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ABSTRACT

Recently, speechrecognitionsystemsbasedon articulatory
featuressuchas“voicing” or thepositionof lips andtonguehave
gainedinterest,becausethey promiseadvantageswith respectto
robustnessandpermitnew adaptationmethodsto compensatefor
channel,noise,andspeakervariability. Theseapproachesarealso
interestingfrom a generalpoint of view, becausetheir modelsuse
phonological andphoneticconcepts,which allow for a richerde-
scriptionof a speechactthanthesequenceof HMM-states,which
is theprevalentASRarchitecturetoday. In thiswork, wepresenta
multi-streamarchitecture,in which CD-HMMS aresupportedby
detectorsfor articulatoryfeatures,usinga linear combinationof
log-likelihood scores.Thismulti-streamapproachresultsin a15%
reductionof WER on a readBroadcast-News (BN) taskand im-
provesperformanceon a spontaneousschedulingtask(ESST)by
7%. Theproposedarchitecturepotentially allows for new speaker
andchanneladaptationschemes,includingstreamasynchronicity.

1. INTRODUCTION

Large vocabulary speechrecognizersusually modelspeechas a
sequenceof HMM states,whosemodelsarelearnedby partition-
ing the trainingdatainto disjoint sets. This representationof the
speechproductionprocessis but a rough approximationof real-
ity [1, 2]. Phonologydescribesspeechsoundsin termsof phones,
which area shorthandnotationfor a certaincombinationof fea-
tures (e.g.VOICED or LABIAL), whichareeitherabsentorpresent
in these(idealized)sounds. A distinctive setof featurescan be
usedto describeall relevantsoundsin aspecificlanguage(seee.g.
[3]) in termsof thesefeatures.It is however understoodthat this
phonological categorizationis only a roughapproximationof the
phoneticrealizationof soundsduring humanspeechproduction,
which is not at all a discreteprocesswith clear-cut transitions be-
tweenphonesor otherstates.

HMM-basedrecognizersallow for thisfactby modelingspeech
notat thephonelevel, whichis howeverusedin thedictionary, but
by usingsub-phoneticunits,suchasthecommontri-statearchitec-
ture in which a phone/A/ is modeledby thestatesA-b, A-m, and
A-e for thebegin, middle,andendof thecorrespondingsoundre-
spectively. Also, differentacousticmodelsfor a phonearetrained
dependingon thephoneticcontext, to allow for co-articulationef-
fects.In orderto modelall posibleconfigurations,modernLVCSR
architecturestypically employseveralthousandsof theseveryspe-
cific models.

In this work, we presenta speechrecognitionsystem,which
integratesdedicateddetectorsfor phonological or articulatoryfea-
tureswith conventional context-dependent sub-phonemodels,us-

ing a streamarchitecture.The featuresub-systemconsistsof sig-
nificantly lessparametersandwastrainedonasubsetof thedataof
the“standard”system,yet thecombinationof thetwo approaches
yields a significantreductionin word error rateon two different
LVCSRtasks(readandspontaneous, cleanspeech).Initial experi-
mentsonSwitchboarddatahavenotyet ledto significantimprove-
ments,but we arecurrentlystill in the processof optimizing our
setupfor this task.

Speechrecognitionsystemsmaking useof articulatory fea-
tures have beenproposedin different contexts already, and re-
searchershave investigated their potentialwith respectto robust
speechrecognition[4] andits relationwith articulatoryandphono-
logical knowledge[5, 6], startingfrom arecognition-by-synthesis
approachandoftenusingX-Ray data.

If ourgoalis speechrecognitiononly, articulatoryfeaturescan
beregardedasanabstractdescriptionof a speaker’s phonological
intention(i.e. producinga /b/ sound)andcanthenberecognized
in muchthe sameway asphonesor words,in our setupby esti-
matingGMMs on an MFCC representationof the speechsignal.
If we regardthesearticulatoryfeaturesasphonologically distinc-
tive propertiesof speechsoundsandarenot concernedwith the
relationship with actualarticulatorymovements,severalworks[7]
haveshown thefeasibilityof systemsusingarticulatoryfeaturesas
replacementsor supportfor conventional acousticmodels,mainly
on smallerrobust recognitiontasks.Theadditive combinationof
scoresat the log-likelihood level asusedin our experiments,was
shown to bethemostpromisingapproachto fusionof featureand
standardmodelsin [8].

