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Abstract
In this paper we describe the CMU statistical machine
translation system used in the IWSLT 2005 evaluation
campaign. This system is based on phrase-to-phrase
translations extracted from a bilingual corpus. We ex-
perimented with two different phrase extraction methods;
PESA on-the-fly phrase extraction and alignment free ex-
traction method. The translation model, language model
and other features were combined in a log-linear model
during decoding. We present our experiments on model
adaptation for new data in a different domain, as well as
combining different translation hypotheses to obtain bet-
ter translations.

We participated in the supplied data track for man-
ual transcriptions in the translation directions: Arabic-
English, Chinese-English, Japanese-English and Korean-
English. For Chinese-English direction we also worked
on ASR output of the supplied data, and with additional
data in unrestricted and C-STAR tracks.

1. Introduction

Large vocabulary text translation has been the primary fo-
cus in machine translation research during the past. Much
improvements have been achieved with projects such as
TIDES, which focused on large vocabulary text transla-
tion. With the availability of reliable speech recognition
systems and spoken language corpora, now the focus is
shifting towards speech translation; and further towards
speech-to-speech translation.

With the IBM system [1] in early 90’s, statistical
machine translation (SMT) has been the most promis-
ing approach for machine translation. Many approaches
for SMT have been proposed since then [2], [3], [4].
Whereas the original IBM system was based on purely
word translation models, current SMT systems incorpo-
rate more sophisticated models.

The CMU statistical machine translation system uses
phrase-to-phrase translations as the primary building
blocks to capture local context information, leading to
better lexical choice and more reliable local reorder-
ing. In section 2, we describe the phrase alignment ap-
proaches used by our system.

The main obstacle in using additional data for a trans-
lation task is that the new data may belong to a different
domain. We explored methods of adapting both the trans-
lation model and the language model to overcome this
problem, which are described in section 3.

Section 4 outlines the architecture of the decoder that
combines the translation model, language model, and
other models to generate the complete translation.

When translating speech recognition output, we inte-
grate multiple translation hypotheses into a single struc-
ture and then derive the best hypothesis. This approach is
described in section 5.

Finally, in section 6 we give an overview of the data
and tasks and present the results of the experiments we
carried out for different data conditions.

2. Phrase Alignment

In this evaluation, we applied a variation of the
alignment-free approach, which is an extension to the
previous work in [5] and [6] to extract bilingual phrase
pairs for the supplied data tracks. In this extension, we
used eleven feature functions including phrase level fer-
tilities and phrase level IBM Model-1 probabilities aim-
ing to locate the phrase pairs from the parallel sentences.
The feature functions are then combined in a log-linear
model as follows:

P (X |e, f)=
exp(

∑M
m=1λmφm(X, e, f))

∑

{X′} exp(
∑M

m=1λmφm(X ′,e,f))

whereX→(f j+l
j , ei+k

i ) corresponds to a phrase-pair can-
didate extracted from a given sentence-pair(e, f); φm is a
feature function designed to be informative for phrase ex-
traction. Feature function weights{λm}, are the same as
in our previous experiments [7]. This log-linear model
serves as a performance measure function in a local
search. The search starts from fetching a test-set spe-
cific source phrase (e.g. Chinese ngram); it localizes
the candidate ngram’s center in the English sentence;
and then around the projected center, it finds out all the
candidate phrase pairs ranked with the log-linear model
scores. In the local search, down-hill moves are allowed



so that functional words can be attached to the left or right
boundaries of the candidate phrase-pairs.

The eleven(M=11) feature functions that compute
different aspects of phrase pair(f j+l

j , ei+k
i ) are as fol-

lows:

• Four of them compute the phrase-level length rel-
evance: P (l+1|ei+k

i ) and P (J−l−1|ei′ /∈[i,i+k]),
whereei′ /∈[i,i+k] is denoted as the remaining En-
glish words ine: ei′ /∈[i,i+k]={ei′ |i

′ /∈ [i, i+k]},
andJ is the length off . The probability is com-
puted via dynamic programming using English
word-fertility table P (φ|ei). P (k+1|f j+l

j ) and
P (I−k−1|fj′ /∈[j,j+l]) are computed in a similar
way.

