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Abstract 

 
In this paper we present a robust and discriminative segmental 
trajectory modeling for vowel recognition. We proposed two new 
approaches. One is using weighted least square estimation for the 
parametric trajectory parameter, which gives a much more robust 
performance over traditional least square estimation approach. The 
other is a specifically designed transformation matrix proposed to 
reduce the possible mismatch between the Gaussian modeling 
assumption and the trajectory feature’s nature. Our experiments on 
the vowel classification using the mobile phone data of 
SpeechDAT(II) MDB showed  significant improvement over both 
standard HMM and traditional  segmental modeling. 
 
 

1. Introduction 
 
Vowels are generally spectrally well defined. As such they 
contribute significantly to our ability to recognize speech, both by 
human beings and speech recognizer. For vowels, the speech 
behavior can be considered as a point that moves in parameter space 
as the articulatory system changes. Standard HMM’s using cepstra 
with their derivatives can not effectively model the trajectories 
especially for vowels [1][2]. In this paper we exploit robust and 
discriminative approaches to the parametric trajectory modeling. 
 
Previous approaches employed linear least square estimation for the 
polynomial parametric trajectory [3]. This estimation could not 
account for the change in variance of the trajectory as a function of 
time and the estimation is sensitive to the large variability esp. near 
the phone boundaries even using multi-mixtures [4]. Instead of using 
least square estimation, we here proposed a new weighted least 
square estimation (WLS) to estimate the trajectory feature. This 
approach is different from the traditional approaches by giving a 
different weight to each frame according to its contribution to the 
estimation accuracy of trajectory feature. Experiments showed its 
robust ability in modeling the time-variation of the residual 
covariance and significant improvement over general linear least 
square estimation. 
 
Another problem in trajectory is the high correlation within the 
residual error covariance, which hurts the Gaussian bayes classifier’ s 
assumption of independence. Here we proposed a transformation 
matrix to reduce the high correlation within the residual error 
covariance by transforming the features to reduce the correlation, 
and reduce the mismatch between the trajectory feature space and 
the Gaussian modeling assumptions, thus improve the performance 
of the segmental modeling. 
 
It is not easy to find an answer for this transformation matrix. We 
present here a new discriminative approach to get this transformation 
matrix for segmental modeling. In this paper, we explored MCE 

(Minimum Classification Error [5]) training of this transformation 
matrix. Initializing the transformation matrix by identity matrix, we 
do iterative gradient search to update each element’ s value of the 
matrix. With this transformation matrix, we can tune the parametric 
trajectory parameter directly and can ensure the improvement of the 
performance. This approach avoids the difficulty of direct MCE 
training of the segmental model, but can stil l strengthen the 
discriminative characteristics of the feature space. Our experiments 
showed great improvement for trajectory modeling. 
 
The paper continues as follows: in section 2, we will describe our 
weighted least square estimation for the quadratic trajectory feature 
extraction; in section 3, we will present our specially designed 
discriminative training algorithm for the transformation matrix in 
segmental model training; in section 4, comparisons between our 
approach and the traditional least square estimation, and experiments 
on speechDAT(II) English mobile phone database (MDB) for these 
approaches will be given; discussions and conclusions are given in 
section 5. 
 

2. Parametric Trajectory Model 
 
Parametric trajectory model treats each speech unit being modeled as 
a curve in the parametric feature space. The trajectories we are 
considering are vowels, and are of low degree polynomials such as 
quadratic polynomial followed the work in [3][4]. 
 
We model each speech segment’ s feature dimension as follows: 

)()()( nennc += µ  , for n=1, … , N         (1) 

Where )(nc  are Cepstra of a speech segment with the frame length 

of N. )(nµ  is the mean feature vector representing the dynamics of 

features in the segment. )(ne  is the residual error vector, which, by  

assumption, has Gaussian distribution and are independent from 
frame to frame. The mean of the feature vector models the trajectory, 
which is, in our case, a quadratic function of time.  
 