Our approachusesup to 76binaryphonological featuressuch
asVOICED or LABIAL. Acousticscoresfor a statearecomputed
asaweightedsumof GMMs in log-space,representing“standard”
and“feature”PDFs.This setupallows averyflexible combination
of existing modelswith detectorsfor articulatorystatesin a one-
passdecoder.

Themaingoalof this work is to show how supportinga con-
ventionalASR systemwith only a few streamsof articulatoryfea-
turescan improve speechrecognitionperformancesignificantly;
it is thereforenot neccessaryto build a full feature-basedclassifi-
cator. In section2 we describeour experimentson theBroadcast
News task, discussingthe architecture,the selectionof features
andinitial resultsof adaptationexperiments.Theextensionof this
approach,by combiningit with standardadaptationschemesfor
acousticmodelsandfurtheradaptationof thestreamweightsin a
speaker- or state-dependentway or the inclusionof asynchronous
statetransitionsshouldallow to reduceerrorratesevenfurther. In
section3, wetestthesameapproachonclean,spontaneousspeech
from theschedulingdomain,andsummarizeour experiencewith
this setuponSwitchboarddatasofar.
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Fig. 1. Streamarchitectureusedin ourexperiments:stream0 con-
sistsof � 4000conventional CD-HMM models,while streams1,
2, ...,76(only two areshown) arefeaturestreamswhichonly have
two modelsabsent andpresent, apartfrom noiseandsilencedis-
tributions (notshown here).

2. EXPERIMENTS

2.1. Description of Baseline System

Thesystemusedasstream0 in ourreadBroadcastNews(ReadBN)
experimentsuses� 4000fully-continuouscontext-dependentsub-
phonemicmodelswith 32 Gaussianseachand diagonalcovari-
ances.Thesewereestimatedwith 4 iterationsof Viterbi trainingon
a40-dimensionalfeaturespacederivedfrom MFCCsafteranLDA
transformation. CMS, variancenormalizationand VTLN were
alsoapplied. The featuresystemuses256 Gaussiansper model,
trainedwith 6 iterationson a 32-dimensional featurespace.The
numberof parametersfor humanspeechsoundsin thefeaturesys-
temis thereforeabout0.5%for eachstreamused,whencompared
to thestandardsystem.

Training datafor theReadBNtaskconsistedof about65h of
original BN data and 35h from the English Verbmobil (ESST)
data. This dataconsistsof spontaneousdialoguesin the travel
and schedulingdomainandwas collectedduring the Verbmobil
[9] project.Testdataconsistedof 17 minutesof original BN texts
readundercleanconditions(ReadBN).

Thephonesetof our recognizerconsistsof 45humansounds.
We also usedthreenoiseand one silencemodel. The baseline
systemreachesa word error rate of 13.4% using a 40k vocab-
ulary and tri-gram BN languagemodel in the time-synchronous
one-passbeamsearchdescribedin [10].

2.2. Combining Articulatory Features and CD-HMMs

We decidedto usethe 76 linguistically motivatedquestionsused
duringconstructionof thedecisiontreefor context-dependent mod-
elingasaninitial setof articulatoryfeatures.Weexpectthatnotall
featureswill improve recognitionandthateventuallythe optimal
combinationwill dependon both channelandspeaker. This set
containsquestionsfor voicing, mannerandplaceof articulation,
articulatorand soundtype, combinationsthereof(ALVEOLAR--
FRICATIVE) aswell aslinguistic andphoneticfeatures(CONSO-
NANTAL, REDUCED).

Thestreamarchitecturewe usedin our experimentsis shown
in figure1. In ourexperiments,wedidnotuseafully distinctive set
of features,asour featurestreams“support” conventionalmodels,
but insteadtried to addonly a subsetof features,which increases
recognitionratemost.We have alsonot limited thefeaturesto an

orthogonalsetof questions,aswewantto retaintheadvantagesof
redundancy, which we assumehumansuseaswell. Theweightof
eachfeaturestreamwassetto 0.05throughoutthis work, with the
remainingweightbeingassignedto the“standard”stream,asthis
settingwasempiricallyfoundto give reasonableresults.

2.3. Model Training for Articulatory Features

Detectorsfor articulatoryfeatureswerebuilt in exactly the same
wayasacousticmodelsfor existingspeechrecognizers.In ourex-
periments,we usedthe Janus[11] speechrecognitiontoolkit. A
relevant detail of theacoustictraining is thatwe usedthe middle
framesonly, assumingthat featuressuchas VOICED would be
morepronouncedin the middle of a phonethanat the beginning
or theend,wherethetransitioninto neighboring, maybeunvoiced,
soundshasalreadybegun.As datais not fragmentedasin context-
dependentacousticmodeling,but insteadsharedbetweendifferent
phones,datasparsenessis notaproblemhere.Also, featuredetec-
tors for ReadBNweretrainedon the ESSTsubsetof the training
dataonly.

