A FLEXIBLE STREAM ARCHITECTURE FOR ASR USING ARTICULATORY FEATURES

Florian Metze and Alex Waibel

Interactve Systemd_aboratories
UniversittKarlsruhe(TH), Carngjie Mellon University
{met ze| wai bel }@r a. uka. de

ABSTRACT

Recently speechrecognitionsystemsbasedon articulatory
featuressuchas*“voicing” or the positionof lips andtonguehave
gainedinterest,becausehey promiseadwantageswith respecto
robustnessaandpermitnew adaptatiormethodsto compensatéor
channel hoise,andspeakewariability. Theseapproachearealso
interestingfrom a generalpoint of view, becauseheir modelsuse
phonologcal andphoneticconceptsyhich allow for aricher de-
scriptionof a speechactthanthe sequencef HMM-states which
is theprevalentASR architecturg¢oday In thiswork, we present.
multi-streamarchitecturejn which CD-HMMS are supportecby
detectorsfor articulatoryfeatures,using a linear combinationof
log-likelihood scores This multi-streamapproachresultsin a15%
reductionof WER on a readBroadcast-Nes (BN) taskandim-
proves performanceon a spontaneouschedulingtask (ESST)by
7%. The proposedarchitecturgotentialy allows for new speaker
andchanneldaptatiorschemesincluding streamasynchronicity

1. INTRODUCTION

Large vocahulary speechrecognizersusually model speechas a
sequencef HMM stateswhosemodelsarelearnedby partition-
ing the training datainto disjoint sets. This representatiowf the
speechproductionprocesss but a rough approximationof real-
ity [1, 2]. Phonologydescribespeectsoundsn termsof phones,
which are a shorthandhotationfor a certaincombinationof fea-
tures (e.g. VOICED or LABIAL), whichareeitherabsenbr present
in these(idealized)sounds. A distinctive setof featurescan be
usedto describeall relevantsoundsn a specificlanguagéseee.g.
[3]) in termsof thesefeatures.It is however understoodhatthis
phonologcal cateyorizationis only a roughapproximatiorof the
phoneticrealizationof soundsduring humanspeechproduction
whichis notat all adiscreteprocesswith clearcut transitiors be-
tweenphoneor otherstates.

HMM-basedrecognizersillow for thisfactby modelingspeech
notatthephonelevel, whichis however usedin thedictionary but
by usingsub-phonetiainits, suchasthecommortri-statearchitec-
turein which a phone/A/ is modeledby the statesA-b, A-m, and
A-e for thebeagin, middle,andendof the correspondingoundre-
spectvely. Also, differentacoustionodelsfor a phonearetrained
dependingon the phoneticcontet, to allow for co-articulationef-
fects.In orderto modelall posibleconfigurationsinodernLVCSR
architecturesypically employseveralthousandsf thesevery spe-
cific models.

In this work, we presenta speechrecognitionsystem,which
integratesdedicatedietectordor phonologcal or articulatoryfea-
tureswith corventioral context-dependensub-phonenodels,us-

ing a streamarchitecture.The featuresub-systentonsistsof sig-
nificantly lessparameterandwastrainedon a subsebf thedataof
the “standard”system yet the combinationof thetwo approaches
yields a significantreductionin word error rate on two different
LVCSRtasks(readandspontaneoysleanspeech)lnitial experi-
mentson Switchboardiatahave notyetledto significantimprove-
ments,but we are currentlystill in the processof optimizing our
setupfor thistask.

Speechrecognitionsystemsmaking use of articulatory fea-
tures have beenproposedin different contexts already and re-
searcherdhave investigated their potentialwith respectto robust
speechrecognition[4] andits relationwith articulatoryandphono-
logical knowledge[5, 6], startingfrom arecognitionby-synthess
approachandoftenusingX-Ray data.

If ourgoalis speechrecognitiononly, articulatoryfeaturescan
be regardedasan abstractescriptionof a speakes phonological
intention (i.e. producinga /b/ sound)andcanthenberecognized
in muchthe sameway as phonesor words, in our setupby esti-
mating GMMs on an MFCC representationf the speectsignal.
If we regardthesearticulatoryfeaturesasphonologgeally distinc-
tive propertiesof speechsoundsandare not concernedwith the
relationshp with actualarticulatorymovements severalworks[7]
have shavn thefeasibility of systemaisingarticulatoryfeaturesas
replacementsr supportfor cornventional acousticmodelsmainly
on smallerrobust recognitiontasks. The additve combinationof
scoresat the log-likelihood level asusedin our experimentswas
shavn to bethe mostpromisingapproacho fusion of featureand
standardnodelsin [8].

