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Abstract

In this paper we present a robugt and discriminaive segmental
trajectory modeling for vowel recognition. We proposed two new
approaches. One is using weighted least square estimation for the
parametric trgjectory parameter, which gives a much more robust
performance over traditional least square estimation approach. The
other is a ecifically designed transformation matrix proposed to
reduce the possible mismatch between the Gaussian modeling
assumption and the trajectory feaure's nature. Our experiments on
the vowel classification usng the mobile phone data of
SpeechDAT(I1) MDB showed significant improvement over both
standard HMM and traditional segmental modeling.

1. Introduction

Vowes are geneally spectraly well defined. As such they
contribute significantly to our ability to recognize speech, both by
human beings and speech recognizer. For vowels, the speech
behavior can be considered as a point that moves in parameter space
as the articulatory system changes. Standard HMM'’s using cepstra
with their derivatives can not effectively model the trajectories
especidly for vowels [1][2]. In this paper we exploit robust and
discriminative approachesto the parametric trajectory modeling.

Previous approaches employed linear least square estimation for the
polynomial parametric trajectory [3]. This egimation could not
account for the change in variance of the trajectory as a function of
time and the estimation is senditive to the large variability esp. near
the phone boundaries even using multi-mixtures [4]. Instead of using
least square estimation, we here proposed a new weighted least
square estimation (WLS) to estimate the trajectory festure. This
approach is different from the traditional approaches by giving a
different weight to each frame according to its contribution to the
estimation accuracy of trajectory feature. Experiments showed its
robust ability in modeling the time-variation of the residual
covariance and significant improvement over general linear least
sguare estimation.

Ancther problem in trajectory is the high correlation within the
residual error covariance, which hurts the Gaussian bayes classifier’s
assumption of independence. Here we proposed a transformation
matrix to reduce the high correlation within the residual error
covariance by transforming the features to reduce the correlation,
and reduce the mismatch between the trajectory feature space and
the Gaussian modeling assumptions, thus improve the performance
of the segmental modeling.

It is not easy to find an answer for this transformation matrix. We
present here anew discriminative approach to get this transformation
matrix for segmental modeling. In this paper, we explored MCE

(Minimum Classification Error [5]) training of this transformation
matrix. Initidizing the tranformation matrix by identity matrix, we
do iterative gradient search to update each element’s value of the
matrix. With this transformation matrix, we can tune the parametric
trajectory parameter directly and can ensure the improvement of the
performance. This approach avoids the difficulty of direct MCE
training of the segmental model, but can ill strengthen the
discriminative characteristics of the feature space. Our experiments
showed great improvement for trajectory modeling.

The paper continues as follows: in section 2, we will describe our
weighted least square estimation for the quadratic trajectory feature
extraction; in section 3, we will present our specialy designed
discriminative training algorithm for the transformation matrix in
segmental model training; in section 4, comparisons between our
approach and the traditional least square estimation, and experiments
on speechDAT (1) English mobile phone database (MDB) for these
approaches will be given; discussions and conclusions are given in
section 5.

2. Parametric Trajectory M odel

Parametric trgjectory model treats each speech unit being modeled as
a curve in the parametric feature space. The trajectories we are
considering are vowels, and are of low degree polynomials such as
quadratic polynomial followed the work in [3][4].

We model each speech segment’ sfeature dimension asfollows:

C(n) = 'u(n) + e(n) ,forn=1,...,N @
Where c(n) are Cepstra of a speech segment with the frame length
of N. z(n) is the mean feature vector representing the dynamics of
features in the segment. e(n) istheresidual error vector, which, by

assumption, has Gaussian digribution and are independent from
frameto frame. The mean of the feature vector models the trajectory,
which is, in our case, aquadratic function of time.

Given a speech segment of N frames, where each frame is
represented with D dimensiona feature vector. We model the speech
segment asfollows:

C=ZB+E or
Ca G Cp 10 0 €, €, 6p (2)
1. /61; /612 "'IGLD
Co1 Cop ---Cop | _ 1 _ ( _ ) €1 €2 8p
B . N: 1 N :l 162‘1 /622 "'IGZD + :
. : Bay Baz P
Cni Cnz2---Cnp 1 1 1 e P €va B2 o

C is the feature vector matrix, which is NxD; Z is the NxR design
Matrix that specifies the degree of the polynomials to be used, in our
case R=3; B is RxD parametric trajectory matrix we are to model,
and E is NxD residual error matrix, and assumed to be independent
from frameto frame.



