speech Recognizer

We chose a BN speech recognizer trained with the Janus Recog-
nition Tool-kit (JRTk) to be our baseline system [7]. In this sys-
tem, Mel-frequency cepstral coefficients (MFCC) with vocal tract
length normalization (VTLN) and cepstral mean normalization
(CMN) is used to get the frame-based feature. On top of that,
a linear discriminant analysis (LDA) is applied to a 15-frame (-7
to +7 frames) segment to generate the final feature for recognition.
The recognizer is HMM-based, and makes use of quintphones with
6000 distributions sharing 2000 codebooks. For decoding, a 40k-
word lexicon and a trigram language model is used. The perplexity
on the test sentences is 231.75. The baseline performance of this
system is 10.2% WER on the official BN test set (Hub4e98 set 1),
F0 condition, and 9.6% WER on our clean-normal test set.

The AF detectors are trained on the same BN data used for
training the senone models. Training is done on middle frames
of the phones only, because they are more stable acoustically than
the beginning or ending frames. There are 26 AF detectors, each
of which is a GMM containing 256 gaussians. The feature ex-
traction part is identical as for the senone models except the LDA
transformation matrix is estimated on the articulatory features.

3. ADAPTATION AND RE-TRAINING

In this section we introduce a series of adaptation methods for both
the senone models and the AF detectors.

Three types of maximum likelihood linear regression (MLLR)
[8] implementations are applied to all of our experiments. Let �
and � denote the adaptation and testing data, respectively, while
A() and U() are the two steps of MLLR: statistics accumulation
and model update. Then the MLLR methods can be described as
the following, where ��� means two iterations.� Supervised MLLR ( �
	�	���
 ): � A( � ) � U() ����� .� Supervised+Unsupervised MLLR I ( ��	�	���
���� ):

� A( � ) � U() � ��� ��� A( � ) � U() � ��� .� Supervised+Unsupervised MLLR II ( ��	�	���
�� ):
� A( �! "� ) � U() � ��� .

The first analysis of the collected speech data showed that the
throat microphone is band-limited up to 4 kHz, as displayed in
Figure 1. Therefore, we re-trained the acoustic models on 66-hour
BN data downsampled from 16 kHz to 8 kHz. For testing, the soft
whisper / throat microphone data was also downsampled to 8 kHz.

The first retraining approach as shown above did not improve
the system since the data are not simply band-limited but rather
sigmoidal low-passed. Therefore, we replaced the downsampling
by the following simple filter described by the formula: �$#%�&('*)�+-,�.�/1010103254 � 010�67.98 , where � is the scaling factor and : is fre-
quency. We applied this filter by multiplying the scaling factor �

Fig. 1. Spectrogram of the word ‘ALMOST’. Upper row: close-
talking mic. Lower row: throat mic. Left column: normal speech.
Right column: soft whisper.

to the spectral magnitude in feature extraction, and re-trained on
this sigmoidal low-passed BN data.

The analysis on the sigmoidal low-pass filtered data showed
that this filter is not accurate enough to model the channel differ-
ence between the close-talking microphone and the throat micro-
phone. The reason lies in the fact that different phones undergo
different transformations in the two channels, as shown in Figure
1. Therefore we adopted the linear multivariate regression (LMR)
idea [9], but applied it as phone-based transformations. We esti-
mated the transformations on three different stages of feature ex-
traction: log Mel-spectra, MFCC, CMN-MFCC, and applied one
of the three transforms for re-training. Note that the final feature
used for recognition is still the LDA feature.

Feature-space adaptation (FSA) can be regarded as constrained
model-space adaptation [10]. Since in our case the acoustic dif-
ference between training data and testing/adaptation data is very
large, we felt that using adaptation data of more than one speaker
may help. The idea of group MLLR and group FSA is to make use
of all the adaptation data available for a first step of adaptation. We
also ran more iterations of supervised MLLR, similar to [11].

