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ABSTRACT
Named entity extraction has been intensively investigated in the
past several years. Both statistical approaches and rule-based ap-
proaches have achieved satisfactory performance for regular writ-
ten/spoken language. However when applied to highly informal or
ungrammatical languages, e.g., meeting languages, because of the
many mismatches in language genre, the performance of existing
methods decreases significantly.

In this paper we propose an adaptive method of named entity
extraction for meeting understanding. This method combines a sta-
tistical model trained from broadcast news data with a cache model
built online for ambiguous words, computes their global context
name class probability from local context name class probabilities,
and integrates name lists information from meeting profiles. Such
a fusion of supervised and unsupervised learning has shown im-
proved performance of named entity extraction for meeting appli-
cations. When evaluated using manual meeting transcripts, the pro-
posed method demonstrates a 26.07% improvement over the base-
line model. Its performance is also comparable to that of the sta-
tistical model trained from a small annotated meeting corpus. We
are currently applying the proposed method to automatic meeting
transcripts.
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1. INTRODUCTION
Named entity extraction, i.e., extracting specific information struc-

tures, such as proper names, time and numerical expressions, from
written or spoken languages, has been intensively investigated in
the past several years [8, 6]. Much of the previous work on name
finding is based on one of the following approaches: (1) hand-

.

crafted or automatically acquired rules or finite state transducers([1,
2]); (2) lookup from large name lists or other specialized resources
[11]; (3) statistical models[3, 5]. Both statistical approaches and
rule-based approaches have achieved very good performance, with
93 F-score on written English newswire articles compared with
the 97 F-score achieved by humans[4], where F-score is a com-
bined measure of precision and recall. When applied to manual
broadcast news (BN) transcripts (0% WER), the F-score is only
slightly lower, at 91[10]. However when applied to languages that
are highly informal and contain strong spoken language character-
istics, the performance of existing methods degrades significantly.

Meeting understanding is one application with these language
characteristics. Unlike written newswire articles, meeting tran-
scripts/hypotheses have no case and punctuation information avail-
able to facilitate named entity extraction. Even compared with
broadcast news (BN), the language used in meetings(MT ) is more
informal[13]. Generally speaking, meeting language is character-
ized by:

� Shorter sentences,
(7.7 words per sentence in MT vs. 12.1 in BN);

� Fewer sentences per turn,
(2.2 in MT vs. 4.1 in BN);

� More disflunecies,
(0.87 per sentence in MT vs. 0.48 in BN);

� More repairs,
(29.0% in MT vs. 13.8% in BN);

� More non-lexicalized filled pauses, e.g., “uh,um”,
(29.5% in MT vs.0.7% in BN).

Considering the many mismatches in language genre, the rules
and statistical models acquired from formal written or spoken lan-
guages can not be directly used for meeting applications. Unfortu-
nately it would be very expensive to record lots of meetings, tran-
scribe them and build a corpus for training. Therefore we propose
an adaptive method for named entity extraction for meeting under-
standing. This method is based on a statistical model trained from
broadcast news data, but additionally makes use of meeting level
global context information and name lists information in meeting



profiles to improve performance. This combination of supervised
and unsupervised learning proved to be very effective. The exper-
imental result on manual meeting transcripts is significantly better
than the baseline model, which is trained from a large annotated
broadcast news corpus. Its performance is also comparable to that
of a statistical model trained from a small annotated meeting cor-
pus.

In the following sections, we will introduce the baseline statis-
tical model (Section 2), describe the proposed method (Section 3),
present the experimental results and analysis (Section 4), and fi-
nally draw some conclusions (Section 5).

2. BASELINE MODEL
The baseline model adopts the Hidden Markov Model frame-

work described in [3]. Eight internal states represent 7 classes
of named entities (PERSON,LOCATION, ORGANIZATION, TIME,
DATE, MONEY and PERCENT) as well as one remaining class
(NOT A NAME). This generative model assumes the following gen-
eration process of a given sentence:

� current name class NC is selected according to the previous
word and its name class,

� the first word in a name class is generated according to the
current and previous name classes,

� each subsequent word in this name class is generated from a
class-dependent bigram model.