Given a speech segment of N frames, where each frame is 
represented with D dimensional feature vector. We model the speech 
segment as follows: 
 

   EZBC +=  or: 
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 (2) 

 
C is the feature vector matrix, which is NxD; Z is the NxR design 
Matrix that specifies the degree of the polynomials to be used, in our 
case R=3; B is RxD parametric trajectory matrix we are to model, 
and E is NxD residual error matrix, and assumed to be independent 
from frame to frame.  



 
2.1 Estimation of the trajectory parameters 

 
Given the notation shown above, one can now estimate the trajectory 
parameters under the assumption that the residual errors are 
independent and identically distributed [3].  By minimizing the least 
square objection function (3), the maximum likelihood estimation of 
the trajectory parameter B is as follows: 

)ˆ()ˆ()ˆ( BZCBZCBJ T
LS −−=                        (3) 

CZZZB TT 1][ˆ −=                                (4) 

N

BZCBZC

N

EE TT )ˆ()ˆ(ˆˆ
ˆ −−==Σ                (5) 

From least squares estimation, we can see that the estimation deals 
each training sample with equal weight. But in fact, since each 
observation/frame has different observation error for the trajectory, 
in particular of the boundaries, where large variability may cause 
large observation errors. It is reasonable to give more weight to the 
accurate observations during estimation and less weight to those 
samples, which has potential larger observation error.  
 
In our approach, we employed Weighted Least Square criteria (WLS) 
for the estimation of the parametric trajectory. The weighted least 
square criteria is as follows: 

)ˆ()ˆ()ˆ( BZCWBZCBJ T
WLS −−=                 (6) 

Where W is the weighting matrix. Now by minimizing (6), we can 
get the estimation for the trajectory model: 

 WCZWZZB TT
WLS

1][ˆ −=                                  (7) 

We can calculate the estimation error for the weighted linear least 
square estimation: 

WEZWZZBBB TT
WLSWLS

1)(ˆ~ −−=−=                       (8) 

Also assume 0][ =EE  and define ][ TEEER = (9), the variance of 

the estimation is as follows: 
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Since R is definite positive, it can be represented as: MMR T= , 
where M is a matrix, which can be inversed. Denote A and B as 

1−= MZA T , 1)( −= WZZMWZB T , for any weighted matrix W, 

using the Schwarz inequality law, we get (11): 
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So it is now clear that when: 

  1−= RW                                                (12) 
The equation (11) is satisfied and reaches its minimal 

value: 11 )(
~ −−= ZRZBVar T

WLS
. Note in the case that matrix R is a 

diagonal one, the weight is inverse proportional to the variance of 
the observation error, which is just what we expected: giving less 
weight to those samples that may have potential larger observation 
errors. Also the least square estimation is a special case of WLS, 
when W is an identity matrix.  
 
To calculate the weighting matrix of (12), first calculate standard 
least square trajectory parameters estimation by (4)(5).  Then with 

this weighting matrix W, we can update the estimation of both the 
trajectories and the residuals at all times along the trajectory. 
 

2.2 Estimation of the Model parameters: An EM algorithm 
 
After we have all the individual segments’  trajectory parameters, the 
next step is to train a segmental trajectory model. Given totally K 
samples to train an M mixture component segmental trajectory 
model, the EM algorithm [4] is as follows: 
 

Let the trajectory parameter denoted as }ˆ,ˆ,{ kkk BN Σ , as used in [3], 

given mixture component m, the likelihood of the segment k is:  
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After all )|( mkl  is calculated for totally K training samples, the 

probability of the m mixture given the segment k can be calculated: 
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Using ML estimates for the model parameters )(mp , 
mB , and 

mΣ : 

1. Prior probability for mixture component m: 
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The updated parameters are used to calculate )|( mkl for next 

iteration of EM training.  
 
In our approach, we used a more robust trajectory distance of the 
trajectory parameters to initialize the mixture components: 

 )]()[( mkk
T

mkk BZCBZCtrdis −−=   (17) 

The idea of using this distance metric is based on the assumption of 
Gaussian modeling that the residual errors are independent and 
Gaussian distributed. In our experiment, we have found that using 
this metric is more robust and preferable to initialize each mixture 
component than using l(k|m) directly. We used SVD to calculate the 
inverse of the matrix to secure a robust EM training.  
 