• Another four compute the IBM Model-1 scores for
the phrase-pairsP (f j+l

j |ei+k
i ) andP (ei+k

i |f j+l
j );

the remaining parts of(e, f) excluding the phrase-
pair is modeled byP (fj′ /∈[j,j+l]|ei′ /∈[i,i+k]) and
P (ei′ /∈[i,i+k]|fj′ /∈[j,j+l]) using the translation lex-
icons ofP (f |e) andP (e|f).

• Another two of the scores aim to bracket the sen-
tence pair with the phrase-pair as detailed in [7].

• The last function computes the average word align-
ment links per source word in the candidate phrase-
pair.

We assume each phrase-pair should contain at least
one word alignment link. We train the IBM Model-4
with GIZA++ [8] in both directions and grow the inter-
section with word pairs in the union to collect the word
alignment. Because of the last feature-function, our ap-
proach is no longer truly “alignment-free”. More details
of the log-linear model and experimental analysis of the
feature-functions are given in [7].

To use the extracted phrase-pairs in the decoder,
a set of eight scores for each phrase-pair are com-
puted: relative frequency of both directions, phrase-
level fertility scores for both directions computed via
dynamic programming, the standard IBM Model-1
scores for both directions (i.e. P (f j+l

j |ei+k
i ) =

∏

j′∈[j,j+l]

∑

i′∈[i,i+k] P (fj′ |ei′)/(k+1)), and the un-
normalized IBM Model-1 scores for both direction (i.e.
P (f j+l

j |ei+k
i ) =

∏

j′∈[j,j+l]

∑

i′∈[i,i+k] P (fj′ |ei′)). The
standard IBM Model-1 scores prefer short translations;
the un-normalized scores prefer longer translations. The
scores are combined via the optimization component of
the decoder (e.g. Max-BLUE optimization) as described
in section 4 in the hope of balancing the sentence length
penalty.

3. Model Adaptation

The Unrestricted Data track allows the use of additional
publicly available data for both translation and language

models. This mainly includes data from LDC and data
that is available on the Web.

The main problem with additional data is that it usu-
ally is from a different domain compared to the original
data. Using this data as is, along with the supplied data
hurts the performance on the development sets. There-
fore, we used a translation model adaptation approach to
handle this problem.

3.1. Translation Model Adaptation

We adapt the translation model to the test set by selecting
a part of the additional out-of-domain data using infor-
mation retrieval techniques as explained in [9].

For every source language sentence from the test set
or the development set, the most similar sentences from
the out-of-domain bilingual data are selected using cosine
distance with TF-IDF term weights as the similarity mea-
sure. The retrieval is done on the source language side
with each test sentence as a query, then the information is
used to extract respective sentence pair from the bilingual
corpus.

The selected sentences from the out-of-domain data
together with the supplied in-domain data are used to
train the translation model for the whole test set.

3.2. Language Model Perplexity for Measuring Selec-
tion Quality

An important question when selecting additional sen-
tences is how much out-of-domain data should be added
to the training corpus. Here, we used a perplexity based
re-ranking method [9].

The top 1000 retrieved sentences in the source lan-
guage (which is much more than the optimal number)
are split into small batches of 3-10 sentences which are
sequentially added to the selection. To determine how
well the selection of training data fits the test sentence,
we measure the perplexity of a language model trained
from each selection against the respective test sentence.
Each batch is classified according to whether it decreases
(good batch) or increases (bad batch) the perplexity.

The batches are re-ranked using this information by
putting bad batches at the end of the sorted order of sen-
tences. After re-ranking, those sentences that are in the
range of twice the lowest perplexity value are included in
the final training corpus.

Still, the main selection criterion is TF-IDF infor-
mation retrieval, as we look only at the e.g. top 1000
sentences returned by the retrieval and the original TF-
IDF ranking is kept among the good as well as the bad
batches.