Thus the task in the training procedure is to estimate 3 probabil-
ities:

1. Pc(NCjw�1;NC�1), class transition probability,

2. Pf(w1jNC;NC�1), first word generation probability,

3. Pb(wjw�1;NC), class-dependent bigram probabilities.

In the above notations, NC and NC�1 represent the current and
previous name classes respectively, w1 represents the first word in
the current name class,w represents the current word, andw�1 rep-
resents the previous word. To deal with data sparseness, different
smoothing techniques, such as back-off and interpolation strate-
gies, are used in the baseline model.

In the decoding process, the Viterbi decoding algorithm [12] is
applied to find the name class sequence which maximizes the prob-
ability of generating the whole sentence with L words,

NC = argmax ~NC P ( ~W; ~NC) (1)

= argmax ~NC p(NC1)� p(w1jNC1)�

LY

i=2

~p(wi;NCijwi�1; NCi�1); (2)

where ~W stands for word sequence (w1; w2; : : : ; wL), ~N denotes
name class sequence (NC1;NC2; : : : ;NCL), and ~p(wi;NCij

wi�1;NCi�1) represents the transition probability from wi�1 to
wi, assuming class transition from NCi�1 to NCi.

When the transition is between different classes,

~p(wi;NCijwi�1;NCi�1) = P (endjwi�1;NCi�1)�

Pc(NCijwi�1;NCi�1) � Pf(wijNCi;NCi�1): (3)

When the transition is within the same class, i.e., NCi = NCi�1,

~p(wi;NCijwi�1;NCi�1) =

P (no endjwi�1;NCi�1) � Pb(wijwi�1;NCi): (4)

The P (endjwi�1;NCi�1) and P (no endjwi�1; NCi�1) de-
note the probability of exiting or remaining in the previous name
class given the previous word.

Working with spoken language, a lot of informative format infor-
mation, like punctuation, case information and Arabic numerical
expression (e.g.,10/23/1997), is no longer available. Therefore, our
model only considers words as the basic modeling unit, and disre-
gards format feature representations. This is different from BBN’s
IdentiFinder system[3].

As in most statistical NLP work, data sparseness is also a serious
problem. We adopt both interpolation strategies (interpolate the
best-fit model with the more general model to reduce over-fitting),
and back-off strategies for smoothing. Back-off paths for each of
the three probabilities are:

� Pc(NCjw�1;NC�1) ! Pc(NCjNC�1) ! Pc(NC) !
1

number of name classes

� Pf (w1jNC;NC�1) ! Pf(w1jNC)! Pf (w1)!
P (NC)

V ocabulary size

� Pb(wjw�1;NC)! Pb(wjNC)! P (NC)
V ocabulary size

When tested on broadcast news data, the performance of the
baseline model is comparable to the IdentiFinder. Detailed results
are presented in Section 4.

3. ADAPTATION MODEL
To deal with the mismatch between formal and informal lan-

guage, the proposed adaptation model uses the meeting level global
context information as well as meeting profile information to im-
prove the performance of named entity extraction.

3.1 Unsupervised Adaptation: Cache model
Cache models were first proposed for dynamic language model-

ing for speech recognition in [7], where the pre-computed general
trigram model is interpolated with the local trigram model. The so-
called cache model is trained from on-line generated word hypoth-
esis, to “capture the short-term fluctuation in word frequency”[7].
Our cache model adaptation procedure also makes use of global
context information from whole meeting transcripts, e.g., topical
information, consistency of name class for a given word, to im-
prove name class annotation in local contexts, but with different
theory and model implementations.



The basic assumption of the proposed model is that each meet-
ing will have some coherent topics, and even if a word or word se-
quence could have more than one name class in general, the name
class of its every instance in a specific context (e.g. throughout a
meeting) will tend to be consistent. This class will be in line with
the topic of the scenario. Although the topic mismatches and the
disfluency of spoken language in meetings will reduce the accu-
racy of the probability estimation, the average probabilities over
the whole meeting, which is supposed to be internally coherent,
may help give a reliable estimation, and possibly correct some er-
rors in annotation. Therefore, the adaptation model will identify
ambiguous words from first-pass annotation, build a cache to store
their probability of belonging to each name class in each instance,
estimate their global name class probability, and then relabel their
name classes accordingly.

Formally, for a given word w, the best name class estimation in
terms of the whole meeting context should satisfy

^NC(w) = argmaxNC P(NCjw)

= argmaxNC

Y

i

P (NCi = NCjwi = w): (5)

P(NCjw), the global name class probability for wordw, is com-
puted from the product of its local name class probability at posi-
tion i, P (NCi = NCjwi = w), under the independent assump-
tion. The latter could be represented as the composition of 2 proba-
bilities: forward NC probability P (NCijwi; wi�1) and backward
NC probability
P (NCijwi; wi+1). This model tries to estimate the current class
probability from its past and future context.