3. Estimation of Transformation Matrix  
 

With the trajectory model trained using the WLS feature estimation 
and the distance of (17), we reduced the potential variations around 
the boundaries and gave a robust training to multi-mixture MLE 
model. But the fact of high correlation within the residual covariance 
matrix is not in accordance with the assumption of Gaussian 
modeling when we designed this trajectory model in section I.  
 
In our approach, we used a transformation matrix trained under 
Minimum Classification Error (MCE) criteria to reduce this negative 



effect. From the formula of (13), it is not easy to directly tune the 
parameters of 

mB and
mΣ , especially for the case of full 

mΣ matrix. 

But in fact, full matrix of 
mΣ  yields a much better performance than 

the diagonal 
mΣ , and is more preferred. So we intended to design 

discriminative training algorithm for transformation matrix for the 
cases of both the diagonal and full

mΣ matrix. 

 
Our intention is to give the parametric trajectory parameters B a 
rotation in the feature space to increase the discrimination and 
reduce the high within correlation in the residual covariance of the 
parametric feature. By this way, we can tune the likelihood of 

)|( mkl . Without prior knowledge about the transformation matrix, 

we here use discriminative criteria to get this matrix from training 
process. The transformation matrix is defined as follows: 

 '' ˆ)ˆ( kk BTBT ⋅=                        (18) 

T is a linear transformation. Plug in the transformation in (13), we 
can see the transformed likelihood is: 
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Note that if matrixT  is an identity matrix, the posterior probability 
is the same as the original )|( mkl  in (13). The transformed 

likelihood of (19) showed that )|( mkl now is not simply a function 

of the individual trajectory. The full covariance representing the 
interaction from frame to frame within the trajectory also plays an 
important role.  
 
This interaction within the individual trajectory is caused by the 
contemporaneous correlation existing between the residuals 
associated with each individual trajectory respectively. And the 
transformation matrix T acts as a coordination function on the 
interaction between the individual trajectory features given the 
variance of the residuals associated with different features.  
 
From the transformed likelihood of )|( mkl of (19), we can now 

train the transformation matrix T  via MCE. Given training sample 
of segment k with the reference model 

rm , first calculate the best 

competitor cm , we can denote the following formula for MCE 

training: 
)]|(log[)]|(log[ crk mklmkld +−=   (20) 

Loss function is defined as: 
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After all loss value for each training sample is calculated, we can do 

the MCE training for each element uvT̂ of the transformation matrix 

T as follows: 
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 (22) 
Plug in the transformed likelihood )|( rimkl  of equation (19), it is 

now straightforward to calculate (22) and hence do the MCE training 

for each element 
uvT̂  of the transformation matrix. From (19) and 

(22), we can also see that this approach can handle with both the 
diagonal and the full matrix of the residual error variance.  
 
Our MCE algorithm goes as follows:  

I. Initialization: set T̂ to be an identity matrix; 
II. Scan all the training data to calculate the loss and build up 

the derivatives for 
uvT̂ ; 

III. Using Minimum Classification Error (MCE) GPD to 

update each 
uvT̂ ; 

IV. Using the updated transformation matrix to update the 
likelihood of  m)|l(k for each training sample k; 

V. Stop when overall loss value does not change, otherwise 
go to step II for more iterations. 

 
By using the transformation matrix, we update the likelihood of (19), 
and this discriminative approach somewhat satisfies the observation-
independence of modeling assumption in section 1.  
 

4. Experiments 
 
All our experiments are carried out on the SpeechDAT(II) MDB. 
The speech data are isolated phrases such as digits, city names and 
application words. Using HTK3.1 [6], like [7], we built a standard 
monophone and a decision tree based state-tied word internal context 
dependent 32-mixture triphone acoustic model, which was used to 
do force alignment to get the vowel segments’  reference. To evaluate 
the segmental model, we performed our experiments on a speaker 
independent vowel classification task. The task includes 16 vowels: 
/iy, ih, ey, eh, ae, aa, ah, ao, ow, uw, uh, us, er, ay, oy, aw/. We use 
the force alignment as the reference label and extracted the 16 
vowels’  training and testing tokens from the first 2 CDs. The number 
of training tokens extracted is 52735. The extracted testing tokens 
are from the test set specified by SpeechDat(II). There are totally 
200 test speakers and the number of extracted test tokens is 3529. 
The trajectory models in this paper are context independent, full 
residual error covariance matrix, and quadratic polynomial trajectory 
model.  
 