This method allows to determine the size of the selec-
tion without using a development set and shows improve-
ments over the standard method of just choosing the same
number for each test sentence.



3.3. Data Weights

To balance the different sizes of the in-domain and out-
of-domain training corpora we assigned a stronger weight
to the in-domain data. We experimented with different
weight combinations. A rule of thumb for the weightw
for the in-domain data is as in (1) :

w =

[

#lines out − of − domain

#lines in − domain

]

(1)

3.4. Language Model Adaptation

We also applied a basic form of language model (domain)
adaptation using additional data crawled from the Web.
Based on the English in-domain supplied training data the
5000 most common 3-grams and 4-grams were used as
queries for the Google Web search engine. After filtering
and basic cleaning of the retrieved web pages this data
can be added to the Language Model training data.

4. Decoder

The decoder combines all knowledge sources, i.e. trans-
lation model, language model, etc. to find the best trans-
lation. In the CMU SMT decoder the decoding process is
organized into two states:

• Find all available word and phrase translations.
These are inserted into a lattice structure, called
translation lattice.

• Find the best combinations of these partial transla-
tions, such that every word in the source sentence is
covered exactly once. This amounts to doing a best
path search through the translation lattice, which is
extended to allow for word reordering.

In addition, the system needs to be optimized. For
each model used in the decoder a scaling factor can be
used to modify the contribution of this model to the over-
all score. Varying this scaling factors can change the
performance of the system considerable. Minimum error
training is used to find a good set of scaling factors.

In the following sub-sections, these different steps
will be described in some more detail.

4.1. Building Translation Lattice

The CMU SMT decoder can use phrase tables, gener-
ated at training time, but can also do just-in-time phrase
alignment. This means that the entire bilingual corpus is
loaded and the source side indexed using a suffix array
[10]. For all ngrams in the test sentence, occurrences in
the corpus are located using the suffix array. For a number
of occurrences, where the number can be given as a pa-
rameter to the decoder, phrase alignment as described in
section 2 is performed and the found target phrase added
to the translation lattice.

If phrase translations have already been collected dur-
ing training time, then this phrase table is loaded into
the decoder and a prefix tree constructed over the source
phrases. This allows for an efficient search to find all
source phrases in the phrase table which match a se-
quence of words in the test sentence. If a source phrase
is found in the phrase translation table then a new edge is
added to the translation lattice for each translation asso-
ciated with the source phrase.

Each edge carries not only the target phrase, but also
a number of model scores. There can be several phrase
translation model scores, calculated from relative fre-
quency, word lexicon and word fertility. In addition, the
sentence stretch model score and the phrase length model
score are applied at this stage.

4.2. Searching for Best Path

The second stage in the decoding is finding a best path
through the translation lattice, now also applying the lan-
guage model. To allow for word reordering, the search
algorithm is extended.

Hypotheses describe partial translations, i.e. a se-
quence of target language words, which are translations
of some of the source words, and a score. As we use a tri-
gram language model, we need to store only the last two
words. A hypothesis can be expanded to cover additional
source words. To restrict the search space only limited
word reordering is done. Essentially, decoding runs from
left to right over the source sentence, but words can be
skipped within a restricted reordering window and trans-
lated later. In other words, the difference between the
highest index of already translated words and the index
of still untranslated words is smaller than a specified con-
stant, which typically is 4.

When a hypothesis is expanded, the language model
is applied to all target words attached to the edge over
which the hypothesis is expanded. In addition, the dis-
tortion model is applied, adding a cost depending on the
distance of the jump made in the source sentence.

Hypotheses are recombined whenever the models can
not change the ranking of alternative hypotheses in the fu-
ture. For example, when using a trigram language model,
two hypotheses having the same two words at the end of
the word sequences generated so far, will get the same
increment in language model scores when expanded with
an additional word. Therefore, only the better hypothesis
needs to be expanded. The translation model and distor-
tion model require that only the hypotheses which cover
the same source words are compared.