For forward probability,

P (NCijwi; wi�1) =
P (wi;NCijwi�1)

P (wijwi�1)
; (6)

where

P (wi;NCijwi�1) =
P (wi;NCi; wi�1)

P (wi�1)

=

P
NC0

i�1
P (wi;NCi; wi�1;NC 0

i�1)

P (wi�1)

=

P
NC0

i�1
P (wi;NCijwi�1;NC 0

i�1)P (wi�1;NC 0

i�1)

P (wi�1)

=
X

NC0

i�1

~p(wi;NCijwi�1;NC
0

i�1)p
0(NC

0

i�1jwi�1) (7)

and

P (wijwi�1) =
X

NC0

i

P (wi;NC
0

ijwi�1): (8)

For backward probability,

P (NCijwi; wi+1) =
P (wi+1; wi;NCi)

P (wi+1; wi)

=
P (wi+1jwi;NCi)P (wi;NCi)

P (wi+1; wi)

=
[
P

NC0

i+1
~p(wi+1;NC 0

i+1jwi;NCi)]p
0(NCijwi)

P (wi+1jwi)
(9)

In the above functions, ~p is the transition probability, and p0(NCjw)

is a context-independent prior name class probability for word w,
which is computed from the general domain broadcast news train-
ing data.

Thus, the local name class probability for word w at position i

is the interpolation between the forward and backward probabili-
ties, and w’s name class probability over the whole meeting is the
average probability over all the occurrences of word w. Such a
global probability will be utilized for the re-estimation of w’s name
classes.

In summary, the whole name class annotation proceeds in the
following way:

� Apply the baseline model on the test data;

� Identify ambiguous words, which have both:

– different class labels over the whole meeting according
to the first-pass decoding;

– low class assignment confidence, which is defined in
terms of the ratio between top 2 class-dependent word
generation probabilities;

� Apply cache model re-estimation on those ambiguous words
to compute their global name class probability;

� Select the winning class, which has the highest global name
class probability, weighted by the frequency of that class la-
bel in the first-pass decoding;

� Relabel the ambiguous words with the winning class label.

3.2 Supervised Adaptation: Learning from
Meeting Profile

Cache model adaptation works well when the true name class
has the highest average probability among all labeled name classes
after the first-pass decoding. However, when indicative informa-
tion is not available (particularly for some OOV words), and thus
first-pass labels are mostly incorrect, the model becomes less ef-
fective. However, some indicative information could be extracted
from meeting profiles, which usually contain the attendants’ names,
the topics to be discussed, or even a concise summary of the meet-
ing. When such information is taken into the model in the form
of probabilistic name lists (e.g., person/location/organization name
lists), in which each word is associated with the prior probability of
belonging to this name class, more certainty about class annotation
is obtained and therefore the named entity extraction performance



Table 1: Baseline model on BN and MT data
BN MT1 MT2

IdF 87.91 27.14 47.03
Baseline 88.35 37.93 60.37

Table 2: Adaptation on baseline model for MT data I
MT1 MT2

BL 37.93 60.37
BL+MP 50.07 65.65
BL+MP+CM 66.67 68.33

will accordingly be improved.

In our current implementation, only attendees’ name information
is added to the meeting profile, and assigned to the PERSON name
class with probability 0.9. The remaining probability mass, 0.1,
is equally distributed among the rest name classes. These class-
dependent unigram probabilities, P (wjNC), are used in the com-
putation of word generation probabilities.

4. EXPERIMENTAL RESULT
To evaluate the performance of the baseline model and the adap-

tation approach, we performed several experiments. We trained our
baseline model using Hub4 NE-IE training data (52 broadcast news
transcripts, about 260K words), and tested it on one manual broad-
cast news transcripts (2318 words, 106 named entities), obtained
the Baselineresult. We also ran the IdentiFinder (re-trained with
the same broadcast news training data)on the same test data, ob-
tained IdF result. Then, we ran the same experiment on two man-
ual meeting transcripts, MT1 (10554 words,137 named entities)
and MT2 (11146 words, 240 named entities). Table 1 summarizes
the F-scores of these experiments.