Ourapproachusesup to 76 binary phonologcal featuressuch
asVOICED or LABIAL. Acousticscoredfor a stateare computed
asaweightedsumof GMMs in log-spacerepresentingstandard”
and“feature” PDFs.This setupallows avery flexible combination
of existing modelswith detectordor articulatorystatesin a one-
passdecoder

Themain goal of thiswork is to shaw how supportinga con-
ventionalASR systemwith only afew streamf articulatoryfea-
turescanimprove speechrecognitionperformancesignificantly;
it is thereforenot neccessaryo build afull feature-basedlassifi-
cator In section2 we describeour experimentson the Broadcast
News task, discussingthe architecture the selectionof features
andinitial resultsof adaptatiorexperiments.The extensionof this
approachpy combiningit with standardadaptationschemegor
acousticmodelsandfurtheradaptatiorof the streamweightsin a
speakeror state-dependentay or the inclusionof asynchronous
statetransitionsshouldallow to reduceerrorrateseven further In
section3, wetestthe sameapproacton clean,spontaneouspeech
from the schedulingdomain,andsummarizeour experiencewith
this setupon Switchboarddatasofar.
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Fig. 1. Streamarchitecturaisedin our experiments:stream0 con-
sistsof ~ 4000corventioral CD-HMM modelswhile streamsl,
2, ..., 76 (only two areshavn) arefeaturestreamswhich only have
two modelsabsent and present, apartfrom noiseand silencedis-
tributions (notshawvn here).

2. EXPERIMENTS

2.1. Description of Baseline System

Thesystenusedasstrean®in ourreadBroadcasNews (ReadBN)
experimentauses~ 4000fully-continuaus contet-depermlentsub-
phonemicmodelswith 32 Gaussiansachand diagonalcovari-
ancesThesanvereestimatedvith 4 iterationsof Viterbi trainingon
a40-dimensionaleaturespacederivedfrom MFCCsafteranLDA
transformation. CMS, variancenormalizationand VTLN were
alsoapplied. The featuresystemuses256 Gaussianger model,
trainedwith 6 iterationson a 32-dimensioal featurespace.The
numberof parameterfor humanspeectsoundsn thefeaturesys-
temis thereforeabout0.5%for eachstreamused whencompared
to the standardsystem.

Training datafor the ReadBNtask consistedf about65h of
original BN dataand 35h from the English Verbmobil (ESST)
data. This dataconsistsof spontaneouslialoguesin the travel
and schedulingdomainand was collectedduring the Verbmobil
[9] project. Testdataconsistedf 17 minutesof original BN texts
readundercleanconditions(ReadBN).

Thephonesetof our recognizerconsistsof 45 humansounds.
We also usedthree noiseand one silencemodel. The baseline
systemreachesa word error rate of 13.4% using a 40k vocab-
ulary andtri-gram BN languagemodel in the time-synchronous
one-pas®eamsearchdescribedn [10].

2.2. Combining Articulatory Featuresand CD-HMMs

We decidedto usethe 76 linguisically motivatedquestionsused
duringconstructiorof thedecisiontreefor context-dependenmod-
elingasaninitial setof articulatoryfeatures We expectthatnotall
featureswill improve recognitionandthat eventually the optimal
combinationwill dependon both channeland speaker This set
containsquestiongfor voicing, mannerandplaceof articulation
articulator and soundtype, combinationsthereof (ALVEOLAR--
FRICATIVE) aswell aslinguisic andphoneticfeatureq CONSO-
NANTAL, REDUCED).

The streamarchitectureve usedin our experimentss shavn
in figurel. In ourexperimentsyve did notuseafully distinctive set
of featuresasour featurestreamssupport” corventionalmodels,
but insteadtried to addonly a subsebf featureswhich increases
recognitionrate most. We have alsonotlimited the featuresto an

orthogonaketof questionsaswe wantto retainthe advantage of
redundang, whichwe assuméumansuseaswell. Theweightof
eachfeaturestreamwassetto 0.05throughouthis work, with the
remainingweightbeingassignedo the “standard”streamasthis
settingwasempirically foundto give reasonableesults.