As typically too many hypotheses are generated,
pruning is necessary. This means that coarser equivalence
classes are used to compare hypotheses, but also to keep
not only one hypothesis in one equivalence class, as done
in recombination, but to keep all hypotheses, which are
close to the best one. Pruning can be done with more



equivalence classes and smaller beam, or coarser equiva-
lence classes and wider beams. For example, comparing
all hypotheses, which have translated the same number
of source words, no matter what the final two words are,
would be working with a small number of equivalence
classes in pruning. The CMU SMT decoder allows two
different recombination and pruning settings.

4.3. Optimizing the System

Each model contributes to the total score of the transla-
tion hypotheses. As these models are only approxima-
tions to the real phenomena they are supposed to de-
scribe, and as they are trained on varying, but always
limited data, their reliability is restricted. However, the
reliability of one model might be higher than the reliabil-
ity of another model. So, we should put more weight on
this model in the overall decision. This can be done by
doing a log-linear combination of the models. In other
words, each model score is weighted and we have to find
an optimal set of these weights or scaling factors. When
dealing with two or three models, grid search is still feasi-
ble. When adding more and more features (models) this
no longer is the case and automatic optimization needs
to be done. We use the Minimum Error Training as de-
scribed in [11], which uses rescoring of the n-best list to
find the scaling factors with maximize BLEU or NIST
score.

Starting with some reasonably chosen model weights
a first decoding for some development test set is done. An
n-best list is generated, typically a 1000-best list. Then a
multi-linear search is performed, for each model weight
in turn. The weight, for which the change gives the best
improvement in the MT evaluation metric, is then fixed
to the new value, and the search repeated, till no further
improvement is possible.

The optimization is therefore based on an n-best list,
which resulted from sub-optimal model weights, and con-
tained only a limited number of alternative translations.
To eliminate any restricting effect, a new full translation
is done with the new model weights. The resulting new
n-best list is then merged to the old n-best list, and the en-
tire optimization process repeated. Typically, after three
iterations of doing translation plus optimization, transla-
tion quality, as measured by the MT evaluation metric,
converges.

5. ROVER on SMT n-best Hypotheses

To improve the translation accuracy of the ASR output,
we integrate multiple translation hypotheses and select
the best translation. Multiple translations can be obtained
either by translating each of the n-best hypotheses pro-
duced by a speech recognizer, or selecting the n-best
translations by a machine translation system.

5.1. ROVER

The ROVER approach is useful for integrating multi-
ple word sequences [12]. The word sequences can be
integrated based on the edit distance between the se-
quences, and then represented as a word transition net-
work (WTN) which has the same structure as a confu-
sion network (CN). A WTN differs from CN in that the
score of each arc is determined based on the occurrences
of words aligned to the same position in the WTN unlike
posterior probabilities in CN obtained by speech recog-
nition. Figure 1 shows an example of a word transition
network. The integrated multiple word sequence begins
with <s> and ends with</s>. In each column, words
aligned to the same position are included. The symbol
“@” is a special word indicating the possibility of dele-
tion.

Figure 1: Word Transition Network.

To select the best translation from a WTN, we con-
sider two methods. Given a WTN, one method is to sim-
ply choose the best scored word sequenceŴ such that:

Ŵ = argmax
W∈WTN

|W |
∑

n=1

PWTN (wn) (2)

wherePWTN (wn) is a score ofwn in the WTN that can
be calculated as the proportion of the number of occur-
rences ofwn to the sum of occurrences of words in the
same column;|W | is the length of the word sequenceW.

5.2. ROVER combined with Language model

When ROVER system is combined with a language
model, it helps to increase the recognition results consid-
erably for multiple ASR system outputs [13]. We search
for the best sequence using both the score of each arc and
probabilities given by a language model of the target lan-
guage such that:

Ŵ = arg max
W∈WTN

|W |
∏

n=1

PWTN (wn)PLM (wn|wn−2wn−1)
λ

(3)
wherePLM (wn|wn−2wn−1) is the language model score
given by a trigram language model;λ is the scaling factor
for the language model. By using a language model, the
selected word sequence is expected to be fluent and gram-
matically correct. The best word sequence can easily be
found by using a dynamic programming technique.