Feature/ Task ReadBN Switchboard
Test on Frames Middle All All
UNVOICED 91.0% 84.5% 80.8%

STOP 87.3% 78.9% 74.6%
VOWEL 84.6% 77.2% 76.2%
LATERAL 95.0% 94.3% 95.0%
NASAL 94.2% 91.8% 90.1%
FRICATIVE 92.1% 86.2% 84.0%

LABIAL 90.2% 90.2% 85.7%
CORONAL (worst) 78.3% 72.0% 70.5%
PALATAL 96.7% 96.6% 96.2%
VELAR 90.8% 88.0% 90.2%
GLOTTAL 98.8% 97.9% 97.3%

HIGH-VOW 87.6% 85.7% 86.3%
MID-VOW 83.7% 80.4% 85.6%
LOW-VOW 90.3% 89.9% 91.4%
FRONT-VOW 84.8% 81.2% 84.8%
BACK-VOW 91.4% 90.8% 91.8%
DIPHTHONG 89.1% 87.9% 85.1%

ROUND 89.6% 88.5% 87.9%

RETROFLEX 95.9% 94.1% 94.7%
OBSTRUENT 90.6% 81.3% 79.6%
ALV-FR (best) 99.1% 98.9% 99.3%
OVERALL 90.8% 87.8% 87.3%

Table 1. Featureclassificationaccuracy for selectedfeatureson
theReadBNandSwitchboardtasks.

The thusobtainedfeaturedetectorswereusedto classifythe
test data into feature present and feature absent categorieson a
per-framebasis,by comparingthe likelihood scoresproducedfor
the test-data,alsotaking into accounta prior valuecomputedon
the frequency of featuresin the training data. The referencefor
testingwasgiven by thecanonicalfeaturevaluesassociatedwith
thephoneticlabelobtainedthroughaViterbi alignmentof thetran-
scriptionusingthebaselinesystem.Theresultsshown in the left
two columnsof table1 wereobtainedonourReadBNtestdata.
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Fig. 2. Outputof thefeaturedetectorsfor partof theutterance“...
bemoreeffective andyoumighteven...”; blackbarsmeanfeature
present and white barsmeanfeature absent. The height of the
barsis proportionalto thescoredifference,i.e. thehighera black
(white) bar, themorelikely it is that the correspondingfeatureis
present(absent)at this point in time. The numbersat thebottom
representtheframenumbersfor this excerpt:1sec= 100frames.

The output of someof the featuredetectorsas usedin the
classificationexperimenton ReadBNdatais shown in figure 2.
It seemsthat theoutputof the detectorsindeedapproximatesthe
canonicalfeaturevaluesquitewell, asis alsoindicatedby theclas-
sificationratesin table1, althoughvariousco-articulationeffects
(e.g.nasalizationof /UW/ before/M/) aredetected.

2.4. Selection of Features

Givenanumberof featuredetectors,it becomesnecessaryto choose
which onesto retainin the recognizer. I.e. while thestructureof
the second-level decisiontreein figure 1 (feature present � fea-
ture absent) is fixed by the phonological structure,we have to
selectthe featuresto usein the combinationandtheir respective
weightswhencomputingthe sumof GMMs at the top level ( � ).
In a first step,we decidedto incrementallyaddfeaturestreamsto
thebaselinesystemusingequalweightsfor all statesandstreams,
comparingthreeapproachesto this problem:

FRAME-CR: Alwaysaddtheonewith thenext-bestframeclas-
sification rate,asshown in table1: This leadsto the fea-
turesALV-FR, ALVEOPALATAL, DEL-REL, AFFRICATE,
X-LMN, GLOTTAL, ASPIRATED, PALATAL, LABIODEN-
TAL, andLAB-FR beingaddedin thatorder.

DECODE: Initially decodeacompletesetof two-streamsystems
(i.e. addonly one feature),then alwaysadd the one that
improved performanceon the two-streamsystemmost. In
this case,we addedthe featuresCORONAL, NASAL, LH-
DIP, LATERAL, GLOTTAL, BF-DIP, ASPIRATED, ALVEO-
PALATAL, VCD-PLOSIVE, andW-DIP in thatorder.
The word error-ratesfor thesetwo-streamsystemsrange
between15.5% when adding Y-GLIDE and 12.1% when
addingCORONAL (baselineWER is 13.4%).