2.3. Model Trainingfor Articulatory Features

Detectorsfor articulatoryfeatureswere built in exactly the same
way asacoustionodelsfor existing speectrecognizersin ourex-

perimentswe usedthe Janus[11] speechrecognitiontoolkit. A

relevant detail of the acoustictraining is thatwe usedthe middle
framesonly, assumingthat featuressuchas VOICED would be
more pronouncedn the middle of a phonethanat the beginning
or theend,wherethetransitioninto neighboring maybeurvoiced,
soundshasalreadybegun. As datais notfragmentedasin context-

dependenacoustianodeling,but insteadsharedetweerdifferent
phonesdatasparseness notaproblemhere.Also, featuredetec-
tors for ReadBNweretrainedon the ESSTsubsetf the training
dataonly.

Feature/ Task ReadBN Switchboar d
Test on Frames Middle | Al All

[ UNVOICED [ 91.0% | 845% | 80.8% |
STOP 87.3% 78.9% 74.6%
VOWEL 84.6% 77.2% 76.2%
LATERAL 95.0% 94.3% 95.0%
NASAL 94.2% 91.8% 90.1%
FRICATIVE 92.1% 86.2% 84.0%
LABIAL 90.2% 90.2% 85.7%
COFONAL (worst) | 78.3% | 72.0% 70.5%
PALATAL 96.7% 96.6% 96.2%
VELAR 90.8% | 88.0% 90.2%
GLOTTAL 98.8% 97.9% 97.3%
HIGH-VOW 87.6% 85.7% 86.3%
MID-VOW 83.7% 80.4% 85.6%
LOW-VOW 90.3% 89.9% 91.4%
FRONT-VOW 84.8% 81.2% 84.8%
BACK-VOW 91.4% 90.8% 91.8%
DIPHTHONG 89.1% 87.9% 85.1%

[ ROUND | 89.6% | 885% | 87.9% |
RETROFLEX 95.9% 94.1% 94.7%
OBSTRUENT 90.6% | 81.3% 79.6%
ALV-FR (best) 99.1% | 98.9% 99.3%
OVERALL 90.8% 87.8% 87.3%

Table 1. Featureclassificationaccurag for selectedfeatureson
the ReadBNandSwitchboardasks.

The thus obtainedfeaturedetectorsvere usedto classifythe
testdatainto feature present and feature absent categorieson a
perframebasis,by comparingthe likelihood scoresproducedor
the test-dataalsotaking into accounta prior value computedon
the frequeny of featuresin the training data. The referencefor
testingwasgiven by the canonicalfeaturevaluesassociatedvith
thephonetidabelobtainedhrougha Viterbi alignmentof thetran-
scriptionusingthe baselinesystem.The resultsshavn in the left
two columnsof table1 wereobtainedon our ReadBNtestdata.
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Fig. 2. Outputof thefeaturedetectorgor partof theutterance'...
bemoreeffective andyou mighteven..”; blackbarsmeanfeature
present and white barsmeanfeature absent. The height of the
barsis proportionalto the scoredifferencej.e. the higherablack
(white) bar, the morelikely it is thatthe correspondindeatureis
presentabsentat this pointin time. The numbersat the bottom
representhe framenumberdor this excerpt: 1sec= 100frames.

The output of someof the featuredetectorsas usedin the
classificationexperimenton ReadBNdatais shavn in figure 2.
It seemghat the outputof the detectorandeedapproximateshe
canonicafeaturevaluesquitewell, asis alsoindicatedby theclas-
sificationratesin table 1, althoughvariousco-articulationeffects
(e.g.nasalizatiorof /UW/ before/M/) aredetected.

2.4. Selection of Features

Givenanumberof featuredetectorsit becomesiecessarto choose
which onesto retainin therecognizer |.e. while the structureof
the second-leel decisiontreein figure 1 (feature present ¢ fea-
ture absent) is fixed by the phonolodcal structure,we have to
selectthe featuresto usein the combinationandtheir respectie
weightswhencomputingthe sumof GMMs at the top level (®).
In afirst step,we decidedto incrementallyaddfeaturestreamso
the baselinesystemusingequalweightsfor all statesandstreams,
comparingthreeapproacheso this problem:

FRAME-CR: Alwaysaddtheonewith the next-bestframeclas-
sificationrate,as shavn in table 1: This leadsto the fea-
turesALV-FR, ALVEOPALATAL, DEL-REL, AFFRICATE,
X-LMN, GLOTTAL, ASPIRATED, PALATAL, LABIODEN-
TAL, andLAB-FR beingaddedn thatorder

DECODE: |Initially decodeacompletesetof two-streansystems
(i.e. addonly one feature),then alwaysadd the onethat
improved performanceon the two-streamsystemmost. In
this case,we addedthe featuresCORONAL, NASAL, LH-
DIPR, LATERAL, GLOTTAL, BF-DIP, ASPIRATED, ALVEO-
PALATAL, VCD-PLOSIVE, andW-DIP in thatorder

The word errorratesfor thesetwo-streamsystemsrange
between15.5% when adding Y-GLIDE and 12.1% when
addingCORONAL (baselineVER is 13.4%).

