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Abstract

We describe a feature extraction method for general audio mod-
eling using a temporal extension of Independent Component
Analysis (ICA) and demonstrate its utility in the context of a
sound classification task in a kitchen environment. Our ap-
proach accounts for temporal dependencies over multiple anal-
ysis frames much like the standard audio modeling technique of
adding first and second temporal derivatives to the feature set.
Using a real-world dataset of kitchen sounds, we show that our
approach outperforms a canonical version of this standard front
end, the mel-frequency cepstral coefficients (MFCCs), which
has found successful application in automatic speech recogni-
tion tasks.

1. Introduction

Recognizing acoustic events is becoming a key component of
multimedia computational systems of all types, including per-
sonal diaries [1], [2] context-aware mobile devices [3], content-
based information retrieval systems, and humanoid robots. An
example of such a system is the humanoid robot being devel-
oped as part of the SFB 588 project on humanoid robots [4].
This robot is intended to assist elderly or disabled humans in
kitchen tasks such as cooking and cleaning, and to provide
safety assurance. The ability to detect important kitchen sounds
is vital to this set of functions; many important state indicators
in the kitchen, like alarms, bells, buzzers, water boiling, or oil
beginning to sizzle in a pan, leave little or no visual evidence.

Toward the goal of providing a humanoid robot capable
of functioning in a kitchen environment, we have developed a
kitchen sound recognition system using a novel feature extrac-
tion method based on Independent Component Analysis (ICA).
Our method learns ICA basis functions over a multi-frame win-
dow of features; these functions capture inter-frame temporal
dependencies in an efficient manner. We have evaluated this
approach with a corpus of sounds which we collected in real
kitchens. We trained standard GMM/HMM classifiers using
both our feature extraction approach and a more standard front
end which uses Mel-Frequency Cepstral Coefficients (MFCCs)
plus first and second temporal derivatives. Our experiments
showed that in all cases temporal ICA is a better feature set
for describing real-world sounds of this type.

The remainder of this paper is organized as follows. We
discuss related work in Section 2, followed by the details of
our feature extraction method in Section 3. We then review the
data collection procedures in Section 4 before describing the
experimental results in Section 5. We conclude with discussion
and future directions in Section 6.

2. Related Work

The body of work on identifying real-world acoustic events (as
opposed to the related but distinct problem of identifying acous-
tic events in heavily-produced multimedia corpora like films
or broadcast news) is relatively small, but ever-growing, as re-
searchers continue to find both novel applications and methods.
[5] gave a good overview of the general audio signal classifi-
cation problem. [1] detailed an audiovisual processing system
capable of capturing and learning patterns in a user’s daily life.
[6] presented a layered HMM system using PCA features which
could detect certain classes of human activity in an office set-
ting. [7] discussed the use of discriminatively-trained HMMs to
model general sounds. More recently, [8] and [9] explored vari-
ous feature sets and classifiers in the context of a meeting room
sound recognition system. [10] also explored various types of
feature extraction techniques for general audio, with the goal
of segmenting long-term recordings into homogeneous chunks.
An interesting new feature representation, applicable to short-
term sound recognition and potentially long-term environment
modeling called the audio Epitome, was presented in [11].

In the speech recognition community, it has been demon-
strated that feature sets which model inter-frame dependen-
cies can outperform feature sets which lack this information.
Typically, these dependencies have been captured by using the
first and second temporal derivatives of the baseline features;
Yu [12] showed that performing a Linear Discriminant Analysis
(LDA) [13] on sequences of frames (frame-stacking) is superior
to this method.

There are many researchers working on ICA; some have
used time-domain ICA to learn optimal bases for natural sounds
([14] [15]), while others ([16]) have proposed that ICA be used
as an organizing principle for research on computational audi-
tion.