Table 1:Corpus statistics for the supplied data.

Supplied Data Track
Arabic Chinese Japanese Korean English

Manual ASR
Training Sentences 20,000

Words 131,711 176,199 198,453 208,763 183,452
Vocabulary 26,116 8,687 9,277 9,132 6,956

C-STAR’03 Sentences 506
Words 2,579 3,511 2,835 4,130 4,084 -
Vocabulary 1,322 913 1,024 920 976 -
Unknown Words 441 117 245 70 95 -

IWSLT’04 Sentences 500
Words 2,712 3,590 2,896 4,131 - -
Vocabulary 1,399 975 1,068 945 - -
Unknown Words 484 116 223 61 - -

IWSLT’05 Sentences 506
Words 2,607 3,743 3,003 4,226 4,563 -
Vocabulary 1,387 963 1,091 975 969 -
Unknown Words 468 155 249 169 84 -

5.3. Consolidation on ROVER

In consolidation, removing recognition errors, retaining
as much information of the original sentence as possible
and reconstructing a fluent sentence are important factors.
We define the consolidation score as:

S(V ) =

M
∑

m=1

{λLL(vm|v1...vm−1)

+ λCC(vm) + sp.d(vm−1, vm) + ip}

(4)

wheresp is a skip penalty(sp < 0); d(vm−1, vm) is the
number of skipped words betweenvm−1 andvm; ip is an
insertion penalty [14]. The skip penalty is incorporated to
avoid high compression of the original sentence because
high compression of a sentence often alters the meaning
of the sentence. The insertion penalty is used to control
the overall compression ratio.

6. Evaluation

The evaluations were primarily based on the Basic Travel
Expression Corpus (BTEC) which contains conversations
in tourism-related activities. The corpus was originally
created in Japanese and English by ATR [15] and was
later extended to other languages.

We participated in the supplied data track for the
translation directions Arabic-English, Chinese-English,
Japanese-English and Korean-English. For Chinese-
English direction we also worked on ASR output. In
both unrestricted and C-STAR tracks, we participated for
Chinese-English direction.

For each translation direction, except Korean-
English, two development sets (C-STAR’03 and

IWSLT’04) were made available. For Korean-English
only C-STAR’03 test set was available. Table 1 shows
corpus statistics for the training and test sets.

As a preprocessing step, we separated punctuations
from words in the English (target) side and converted the
text into lowercase. No preprocessing was done on any
of the source side data.

We report translation results using the well known
evaluation metrics BLEU [16] and NIST [17]. For our
primary system and the best system, we report results also
in WER, PER, METEOR [18] and GTM [19].

6.1. Supplied Data Track

During the evaluation our primary focus was on the
Chinese-English direction. We applied both PESA and
Alignment-Free phrase extraction methods to the sup-
plied data track. In building phrase tables using the
Alignment Free method, we extracted phrase-pairs with
source side up to8-gram in length. PESA online phrase
extraction method can extract phrases up to full length of
the sentence.

Table 2 summarizes the official translation results for
our primary submissions. We also give contrastive results
for the Arabic-English and Chinese-English directions in
Table 3.

The primary submission for Chinese-English direc-
tion was based on PESA alignment optimized towards
BLEU metric. Submissions for other language pairs
were based on the Alignment-Free method optimized to-
wards NIST. This resulted in the discrepancy between the
BLEU and NIST scores for the Chinese-English direc-
tion.



Table 2:Official results for the CMU primary submission on IWSLT’05 test set.

Data Input Translation BLEU NIST WER PER METEOR GTM
Track Direction [%] [%]

Supplied Manual AR-EN 40.9 8.74 50.8 43.0 0.64 0.58
CH-EN 44.4 6.19 58.1 49.9 0.52 0.48
JP-EN 39.3 8.00 51.3 45.9 0.56 0.52
KR-EN 35.8 8.17 47.0 38.0 0.65 0.59

ASR CH-EN 36.3 6.53 46.9 36.5 0.67 0.61
Unrestricted Manual CH-EN 47.1 9.35 54.7 45.5 0.58 0.47

C-STAR Manual CH-EN 52.7 10.02 42.0 32.6 0.71 0.64

Table 3:Contrastive results for Chinese-English and Arabic-English supplied data tracks.