As shown in Table 1, both IdentiFinder and the baseline model
work reasonably well on broadcast news data, but their perfor-
mances drop considerably when tested on the meeting data. Fur-
thermore, their performances vary from meeting to meeting. This
is understandable due to the various mismatches in language char-
acteristics and the nature of different meetings.

Table 3: Adaptation on baseline model for MT data II
BL BL+MP+CM Improvement IdF(retrained)

MT1 37.93 66.67 75.77% 67.90
MT2 60.37 68.33 13.18% 61.11
MT3 47.76 54.99 15.13% 56.99
MT4 53.61 59.49 10.96% 63.87
MT5 53.87 58.23 8.09% 69.69
MT6 38.98 52.18 33.86% 66.10
MT7 60.33 61.13 1.32% 58.27
MT8 27.57 58.60 112.55% 68.32
Avg. 47.55 59.95 26.07% 64.03

Figure 1: F-score comparison on ENAMEX class.

Table 2 demonstrates the experimental result when different adap-
tation strategies are applied. BL , MP and CM represent the base-
line model, the meeting profile model and the cache model respec-
tively. When the meeting profile information-in this case, the par-
ticipant name lists-is integrated into the baseline model, the perfor-
mance is improved, especially for person names. Specifically, in
MT1 the name list contains 45 instances of the 137 named entity
instances, improving F-score by 32%, while in MT2 , the name list
contains 24 of the 240 named entity instances, improving F-score
by 8.7%, respectively. Such difference in name list coverage also
explains why name lists lead to more significant improvement in
MT1 than in MT2 . When cache model adaptation is additionally
applied on BL+MP , most of the local annotation errors are cor-
rected as long as the true name classes are assigned higher prob-
abilities on average during their baseline annotations. Thus per-
formance is further improved. Figure 1 illustrates the F-scores of
different systems on ENAMEX, which contains three name classes:
LOCATION, ORGANIZATION and PERSON.

More experimental results are presented in Table 3, which shows
that the cache model plus meeting profile information is very ef-
fective in MT1 , MT6 and MT8 , and less effective in MT7 . But in
general, empirical experiments indicate that the proposed adaptive
approach increases the named entity extraction accuracy by an av-
erage of 26.07% over the baseline system.

In Table 3, the performance of the proposed model is also com-
pared with the IdentiFinder system (denoted as IdF(retrained) ) re-
trained using a small number of manual meeting transcripts. Among
all 8 meeting transcripts, which share similar topics and genres, 6
are left as training data, and the rest 2 are evaluated as test data. In
each “fold” of such 4-fold cross validation experiments, the train-
ing set contains roughly same number (about 90K) of words, and
includes most of the attendees’ names in the test meetings, ranging
from 58% to 100% instance coverage. Trained with such adapta-
tion data, the IdF model demonstrates much better accuracy than
the baseline system. Experimental result also shows that, although
in general the performance of the proposed method, without using
any adaptation data, is not as good as that of the IdF system trained
with adaptation corpus, in some applications it is possible that the
former is comparable(as in MT1 , MT3 , MT4 ), even outperforms



Example 1
BL: uh <b_enamex TYPE="PERSON">john <e_enamex> is on <b_enamex TYPE=

"ORGANIZATION"> channel one <e_enamex> uh ty number two susi three nils four
and myself five

BL+MP: uh <b_enamex TYPE="PERSON"> john <e_enamex> is on <b_enamex TYPE=
"ORGANIZATION"> channel one <e_enamex> uh <b_enamex TYPE="PERSON"> ty
<e_enamex> number two susi three nils four and myself five

BL+MP+CM: uh <b_enamex TYPE="PERSON"> john <e_enamex> is on CHANNEL ONE uh
<b_enamex TYPE="PERSON"> TY <e_enamex> number two <b_enamex
TYPE="PERSON"> SUSI <e_enamex> three <b_enamex TYPE="PERSON"> NILS
<e_enamex> four and myself five

Reference: uh <b_enamex TYPE="PERSON"> john <e_enamex> is on channel one uh <b_enamex
TYPE="PERSON"> ty <e_enamex> number two <b_enamex TYPE="PERSON"> susi
<e_enamex> three <b_enamex TYPE="PERSON"> nils <e_enamex> four and myself
five

Example 2
BL/BL+MP: is bbn a name

<b_enamex TYPE="PERSON"> bbn <e_enamex> 'S the name of a company
yeah then it 'S just bbn without spaces

BL+MP+CM: is bbn a name
BBN 'S the name of a company
yeah then it 'S just bbn without spaces

Reference: is <b_enamex TYPE="ORGANIZATION"> bbn <e_namex> a name
<b_enamex TYPE="ORGANIZATION ">bbn <e_enamex> 'S the name of a company
yeah then it 'S just <b_enamex TYPE="ORGANIZATION "> bbn <e_enamex> without
spaces

Figure 2: Some examples excerpted from test data .

the latter(as in MT2, MT7).