When doing the classification for an unknown test segment k coming 
from model m with M mixtures, the maximum a posterior probability 
rule is used as: � �	
� �
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Where )|( mNp k
is the duration probability that the segment k has 

frames length of 
kN , and computed as a histogram during training 



similar to [3], α is exponential weight experimentally set as 5.6 in 
experiments. 
 
The first experiment is to compare the vowel classification between 
standard monophone HMMs and the parametric trajectory models 
using both LS and WLS estimation. The monophone HMM is 
trained from 5 CD’s data using 13 MFCC with delta and delta delta, 
and the number of mixtures varies from 1 to 64. The trajectory 
segmental model uses 10 MFCC and 10 delta MFCC, and the 
number of mixtures varies from 1 to 24 mixtures. The number of the 
parameters referred to the number of real parameters in the model 
trained. 
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Fig 1. HMM vs WLS/LS trajectory models 

 
From the Fig 1, we see, for this vowel classification task, WLS 
segmental model is better than the traditional LS segmental model, 
and the segmental model is more powerful than monophone HMM 
with the similar parameters size. Even trained with 2 CD’s data the 
segmental model outperformed the standard monophone HMM. 
Second, for segmental model, when the mixture number increased 
over 8, under-training occurs. With this relatively small test set, the 
performance curve of segmental model is wavy.  
 
The second experiment is to evaluate the effect of MCE training for 
the transformation matrix(s). Here we varied the number of the 
mixtures (Mix num) and the number of the transformations: one is 
an overall tied transformation matrix, and the other is 16 
transformation matrixes (16-trans) for each vowel class. The result is 
shown in table 1:  
 

Mix 
num 

Baseline 
LS-Seg 

WLS- 
Seg 

1 Trans-
WLS 

16 Trans-
WLS 

Error 
reduction 

1 64.30 65.68 67.16 68.09 10.62 % 
2 65.63 68.04 69.37 69.28 10.22 % 
3 65.43 68.04 69.71 70.78 14.99 % 
4 66.51 68.89 70.98 71.52 14.03 % 
8 65.29 67.72 69.17 71.61 17.70 % 

 
Table 1. The vowel classification accuracy [%] 

 
We here did only 5 iterations of MCE training of the transformation 
matrix, which cost a 900MHZ-CPU to run about 2~3 hours over the 
52735 tokens. From table 1, we can see that the proposed 
transformation matrix to the trajectory parameters together with the 

weighted least square estimation is effective to improve the 
modeling performance by up to 17.7% error reduction over 
traditional least square estimation. Second, the performance drops 
after the number of mixtures reaches more than 8, which might be 
related to the relatively small training data. 
 
The third experiment is to compare the performance of the 
diagonal/full error residual matrix and to see the effect of adding 
more training data. The result is shown in the Fig. 2: 
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Fig 2. Performance of weighted least estimation  

 
From Fig.2, we see that the full covariance matrix is better than the 
diagonal one. This is because the diagonal trajectory needs more 
mixtures to model feature’ s high variation nature. And adding more 
training data (5-CD, 133840 tokens) does improve the performance. 
And transformed WLS segmental model performed better than 
adding more data. We see the proposed transformation can help to 
satisfy the independence modeling assumption of the residual error, 
and improve the performance.  
 

5. Discussion and conclusions 
 
In this paper, we presented our approaches to improve the parametric 
trajectory segmental modeling power. The weighted linear 
estimation gives a more robust estimation of the parametric 
trajectory feature, and the following transformation of the feature 
helps reduce the mismatch between the trajectory feature’s nature 
and the Gaussian independence assumption. Future works is to 
incorporate the segmental model into the framework of HMM to 
improve recognition performance.  
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