Data Input Translation BLEU NIST WER PER METEOR GTM
Track Direction [%] [%]

Supplied Manual AR-EN 46.4 9.05 46.0 38.7 0.66 0.61
CH-EN 46.4 9.28 47.0 39.2 0.64 0.57

Table 5:Human judgement for Chinese-English supplied
data track. All metrics range between [0-4].

System Fluency Adequacy Meaning Mtns.

CMU Primary 2.88 1.35 1.34
CMU Contrast. 2.82 2.54 2.50

The contrastive results in Table 3 are based on
the Alignment-Free phrase extraction approach. Com-
pared to PESA which uses only lexical probabilities,
Alignment-Free method uses more features as explained
in section 2. This resulted in better scores compared to
the primary submission. Also it seems optimizing to-
wards NIST score gives a better balance between differ-
ent evaluation metrics.

Table 4 gives translation results for all three test sets.
We optimized the system for C-STAR’03 test set and used
IWSLT’04 as the unseen test data. In most translation
directions we see comparable results between IWSLT’04
and IWSLT’05 test sets.

We also conducted a subjective evaluation for sub-
missions on Chinese-English supplied data track: pri-
mary submission (CMU Primary) and contrastive sub-
mission (CMU Contrast.). Table 5 gives the results. Eval-
uator followed the same guidelines as IWSLT’05 subjec-
tive evaluation specifications [20]. These results further
indicates that Alignment Free approach produced better
translations.

6.2. Using Additional Data

For the Unrestricted and C-STAR data tracks it is possi-
ble to use additional bilingual and monolingual training
data. We used the TIDES data (Chinese newswire) as
an additional source for parallel bilingual data. This data

provides approximately 9 million lines of parallel texts
in about 140 million words. All available data (the sup-
plied data and the final test set) was re-segmented based
on the segmentation of the TIDES data. We also replaced
contractions likeI’m or We’ll with their respective writ-
ten forms. We selected 86,826 sentences from the TIDES
corpus using the translation model adaptation technique
described in section 3.

For the C-STAR track we also used the full BTEC
corpus as additional in-domain data.

Table 6 gives an overview of all available bilingual
data. As explained in Section 3.4 we also used a lan-
guage model adaptation technique in the Unrestricted
Data track which added 1.8 million sentences (with 18
million words) to the language model training data. This
additional data decreased the language model perplexity
by over 50 (on Development set 1, C-STAR’03) com-
pared to using only the supplied data. We used this data
as additional language modeling data on the actual test
set for the Unrestricted Data track.

Table 6:Additional bilingual training data

# Lines # Words # Words
(English) (Chinese)

Supplied Data 20,000 183,452 175,690
TIDES Data 9,106,599 144,030,404 135,486,265
Selected by TMA 86,826 1,649,132 1,662,906
Full BTEC Data 193,326 1,215,594 1,140,031

Translation results for the Unrestricted data track on
C-STAR’03 set and the Test set are shown in Table 7.
Using only the resegmented data did not give any im-
provement over the original segmentation. The transla-
tion model adaptation (TMA) alone improved the results



Table 4:Translation result for all test sets.

Phrase Alignment C-STAR’03 IWSLT’04 Test
BLEU NIST BLEU NIST BLEU NIST

AR-EN 44.8 8.14 40.3 8.10 40.9 8.74
CH-EN (PESA) 41.2 5.04 41.1 5.43 44.4 6.19
CH-EN (Al. Free) 40.3 8.10 42.8 8.82 46.4 9.28
JP-EN 50.4 7.50 49.1 7.68 39.3 8.00
KR-EN 37.9 7.66 - - 35.8 8.17

with further improvements when also using the adapted
language model (LMA).

Table 7: Translation results for Chinese-English unre-
stricted data track.