TREE: Computea divisive clusteringtree on a genericspeech
model,i.e. employthedata-divenstratgy usedto generate
context-depenént modelsto determinea featureset that
containscomplementarynformation,by alwaysaddingthe
featurewherea context-depenéntmodelwould becreated,
becausehis split hasthe highestgainin likelihood Here,
the questionshowever do not refer to context, but to the
speecHrameitself.

OBSTRUENT?

Y N

SONORANT? SIBILANT?

[HIGH—VOW?] [NASAL? ] [\/LS—FR? ] [MH—DIP? ]

[BF—DIP? ]

Fig. 3. Decisiontreecomputedon a genericspeechmodelusing
the linguisically motivatedquestionsetfor polyphore construc-
tion. This treewascomputecbn thefeaturetrainingdata(ESST).

[Y—GLIDE? j [RETROFLEX?] [BACK—VOW?]

Duringthis procesghequestiongor OBSTRUENT, SONO-

RANT, SBILANT, HIGH-VOW, NASAL, VLSFR, MH-DIPR,

RETROFLEX, Y-GLIDE, andBF-DIP gavethegreatestike-

lihood gain. Thesplitting treeis shavn in figure 3, we can
alsointerpretit asa similarity treeshaving therelationbe-
tweensoundsin their MFCC representationlt is interest-
ing to notethat not all featuresthat appeardistinctive by

this criterion do also have a high perframe classification
rate.

Theresultsobtainedwith thesethreeapproacheare summa-
rizedin table2. We didn’t conductexperimentson systemsased
onfeaturesalone becaus¢henumberof parameteri ourfeature
systemis only a fractionof the numberof parameterin the base-
line system.The resultshavs no clearsuperiorityof eitherselec-
tion methodjn all casesheword errorratedecreasesonotonosly
toaminimumwhenadding6 to 9 featuresthenslowly startsorise
again. We thereforeplanto investigateothermethod<or feature
selectionandthe determinatiorof streamweightsin thefuture.

[ #features | FRAME-CR | DECODE | TREE |
0 (BASELINE) 13.4%
1 13.2% 133% | 13.3%
2 12.7% 12.9% | 13.1%
Z 12.4% 125% | 12.3%
6 11.6% 117% | 11.7%
8 11.6% 7% | 12.0%
10 11.8% 11L7% | 12.1%

Table 2. Bestfeaturesystemusingdifferentfeatureselectional-
gorithms.Thefeaturesusedarelistedin the maintext.

While the baselinesystemwithout featurestreamsreachesa
WER of 13.4%,the bestfeaturesystem,usingthe 8 featuresAF-
FRICATE, ALV-FR, ALVEOPALATAL, ASPIRATED, DEL-REL, GLOT-
TAL, PALATAL, andX-LMN with aweightof 0.05eachreachesa
WER of 11.6%.Usingthe 6 featuresBF-DIP, CORONAL, GLOT-
TAL, LATERAL, LH-DIP, andNASAL, theworderrorrateis 11.8%.

The accumulatedcousticscoregproducedy the streamsys-
temsarehigherthanthoseof the baselinesystem sothatthegains
do not resultfrom a down-scalingof the acousticscores effec-
tively wideningthebeamsThis controlexperimentvasconducted
aswell anddid not decreas&VER. Evenfor an 8-featuresystem,
the featuresare modeledby lessthan 5% of the parametersised
in the basesystemyet performancemproves. We thereforecon-
cludethatthe featurestreamdandeedcarry complementarynfor-
mation, which canbe usedto increaseword accurag by mixing
log-likelihood scoresn the proposedstreamsetup.



2.5. Adaptation Experiments

As aninitial experimentto seehow standardadaptationrschemes
work in conjunctionwith the proposedeaturestreamset-up,we
computeda single speakeidependentonstrainedMLLR adapta-
tion matrix on the featurespacefor the standardnodelsand for
thefeaturestreammodels.