TREE: Computea divisive clusteringtree on a genericspeech
model,i.e. employthedata-drivenstrategy usedto generate
context-dependent modelsto determinea featureset that
containscomplementaryinformation,by alwaysaddingthe
featurewhereacontext-dependentmodelwouldbecreated,
becausethis split hasthe highestgain in likelihood. Here,
the questionshowever do not refer to context, but to the
speechframeitself.

OBSTRUENT?

SIBILANT?SONORANT?

MH−DIP?HIGH−VOW? NASAL? VLS−FR?

Y N

Y−GLIDE? BF−DIP?BACK−VOW?RETROFLEX?

Fig. 3. Decisiontreecomputedon a genericspeechmodelusing
the linguistically motivatedquestionset for polyphone construc-
tion. This treewascomputedon thefeaturetrainingdata(ESST).

Duringthisprocessthequestionsfor OBSTRUENT, SONO-
RANT, SIBILANT, HIGH-VOW, NASAL, VLS-FR, MH-DIP,
RETROFLEX, Y-GLIDE, andBF-DIP gavethegreatestlike-
lihood gain. Thesplitting treeis shown in figure3, we can
alsointerpretit asasimilarity treeshowing therelationbe-
tweensoundsin their MFCC representation.It is interest-
ing to note that not all featuresthat appeardistinctive by
this criterion do also have a high per-frame classification
rate.

Theresultsobtainedwith thesethreeapproachesaresumma-
rizedin table2. We didn’t conductexperimentson systemsbased
onfeaturesalone,becausethenumberof parametersin our feature
systemis only a fractionof thenumberof parametersin thebase-
line system.Theresultshows no clearsuperiorityof eitherselec-
tion method,in all casestheworderrorratedecreasesmonotonously
to aminimumwhenadding6 to9 features,thenslowly startsto rise
again. We thereforeplan to investigateothermethodsfor feature
selectionandthedeterminationof streamweightsin thefuture.

# features FRAME-CR DECODE TREE

0 (BASELINE) 13.4%
1 13.2% 13.3% 13.3%
2 12.7% 12.9% 13.1%
4 12.4% 12.5% 12.3%
6 11.6% 11.7% 11.7%
8 11.6% 11.7% 12.0%
10 11.8% 11.7% 12.1%

Table 2. Bestfeaturesystemusingdifferent featureselectional-
gorithms.Thefeaturesusedarelistedin themaintext.

While the baselinesystemwithout featurestreamsreachesa
WER of 13.4%,thebestfeaturesystem,usingthe8 featuresAF-
FRICATE, ALV-FR, ALVEOPALATAL, ASPIRATED, DEL-REL, GLOT-
TAL, PALATAL, andX-LMN with a weightof 0.05eachreachesa
WER of 11.6%.Usingthe6 featuresBF-DIP, CORONAL, GLOT-
TAL, LATERAL, LH-DIP, andNASAL, theworderrorrateis11.8%.

Theaccumulatedacousticscoresproducedby thestreamsys-
temsarehigherthanthoseof thebaselinesystem,sothatthegains
do not result from a down-scalingof the acousticscores,effec-
tively wideningthebeams.Thiscontrolexperimentwasconducted
aswell anddid not decreaseWER. Even for an8-featuresystem,
the featuresaremodeledby lessthan5% of the parametersused
in thebasesystem,yet performanceimproves. We thereforecon-
cludethat the featurestreamsindeedcarry complementaryinfor-
mation,which canbe usedto increaseword accuracy by mixing
log-likelihoodscoresin theproposedstreamsetup.



2.5. Adaptation Experiments

As an initial experimentto seehow standardadaptationschemes
work in conjunctionwith the proposedfeaturestreamset-up,we
computeda singlespeaker-dependentconstrainedMLLR adapta-
tion matrix on the featurespacefor the standardmodelsandfor
thefeaturestreammodels.

Applying thistransformationimprovedtheperformanceof the
baselinesystemto 13.0%.Thefeaturesystemusing6 featuresim-
proved from 11.8%to 11.2%,sothatthetotal gainis evengreater
for thefeaturesystem.In this case,wecomputedseparateadapta-
tion matricesfor thefeaturesystemandthestandardmodels.

Anotherapproachto speakeradaptationis givenby incremen-
tally collecting featureoccurencestatisticsandcomparingthese
with the prior distribution computedfor all speakers,thenadapt-
ing thesepriors to thecurrentspeaker. For thesix-featuresystem
this approachreducedtheerrorratefrom 11.8%to 11.6%.