C-STAR’03 Test set
BLEU NIST BLEU NIST

Baseline
New Segment. 40.6 8.23 43.5 9.02
+TMA 43.2 7.43 46.5 9.23
+TMA +LMA 43.1 7.75 47.1 9.35

Table 8 illustrates the scores for the C-STAR data
track. Using the full BTEC corpus alone gives a slight
improvement in BLEU scores but leads to a consider-
ably low NIST score especially on the C-STAR03 devel-
opment set. Adding the selected data from the TIDES
corpus further improves all scores.

Table 8:Translation results for Chinese-English C-STAR
track.

C-STAR’03 Test set
BLEU NIST BLEU NIST

Baseline
New Segment. 40.6 8.23 43.5 9.02
+Full BTEC 42.8 6.44 49.4 8.15
+TMA 45.8 8.39 52.7 10.02

6.3. Results on ASR Output

The Chinese ASR 1-best was translated into English.
The 100 best translation hypotheses were merged into a
ROVER network and the best path was selected based on
the ROVER score (ROVER), the language model score
(LM) and the consolidation score (CON). The best scal-
ing factors were experimentally determined using the
Dev1 (C-STAR’03) set. Table 9 shows the evaluation re-
sult. The performance drastically dropped when using
only the rover score. Combining ROVER with the lan-
guage model helped to increase NIST scores significantly
in Dev 2(IWSLT’04) set and the final test set. In addi-
tion, the consolidation enhanced the BLEU scores. Al-

Table 9: Evaluation results for ASR 1-best translations.
The numbers in parenthesis show the average number of
words in a sentence.

Score Dev1 Dev2 Test
BLEU 35.5 33.0 36.3

ASR 1-best NIST 6.25 4.72 6.53
WER 60.8 61.5 59.9

(3.55) (4.75) (5.44)
ROVER BLEU 34.8 33.9 34.5

NIST 4.57 5.59 4.28
WER 71.1 66.7 60.9

(3.63) (4.68) (4.59)
MT 1000 ROVER BLEU 36.3 34.3 34.2
best for + LM NIST 4.87 7.49 7.20
ASR WER 60.4 63.8 65.2
1-best (4.82) (6.17) (6.33)

ROVER BLEU 37.3 35.4 37.2
+ LM NIST 3.42 7.40 6.58
+ SUM WER 60.7 60.5 61.1

(4.29) (5.38) (5.57)

though the WER is comparable among all experiments,
both BLEU and NIST scores have increased.

7. Conclusions

In this paper we described the CMU statistical machine
translation system that was used for the IWSLT 2005
evaluation campaign. We experimented with two phrase
extraction methods; one which uses only lexical proba-
bilities, and another method which uses additional fea-
tures such as fertility and alignment. For the Chinese-
English direction we also experimented with using addi-
tional data, both in-domain and out-of-domain, for model
adaptation. Results indicate that this adaptation helps to
increase the accuracy.

We did further experiments in integrating multiple
translation hypotheses using the ROVER approach and
choosing the best translation. This showed some interest-
ing results. However further investigations are required
to fully explore the potential of this approach.

Optimizing model parameters towards one metric
seems to have a negative effect on other metrics. This was



especially evident when optimized towards high BLEU
scores. A better approach would be optimizing the trans-
lation system using a linear combination of the different
metrics.

8. References

[1] P. F. Brown, S. A. D. Pietra, V. J. D. Pietra, and
R. L. Mercer, “The mathematics of statistical ma-
chine translation: Parameter estimation,”Computa-
tional Linguistics, vol. 19, no. 2, pp. 263–311, 1993.

[2] Y. Wang and A. Waibel, “Fast decoding for statisti-
cal machine translation,” inProc. of the ICSLP 98,
Sidney, Australia, December 1998, pp. 2775–2778.

[3] F. J. Och and H. Ney, “Improved statistical align-
ment models,” inProceedings of the 38th Annual
Meeting of the Association for Computational Lin-
guistics, Hongkong, China, October 2000, pp. 440–
447.