3. Feature Extraction using Temporal ICA

Per the result from Yu [12], we wished to capture depen-
dencies between features at timescales longer than one frame.
Yu’s method used sliding windows (or equivalently, multi-frame
stacks) of features as input to LDA. LDA attempts to find a lin-
ear transformation of the stacked features such that in the trans-
formed feature space, some set of classes is maximally separa-
ble. Under certain conditions [13], LDA can be viewed as an
optimal transformation for a classification task. However, LDA
has two features which made it ill-suited for our task. First,
accurate data segmentation is required at the HMM state level.
For new tasks, this kind of segmentation is often not available
without a significant amount of effort from a human expert lis-
tener. Second, the LDA solution is specific to a set of classes
and model topologies, meaning that it is difficult to compare re-



sults across different topology choices and difficult to change
the system vocabulary.

Given these problems, we chose to use ICA as an alternative
optimal transformation. ICA requires no labels and, as shown
by [15], is cabaple of learning a set of functions which corre-
spond quite strongly to actual environmental events.

In the general case, ICA is a family of methods which seek
linear transformations of the input data such that the output fea-
tures are maximally mutually independent [17]. The ICA prob-
lem is usually formulated as in Equation 1. Here, some set of
underlying, independent signalss is transformed by some un-
known linear mixing processA, resulting in the set of observ-
able signalsx. Givenx, the goal of ICA is to recover bothA
ands.

x = As (1)

For the task described here, the vectorsx are stacks of ob-
servable feature vectors. The columns ofA represent features
in the transformed space, and the entriessi represent feature co-
efficients to be used in our classification system. Hence, in our
system, the featuress are calculated ass = xA−1.

We used Hyv̈arinen’s fastICA [18] procedure to compute
the ICA solutionA. Though fastICA does not require it, we
prewhitened the input data by first using Principal Component
Analysis (PCA) [13] to decorrelate the data, followed by a mul-
tiplication by the inverse of the square root of the eigenvalue
matrix (resulting in an identity covariance matrix). At the same
time, we reduced the dimensionality of the feature space by dis-
carding features with low eigenvalues.

In our experiments, we computed ICA solutions for one-
frame, three-frame, five-frame, seven-frame, and nine-frame
stacks of log melscale spectra. Sets of basis functions for one-
frame ICA and seven-frame ICA are shown in Figure 1 and
Figure 2. In these figures, the vertical axis corresponds to mel-
frequency bins, while within each seven-frame basis, the hori-
zontal axis corresponds to time. Note in Figure 2 that several
of the seven-frame bases exhibit strong temporal patterns, and
only a few appear to be completely static.

Figure 1: Single-Frame ICA Basis Functions

4. Data Collection and Labeling
To evaluate our system, we collected audio data in four dif-
ferent kitchens. We used a Sony ECM-719 stereo microphone
and a Sony MZ-NH700 High-Minidisc recorder. The data were
recorded at 44.1KHz and transferred to computer in a lossless
fashion. We collected roughly 6000 instances of various kitchen
sounds and labeled them by hand. These instances were di-
vided at random into training and test sets; we used 70% of

Figure 2: Seven-Frame ICA Basis Functions

the instances for training and the remainder for testing. We ini-
tially divided the sounds into 56 different classes; however, we
found that this class set was simply too detailed. Many sets of
sound classes were both difficult to distinguish acoustically and
lacked semantic import (e.g. “pan on ceramic stove” vs. “pan
on metal stove”). After merging these classes, we were left with
a 21-class dataset. The dataset is described in Table 1. Here,
“telephone” refers to a number of different land and mobile de-
vices, “stoveerror” refers to an alarm sound made by a stove,
“boiling” refers to simmering water, and “overboiling” refers
to water which has reached a rolling boil. The “others” class
encompasses silence, stationary background noise, and short,
unidentifiable transient noises.

Table 1:Sample counts and durations per class.