4. ARTICULATORY FEATURES

Compared to widely-used cepstral features, articulatory features
are expected to be more robust because they represent articulatory
movements, which are less affected by speech signal differences
or noise [4]. Note that we derive the AFs from phonemes instead



Fig. 2. Articulatory Features’ F-measures of the Whisper Baseline, Adapted-Whisper, and the BN Baseline

Table 2. Accuracy(%)/F-measure of Articulatory Feature Detectors (I)
Method ;"<=<?> 
 ;"<=<?> 
���� ;"<=<=> 
@�
Baseline 89.30 / 0.585 88.16 / 0.524 89.04 / 0.579

Downsample 89.01 / 0.575 88.46 / 0.551 88.92 / 0.572
Sigmoidal LP 89.56 / 0.592 88.40 / 0.529 89.26 / 0.583
log Mel-spec 89.04 / 0.572 87.12 / 0.493 88.46 / 0.555

MFCC 88.95 / 0.573 87.18 / 0.495 88.52 / 0.560
CMN-MFCC 89.37 / 0.587 87.53 / 0.513 88.99 / 0.576

of measuring them directly as described in [5], which may limit
the robustness. More precisely, we use the IPA phonological fea-
tures for AF derivation. However, since the IPA features are de-
signed for normal speech, some derived AFs (such as GLOTTAL)
are not suitable for whispered speech, as we will see in the exper-
imental results. In this work, we use AFs that have binary values
[5]. For example, each of dorsum position FRONT, CENTRAL and
BACK is an AF that has a value either present or absent. The AFs
come from linguistical questions for decision tree construction of
context-dependent senone models. Moreover, these AFs do not
form an orthogonal set because we want the AFs to benefit from
redundant information. To classify the AF as present or absent,
the likelihood score of the corresponding present model and ab-
sent anti-model are compared. Also, the models take into account
a prior value based on the frequency of features in the training data
[5].

5. EXPERIMENTS AND ANALYSES

5.1. Articulatory Feature Detectors

We first train the AF detectors on the BN F0 data as our baseline,
then we apply the re-training methods described in section 3. The
average performance of the 26 detectors is shown in table 2. Note
that we report two performance metrics, accuracy and F-measure
( �A#CBED F ), both of which are calculated in the unit of frame. With
the same training scheme, the performance on the Hub-4 BN eval-
uation 98 test set (F0) is 92.43% / 0.752 while our baseline on the
throat-whisper test set is 87.82% / 0.504.

In [3], LMR-based methods showed best performance among
the re-training methods for senone models. However, LMR-based
methods hurt performance of AF detectors as shown in the lower
three rows of table 2. Similarly, GCHIHKJML .9N and GCHIHKJML N

Table 3. Accuracy(%)/F-measure of Articulatory Feature Detectors (II)
Method FSA G. FSA FSA + G. FSA G. MLLR

;"<=<=> 
 87.89 / 0.539 90.27 / 0.610 89.84 / 0.588 89.19 / 0.585

also make performance worse, contrast to the improvements made
for senone models [3]. Since sigmoidal low-pass filtering with
GCHIHKJ L is the only improving adaptation method, the following
experiments are conducted in addition to it.

We then apply additional FSA, group FSA, group MLLR, and
iterative MLLR methods with GCHIHKJ L . As shown in Table 3,
Group FSA performs the best, so further iterative MLLR is con-
ducted in addition to Group FSA. Compared to its effects on senone
models, iterative MLLR saturates faster in about 20 iterations and
peaks at 34 iterations with performance 90.52% / 0.617.