[4] K. Yamada and K. Knight, “A syntax-based statisti-
cal translation model,” inProceedings of the 39th
Annual Meeting of the Association for Computa-
tional Linguistics, Toulouse, France, July 2001, pp.
523–530.

[5] S. Vogel, “PESA: Phrase pair extraction as sentence
splitting,” in Proc. of the Machine Translation Sum-
mit X, Phuket, Thailand, September 2005.

[6] B. Zhao and S. Vogel, “A generalized alignment-
free phrase extraction,” inProceedings of the ACL
Workshop on Building and Using Parallel Texts,
Ann Arbor, Michigan, June 2005, pp. 141–144.

[7] B. Zhao and A. Waibel, “Learning a log-linear
model with bilingual phrase-pair features for sta-
tistical machine translation,” inProceedings of the
SigHan Workshop, Jeju, Korea, October 2005.

[8] F. J. Och and H. Ney, “A systematic comparison
of various statistical alignment models,”Computa-
tional Linguistics, vol. 29, no. 1, pp. 19–51, 2003.

[9] A. S. Hildebrand, M. Eck, S. Vogel, and A. Waibel,
“Adaptation of the translation model for statistical
machine translation based on information retrieval,”
in Proc. of the EAMT 2005, Budapest, Hungary,
May 2003, pp. 133–142.

[10] Y. Zhang and S. Vogel, “Competitive grouping
in integrated phrase segmentation and alignment
model,” in Proc. of the ACL Workshop on Build-
ing and Using Parallel Texts, Ann Arbor, Michigan,
June 2005, pp. 159–162.

[11] F. J. Och, “Minimum error rate training in statistical
machine translation,” inProceedings of the 41st An-
nual Meeting of the Association for Computational
Linguistics, Sapporo, Japan, 2003, pp. 160–167.

[12] J. G. Fiscus, “A postprocessing system to yield re-
duced error word rates: Recognizer output voting
error reduction (ROVER),” inProc. of the IEEE
Workshop on Automatic Speech Recognition and
Understanding, 1997, pp. 347–354.

[13] H. Schwenk and J.-L. Gauvain, “Improved rover us-
ing language model information,” inProc. of the
ISCA ITRW Workshop Automatic Speech Recogni-
tion: Challenges for the new Millenium, 2000, pp.
47–52.

[14] C. Hori and A. Waible, “Spontaneous speech
consolidation for spoken language applications,”
in Proc. of Interspeech 2005, Lisbon, Portugal,
September 2005.

[15] T. Takezawa, E. Sumita, F. Sugaya, H. Yamamoto,
and S. Yamamoto, “Towards a broad-coverage
bilingual corpus for speech translation of travel con-
versations in the real world,” inProc. of the Third
Int. Conf. on Language Resources and Evaluation
(LREC), Las Palmas, Canary Islands, Spain, May
2002, pp. 147–152.

[16] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu,
“Bleu: a method for automatic evaluation of ma-
chine translation,” inProf. of the 40th Annual Meet-
ing of the Association for Computational Linguis-
tics (ACL), Philadelphia, PA, July 2002, pp. 311–
318.

[17] G. Doddington, “Automatic evaluation of machine
translation quality using n-gram co-occurrence
statistics,” in In Proceedings of the Human Lan-
guage Technology Conference (HLT), San Diego,
CA, March 2002.

[18] S. Banerjee and A. Lavie, “METEOR: An auto-
matic metric for MT evaluation with improved cor-
relation with human judgments,” inProc. of the
ACL Workshop on Intrinsic and Extrinsic Evalua-
tion Measures for Machine Translation and/or Sum-
marization, Ann Arbor, Michigan, June 2005, pp.
65–72.

[19] J. P. Turian, L. Shen, and I. D. Melamed, “Evalu-
ation of machine translation and its evaluation,” in
Proc. of the Machine Translation Summit IX, New
Orleans, LA, September 2003.

[20] M. Eck and C. Hori, “Overview of the iwslt2005
evaluation campaign,” inthe same proceedings.