Furtheradaptationis possibleby settingthestreamweightsto
different,speaker- or state-dependentvalues[12], wearecurrently
in theprocessof preparingtheseexperiments.

3. EXPERIMENTS ON ESST AND SWITCHBOARD

To testour approachon a largernumberof speakersandon spon-
taneousspeechundercleanconditions, weranexperimentson the
ESST(Verbmobil)data. The baselinesystem(andstream0) for
theseexperimentswastrainedontheESSTtrainingdata(35h)and
used2250models,with 48 Gaussianseachon a 32-dimensional
featurespace.The baselinesystemreachesa WER of 23.5%on
the 32-speaker, 85-minuteESSTtest-setusing a tri-gram ESST
languagemodelandan8k vocabulary.

Addingthesamefeaturesasin section2.4with astreamweight
of 0.05,WERreducesto between23.2%(SONORANT) and23.0%
(LATERAL). PerforminganOracle-experiment,i.e. assumingthat
we could choosethe featureto add on a per-speakerbasis,the
WER reaches22.6%.SequentiallyaddingfeaturesusingtheDE-
CODEcriterionpeaksataWERof 21.9%usingthefeaturesHIGH-
VOW, LATERAL, OBSTRUENT, SIBILANT, andY-GLIDE.

Featuredetectorsfor Switchboardweretrainedona30hsubset
of theavailabletrainingdataandthetrainedmodelscontained128
GaussiansperPDF. The baselinesystem,which wasalsotrained
onthese30hof trainingdata,reachesaWERof 35.9%ona60min
subsetof the2001evaluationdatausingspeaker-adaptedmodels.
Whenwecombinethesewith speaker-independentfeaturemodels,
we seea slight improvementin performance,althoughthis result
is notstatistically significant.

Featurestreamsthereforeimprove ASR performanceon large
LVCSRtasks,andcanalsobeusedfor adaptation,but spontaneous
or sloppyspeechprobablyrequiresa morecomplex modelingof
the underlyingarticulatoryprocessthanthe binary distinction of
phonological categoriesusedin our currentsetup.Per-framefea-
tureclassificationrateson Switchboardwerealreadyshown in ta-
ble 1. Theseare not significantly below the classificationrates
reachedfor the cleanspeechsystems,indicating that at leastfor
thefeatureapproachthedifficulty liesnotsomuchin thedetection
of thefeatures,but in theappropriatemodelingof articulatoryfea-
turetrajecoriesfor spontaneousspeech.Theproposedarticulatory
systemindeedimproved performancemoston a small test-setof
hyperarticulateddata,wheresubjectswereinducedto pronounce
phonetically similar wordsin a contrastive manner.

4. SUMMARY AND CONCLUSION

Wehavedemonstratedtheeffectivenessof astream-basedapproach
to articulatoryspeechrecognition,that will eventually allow us
to incorporatemoreknowledgein richer waysthanbefore. The
feature-supportedrecognizerreducedWER on a readBN taskby
15%, from 13.4%to 11.6%,usingonly 5% moreparametersob-
tainedon a subsetof thesametrainingdata. On thespontaneous
ESST task, WER droppedfrom 23.5% to 21.9% (7% relative)
withoutevenhaving fully exploredthefeatureselectionalgorithms.
Wealsocomparedanumberof selectionmethodsfor futurespeaker-
adaptationexperimentsandintegratedtheapproachwith existing
ML adaptationapproaches.

The small differencein per-frame classificationrate of the
BN andSwitchboardfeaturedetectorssuggeststhatgainscanbe
gainedon this tasktoo by usingspeaker-specificstreamweights
andasynchronousstatetransitions orothermoresophisticatedmeth-
ods, which allow for a better modelingof sloppy speech. We
believe that the proposedstreamarchitectureforms a goodbasis
for this research,asit cancombinefeature-modelsand“standard”
modelsin flexible ways.
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Waibel, “A one-passdecoderbasedonpolymorphic linguis-
tic context assignment,” in Proc. ASRU 2001, Madonnadi
Campiglio,Italy, 122001,IEEE.

[11] Michael Finke, Petra Geutner, Herrmann Hild, Thomas
Kemp, Klaus Ries, and Martin Westphal, “The Karlsruhe
VerbmobilSpeechRecognitionEngine,” in Proc. ICASSP
97, 1997.

[12] Ivica RoginaandAlex Waibel, “Learning state-dependent
streamweightsfor multi-codebook hmmspeechrecognition
systems,” in Proc. ICASSP 94, 1994.