Fig. 2 shows a comparison of the F-measure of the individual
AFs, including the baseline AFs tested on the BNeval98/F0 test set
and on the throat-whisper test set, and the best adapted AFs on the
throat-whisper test set. The AFs are listed in the order of F-score
improvement from adaptation2; e.g. the leftmost AFFRICATE has the
largest improvement by adaptation. Performance degradation from
BN to throat-whisper had been expected. However, some AFs such
as AFFRICATIVE and GLOTTAL degrades drastically as the acoustic
variation of these features is among the largest. Since there is no
vocal cord vibration in whispery speech, GLOTTAL would not be
useful for such a task. For the same reason, vowel-related AFs,
such as CLOSE, CENTRAL, suffer from the mismatch. Most AFs im-
prove by adaptation; NASAL, for example, is one of the best AF on
BN data but degrades a lot on throat-whisper, as can be inferred
from Fig. 1. After adaptation, its F-measure doubles but there is
still a gap to the performance level on BN data.

5.2. Stream Decoding

In the stream architecture, we put together our best senone model3

and the best AF detectors45. The first experiments combine the
senone model with each single AF detector to see how well the

2The amount of adaptation data for each AF is in a different order; i.e.
the improvement is not a coincident with data amount.

3LMR-MFCC +FSA +FSA-SAT +Group FSA/MLLR +50-iter ;"<=<=> 
 [3].
4Sigmoidal LP Filtering +Group FSA +34-iter ;"<=<=> 
 .
5Note here we select the best model by its performance on the target

test set without using a development set.



Table 4. Four-Best Single-AF WERs on Different Weight Ratios
AF O weight 95:5 AF O weight 90:10 AF O weight 85:15

baseline 33.8 baseline 33.8 baseline 33.8
ASPIRATED 32.9 ASPIRATED 31.4 ALVEOLAR 32.4
BILABIAL 33.1 CLOSE 31.4 BILABIAL 32.6

RETROFLEX 33.3 BILABIAL 31.7 DENTAL 32.6
VELAR 33.3 PALATAL 31.7 NASAL 33.1

AF detectors can help the senone model. Table 4 shows the WERs
of different combination weights and the four-best single AF de-
tectors. As shown in the table, the combination of 90% of weight
on senone models and 10% of weight on AF detectors results in
the best performance, which can be regarded as a global minimum
in the performance concave with respect to different weights. In
other words, the single AFs can help only with carefully selected
weight.

In the next experiments, we incrementally add from one up
to ten AF detectors to the streams. We use simple rules to select
the AF detectors. The AF selection criteria include one-best WER
(WER), accuracy (acc), and F-measure (F). According to each cri-
terion, AF selection starts in greedy fashion from the AF detector
having the best performance, then it picks the second best one, and
so on. There is also a set of weighting rules for adding more AFs.
The first weighting rule is always assigning 0.05 to the weight of
every AFs (w5). The second rule distributes uniform weights out of
0.1 to the AFs (unif). The last one puts more weight on the better
performed AFs using the formula PRQR#SBED � %UTWVYXZ'A&�61[\%UT]%UT^'
&_616

, where P`Q is the weight,
T

the total number of AF detectors
used,

X
the rank of performance (scaled). Fig. 3 shows the WERs

with AF selection using *-WER, which showed better result than
the other two; this result is consistent with [5]. On the other hand,
fixed weight (w5-*) suffers from insufficient weights for the senone
models as the AF number increases. With one exception that the
WER improves to 31.2% in scaled-F with ALVEOLAR and FRICATIVE,
incorporating more than one AF doesn’t improve the WER. We
suspect the reason is that the mismatched training and testing data
are quite different acoustically, while the adaptation data is not
enough to reliably estimate the AFs. Therefore we cannot achieve
the improvement level as reported in [5].

6. CONCLUSIONS

We have developed a series of adaptation methods applied to ar-
ticulatory feature detection, which improve the performance of a
standard senone-based HMM throat-whisper recognizer using a
stream decoder. Also, we have shown AF adaptation improves
detection accuracy and F-measure. With t-test a =0.046, the best
stream decoding performance (WER=31.2%) is statistically sig-
nificant; however, on such a small test set, some other smaller
improvements are not. We therefore plan to collect more data.
Further work could be applying discriminative model combination
(DMC) on the stream architecture for better weights [12].
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