Applying thistransformatiorimprovedtheperformancef the
baselinesystento 13.0%. Thefeaturesystenusing6 featuresm-
proved from 11.8%to 11.2%,sothatthetotal gainis evengreater
for thefeaturesystem.In this case we computedseparat@dapta-
tion matricesfor the featuresystemandthe standardnodels.

Anotherapproactio speakerdaptatioris given by incremen-
tally collecting featureoccurencestatisticsand comparingthese
with the prior distritution computedfor all speakersthenadapt-
ing thesepriorsto the currentspeaker For the six-featuresystem
this approachreducedheerrorratefrom 11.8%to 11.6%.

Furtheradaptatioris possibleby settingthe streamweightsto
different,speakeror state-dependentlues[12], we arecurrently
in the procesf preparingheseexperiments.

3. EXPERIMENTSON ESST AND SWITCHBOARD

To testour approacton a larger numberof speaker&ndon spon-
taneousspeectundercleanconditiors, we ranexperimenton the
ESST (Verbmobil) data. The baselinesystem(and stream0) for
theseexperimentsvastrainedonthe ESSTtrainingdata(35h)and
used2250 models,with 48 Gaussiangachon a 32-dimensional
featurespace. The baselinesystemreachesa WER of 23.5%o0n
the 32-speaker85-minute ESSTtest-setusing a tri-gram ESST
languagemodelandan8k vocahulary.

Addingthesameeaturessin section2.4with astreamweight
of 0.05,WERreducego betweer23.2%(SONORANT) and23.0%
(LATERAL). Performingan Oracle-&periment,i.e. assuminghat
we could choosethe featureto add on a perspeakerbasis, the
WER reache22.6%. Sequentiallyaddingfeaturesusingthe DE-
CODEdcriterionpeaksaataWER of 21.9%usingthefeaturedHI GH-
VOW, LATERAL, OBSTRUENT, SBILANT, andY-GLIDE.

Featuraletectordor Switchboardveretrainedona30hsubset
of theavailabletrainingdataandthetrainedmodelscontainedl28
Gaussianger PDF. The baselinesystemwhich wasalsotrained
onthese30hof trainingdata,reache® WER of 35.9%0na60min
subsebf the 2001 evaluationdatausing speakeiadaptedmodels.
Whenwe combinethesewith speaketindependenteaturemodels,
we seea slightimprovementin performancealthoughthis result
is not statisticaly significant.

Featurestreamghereforeimprove ASR performancen large
LVCSRtasksandcanalsobeusedor adaptationbut spontaneous
or sloppyspeechprobablyrequiresa more complex modelingof
the underlyingarticulatory processthanthe binary distincton of
phonologral cateyoriesusedin our currentsetup.Perframefea-
ture classificatiorrateson Switchboardverealreadyshavn in ta-
ble 1. Theseare not significanty belav the classificationrates
reachedor the cleanspeechsystemsjndicatingthat at leastfor
thefeatureapproachhedifficulty lies notsomuchin thedetection
of thefeaturesput in theappropriatenodelingof articulatoryfea-
turetrajecoriesfor spontaneouspeechThe proposedarticulatory
systemindeedimproved performancenoston a small test-setof
hyperarticulatedlata,wheresubjectswereinducedto pronounce
phoneticaly similar wordsin a contrastre manner

4. SUMMARY AND CONCLUSION

We have demonstratetheeffectivenesof astream-basedpproach
to articulatory speechrecognition,that will eventually allow us
to incorporatemore knowledgein richer waysthanbefore. The
feature-supportetecognizereducedVER on areadBN taskby
15%, from 13.4%to 11.6%,usingonly 5% more parameter®b-
tainedon a subsebf the sametraining data. On the spontaneous
ESST task, WER droppedfrom 23.5%to 21.9% (7% relative)
withoutevenhaving fully exploredthefeatureselectioralgorithms.
We alsocomparednumberof selectiormethoddor futurespeaker
adaptatiorexperimentsandintegratedthe approachwith existing
ML adaptatiorapproaches.

The small differencein perframe classificationrate of the
BN and Switchboardfeaturedetectorssuggestshat gainscanbe
gainedon this tasktoo by using speakeispecific streamweights
andasynchronoustatetransitiors or othermoresophisticatd meth-
ods, which allow for a better modeling of sloppy speech. We
believe that the proposedstreamarchitectureforms a good basis
for thisresearchasit cancombinefeature-modeland“standard”
modelsin flexible ways.
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