class # training ex. # test ex. total # ex.
(dur. in sec) (dur. in sec) (dur. in sec)

boiling 221 (662) 98 ( 319) 319 (981)
breadcutter 25 (40) 11 (27) 36 (67)

cutting vegetables 134 (89) 58 (41) 192 (130)
door 114 (101) 50 (44) 164 (144)

door bell 50 (110) 22 (55) 72 (164)
egg timer ring 11 (34) 6 (17) 17 (51)

footsteps 240 (140) 104 (66) 344 (206)
lighter 84 (42) 37 (20) 121 (61)
match 141 (131) 62 (59) 203 (189)

microwavebeep 110 (30) 49 (17) 159 (47)
others 858 (1130) 369 (547) 1277 (1677)

ovenswitch 472 (133) 208 (60) 680 (194)
oven timer 12 (16) 6 (8) 18 (24)
overboiling 186 (129) 81 (70) 267 (199)
panstove 584 (308) 256 (132) 840 (439)

pansizzling 107 (343) 46 (146) 153 (489)
telephone 134 (920) 63 (393) 197 (1313)

speech 125 (82) 55 (38) 180 (120)
stoveerror 18 (12) 8 (5) 26 (17)

toaster 119 (92) 53 (46) 172 (138)
water 421 (1129) 184 (464) 605 (1593)
total 4166 (5670) 1826 (2573) 5992 (8243)

5. Experiments
To evaluate the efficacy of the temporal ICA features, we per-
formed several classification experiments on the kitchen data.
We describe these here.



5.1. Feature Extraction

Using the 44.1KHz audio signal, we first computed a Short-
Time Fourier Transform (STFT) with 20ms windows overlap-
ping by 10ms. For the baseline system, BASE, we derived
from the short-term power spectra 40 log mel spectra. We then
applied the discrete cosine transform (DCT), resulting in 13
MFCCs. We added the first and second temporal derivatives,
resulting in a 39-dimensional feature space. For the test sys-
tems, we derived 20 log mel spectra from the power spectra and
processed them using the temporal ICA procedures described
in Section 3 above. For all ICA window lengths, we used a
13-dimensional transformation. In all cases, this allowed us to
retain at least 95% of the total eigenvalue mass as calculated via
PCA.

5.2. Model Selection and Training

We evaluated several models using the features described in
Section 5.1. First, we tested diagonal-covariance Gaussian Mix-
ture Models (GMMs), which contain no temporal structure.
Second, we tested Hidden Markov Models (HMMs) with gaus-
sian mixture states. We evaluated both ergodic (ERG) and for-
ward (FWD) HMM topologies with two, three, and four states.
To simplify the experiment, each system used the same topol-
ogy for every class.

In both the GMM and HMM cases, we conducted two sepa-
rate experiments. In the first, we used the Bayesian Information
Criterion (BIC) to choose the optimal number of gaussians per
mixture or state. In the second, we kept the number of gaussians
per class fixed, dividing the components among states evenly in
the HMM case. The average number of gaussians per class for
the BIC condition (GMM and ERG models only) is shown in
Table 2. Note that the baseline feature set, BASE, has three
times as many features as the ICA feature sets. Hence, an ICA
system with three times as many gaussians as an BASE system
actually has the same number of parameters. After selecting the
model size, we initialized the gaussians using the k-means al-
gorithm and then performed Viterbi training [19] to fit gaussian
parameters. We did not train the transition probabilities. We
performed Viterbi training with optional silence for GMMs as
well as HMMs, in order to ameliorate the effects of possibly
errorful human segmentations.

Table 2:Average number of gaussians per class, by system

Topo BASE ICA1 ICA3 ICA5 ICA7 ICA9

GMM 2.5 9.0 10.0 10.0 15.1 9.7
ERG-2 3.0 12.0 11.4 14.2 15.0 13.6
ERG-3 4.5 12.9 14.1 16.5 15.0 15.6
ERG-4 5.2 14.4 16.0 17.2 18.0 18.0

5.3. Model Evaluation and Results

After training, we evaluated the models using the maximum
likelihood criterion; each model was exposed to each test ex-
ample, and the model producing the best likelihood was chosen
as the hypothesis. We computed for each system both the aver-
age per-class error and the average per-class precision. Results
for GMM and HMM systems using BIC-derived optimal gaus-
sian mixture sizes are discussed first, followed by results for
systems using fixed gaussian mixture sizes.

5.3.1. GMM Results

GMM results are shown in Table 3. We show unweighted per-
class averages for both precision and error. The best perfor-
mance in terms of both error and precision is achieved by the
ICA7 feature set. Note that all temporal ICA feature sets out-
perform the baseline in terms of error. The ICA7 GMM has
twice the number of parameters as the baseline, which may help
to explain the 7% difference in error; ICA9, however, only has
29% more parameters than the baseline and a 6% difference in
error.