Some segments excerpted from the test data are presented in Fig-
ure 2, where we can find that

� It is possible for the baseline model to detect common named
entities, like “john”, from informal/ungrammatical context,
but the result resembles some named entity patterns from
broadcast news, e.g., “channel one”;

� Additional information from meeting profiles, although quite
limited in amount, can be very helpful because of its high
relevance to the meeting;

� Within the probabilistic model, name lists alone can not guar-
antee that every instance of their entries is correctly labeled,
especially in the context with strong spoken language fea-
tures, e.g.”...susi three nils four...”. But cache models can
recover from such local annotation errors.

� The cache model adaptation works best when correct name
classes are assigned higher probabilities on average. Other-
wise — especially for the OOV words— it isn’t helpful, even
detrimental to the annotation, as in the case of “bbn”.

5. DISCUSSION

5.1 Analogy to the forward/backward vari-
ables

The reader may have noticed the analogy between forward/backward
probabilities and the�t(i)/�t(i) in forward-backward algorithm[9].
The forward variable�t(i), the probability of generating the partial
observation sequence o1; o2; : : : ; ot assuming the underlying state
is i at time t, given the model �, is defined as:

�t(i) = P (o1; o2; : : : ; ot; qt = ij�): (10)

The inductive computation for �t(i) is

�t(j) = [
NX

i=1

�t�1(i)aijbj(ot)]; (11)

where N is the number of states, aij is the transition probability
from state i to state j, and bj(ot) is the probability of generating
output ot at state j.

Similarly, the backward variable�t(i), the probability of gener-
ating the partial observation sequence ot+1; ot+2; : : : ; oT , given
the underlying state is i at time t,and the model �. is defined as :

�t(i) = P (ot+1; ot+2; : : : ; oT jqt = i:�); (12)

The inductive computation for �t(i) is

�t(i) = [
NX

j=1

aijbj(ot+1)�t+1(j)]: (13)

Compared with formula (7), ~p(wi;NCijwi�1;NC 0

i�1) and
aijbj(ot) both represent the probability of transiting between 2



states and generating new output in the new state, while �t�1(i)

and p0(NC 0

i�1jwi�1) denote the recursive probability correspond-
ing to the previous state. Similarly, the analogy between backward
probability and �t(i) also exists, but �t+1(j) is replaced by the
constant prior probability p0(NCjw).

5.2 Information retrieval based on meeting pro-
files

Meeting profiles usually contain limited information, and thus
offer limited direct benefits. Nevertheless, some topic-related in-
formation in meeting profiles, e.g., scheduled topics, meeting sum-
mary, could be used as queries to retrieve relevant documents, on
which the baseline model could be applied to extract topic-related
named entities. Since most of the retrieved documents are writ-
ten text, we would expect the baseline model attain more accurate
annotations on them. Such additionally extracted named entities,
together with their annotation confidence, could be integrated into
the probabilistic name lists. This experiment will be carried out in
the future.

5.3 Advantages and disadvantages
While the IdentiFinder system achieves good performance for

general domain applications when enough training data is available,
the proposed adaptive strategy works well with domain-dependent
applications when no training data is available. This is achieved by
the following:

� build a domain-independent model with general domain text;

� develop an adaptation model by “training on the fly”, i.e.,
conducting supervised and unsupervised learning from test
data;

� integrate the domain-independent model and the adaptation
model for better named entity annotations.

However, utilizing this model prerequisites higher average prob-
abilities for correct name classes, and assumes each word has one
name class throughout the meeting, which may not be the case in
some situation.

6. CONCLUSIONS
In this paper, we proposed an adaptive method of named entity

extraction. This method combines a statistical domain-independent
model with an adaptation model trained on the fly. For the latter, we
build a cache model for ambiguous words, re-estimate their global
context name class probability from local context name class prob-
abilities, and integrate additional information from meeting pro-
files. We have demonstrated that such a combination of super-
vised and unsupervised learning greatly increases the performance
of named entity extraction for manual meeting transcripts.
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