Table 3:GMM Evaluation results

Feature Set Errorl Precision

BASE 17.3% 80.6%
ICA1 13.2% 79.7%
ICA3 11.8% 80.7%
ICA5 11.2% 80.2%
ICA7 10.8% 83.4%
ICA9 11.8% 82.3%

5.3.2. HMM Results

HMM results for ergodic models only are shown in Table 4 and
5. Again we see that the best results are achieved by using the
ICA7 feature set, with an overall best performance of 9.4% error
and 85.5% precision.

As in the GMM condition, some of the variation in perfor-
mance can be explained by differing mixture sizes. However,
the differences in parameter in the HMM case are not as ex-
treme as in the gaussian case. For the 3-state ergodic model,
the BASE feature set uses 4.5 gaussians, or 351 parameters per
class. The ICA7 feature set uses 15 gaussians, or 390 parame-
ters per class. This is a difference of 11% in terms of parame-
ters; the error difference is 5% in favor of ICA7.

Not shown in these tables are results using forward HMM
topologies. Using forward topologies for all classes resulted in
worse performace than using ergodic topologies for all classes.
Given the makeup of our database, with many sounds having
non-forward temporal structure, this is unsurprising. In the fu-
ture, we intend to report results using optimal topologies per
class.

Table 4:HMM error by topology and feature set

System 2-state 3-state 4-state

BASE 20.2% 14.4% 16.1%
ICA1 12.2% 11.5% 11.5%
ICA3 11.9% 10.8% 11.7%
ICA5 11.8% 11.5% 11.1%
ICA7 10.7% 9.4% 10.5%
ICA9 11.8% 10.4% 11.3%

5.3.3. Fixed-Gaussian Experiments

For this experiment, we kept the number of gaussians per class
fixed at 15. For the 3-state HMM, the gaussians were distributed
evenly among the states. Note that this actually means that there
are three times as many parameters in the BASE systems as for
the ICA systems. Here again, the ICA systems outperform the
baseline. Note, however, that the BASE systems now perform



Table 5:HMM precision by topology and feature set

System 2-state 3-state 4-state

BASE 79.3% 83.5% 82.2%
ICA1 81.2% 82.5% 82.2%
ICA3 81.8% 82.1% 82.6%
ICA5 83.1% 81.7% 84.4%
ICA7 84.0% 85.5% 84.8%
ICA9 83.5% 84.7% 85.7%

much more reasonably compared to ICA. Note also that the per-
formance difference between GMM and HMM has essentially
evaporated; ICA7 even has a test set error 1%better for the
GMM classifier than the 3-state HMM.

Table 6: Error and precision, number of gaussians fixed at 15
per class

System GMM ERG3
Error Precision Error Precision

BASE 12.4% 80.6% 12.2% 82.8%
ICA1 10.6% 82.8% 10.9% 82.2%
ICA7 9.2% 85.0% 10.2% 83.4%

6. Discussion and Future Work
We have presented a sound event classification system which
uses ICA to capture inter-frame temporal dependencies in a
frame-based feature set. We have demonstrated via experi-
ments using real-world sounds collected in a kitchen setting that
this feature extraction method results in better classifier perfor-
mance than the standard MFCC with first and second temporal
derivatives. We have found empirically that ICA over seven
frames, or 80ms, results in the best performance for this task.

Our use of HMMs as opposed to other types of classifiers,
means that the system is amenable to online, realtime use. De-
ploying the system in a robot mockup for experimentation with
real users in a real kitchen performing real tasks is the next step
in evaluating this technology.

Several areas were left unexplored in this paper, but should
be revisited in due course. First is some means of automatic
topology selection, as suggested in [7]. Second is the use of
perceptually-motivated features as input to the temporal ICA
procedure, as suggested in [9]. Finally, higher-order knowl-
edge about the nature of human activity scenarios in the kitchen
might be exploited in order to provide realistic prior distribu-
tions over sequences of acoustic events.
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