2.1 Edtimation of thetrajectory parameters

Given the notation shown above, one can now estimate the trgjectory
parameters under the assumption that the residual errors are
independent and identically distributed [3]. By minimizing the least
sguare objection function (3), the maximum likelihood estimation of
thetrgjectory parameter B isasfollows:
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From least squares estimation, we can see that the estimation deals
each training sample with equa weight. But in fact, since each
observation/frame has different observation error for the trgectory,
in particular of the boundaries, where large variability may cause
large observation errors. It is reasonable to give more weight to the
accurate observations during estimation and less weight to those
samples, which has potential larger observation error.

In our approach, we employed Weighted Least Square criteria (WLS)
for the estimation of the parametric trajectory. The weighted least
square criteriais asfollows:

Jus(B) =(C-2ZB)"W(C - ZB) (6)
Where W is the weighting matrix. Now by minimizing (6), we can
get the etimation for the trajectory model:
Bus =[ZWZ]'ZWC ©)
We can calculate the estimation error for the weighted linear least
sguare estimation:
Bus = B~ Bys = ~(Z'W2)"Z'WE ®
Also assume E[E] =0 and define R= E[ EET] (9), the variance of
the estimation is as follows:
VarB, s = E[B, < Bl ] = (Z'W2) " Z'WE[EE" MZ (Z'Wz) *
=(Z'WZ)Z"WRWZ (Z'™WZ)™ (10)

Since R is definite positive, it can be represented as: R=M ™M ,
where M is a matrix, which can be inversed. Denote A and B as
A=Z"M™ B=MWZ(Z™WZ)™, for any weighted matrix W,
using the Schwarz inequality law, we get (11):

Var B, =(Z2'WZ)Z"WRWZ (Z'WZ ) =B'Bz> @)
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So it isnow clear that when:

w=R" (12)
The equation (11) is satisfied and reaches its minimal
vaue:VarB,, s =(Z"R7Z)™. Note in the case that matrix R is a

diagonal one, the weight is inverse proportiona to the variance of
the observation error, which is just wha we expected: giving less
weight to those samples that may have potentia larger observation
errors. Also the least square estimation is a special case of WLS,
when W is an identity matrix.

To calculate the weighting matrix of (12), first calculate andard
least square trajectory parameters estimation by (4)(5). Then with

this weighting matrix W, we can update the estimation of both the
trajectories and theresiduals at all times along the trajectory.

2.2 Edtimation of theM odel parameters An EM algorithm

After wehave al the individual segments’ trgjectory parameters, the
next gep is to train a segmental trajectory model. Given totally K
samples to train an M mixture component segmental trajectory
model, the EM dgorithm [4] isasfollows:

Let the trajectory parameter denoted as { N, , ék , ik} ,asusedin[3],

given mixture component m, the likelihood of the segment kis:
DN,
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After al [(k |[m) is calculated for totally K training samples, the
probability of the m mixture given the segment k can be calculated:
I(k (14)
o(m]k) =k [m)p(m)
2.1 [m) p(m)
i=1
Using ML estimates for the model parameters p(m) , B, and pI
1. Prior probability for mixture component m:

p(m) = 3" p(mIK)

2. Trgectory parameter for mixture component m:

K K
B, =[> p(M[K)Z; Z] Y, p(m|K)Z{Z,] (1)
k=1 k=1
> p(mIK(C, ~2,8,)"(C, ~Z,B,) 16)
z — k=1

m

> p(mIlN,

The updated parameters are used to calculate |(k | m) for next
iteration of EM training.

In our approach, we used a more robugt trajectory distance of the
trajectory parametersto initialize the mixture components:

dis = tr[(C, - Z,B,)" (C, - Z,B,)] (17)
Theidea of using this distance metric is based on the assumption of
Gaussian modeling that the residual errors are independent and
Gaussian distributed. In our experiment, we have found that using
this metric is more robugt and preferable to initialize each mixture
component than using I(kjm) directly. We used SVD to calculate the
inverse of the matrix to secure arobust EM training.

3. Estimation of Transformation Matrix

With the trajectory model trained using the WLS feature estimation
and the distance of (17), we reduced the potential variations around
the boundaries and gave a robust training to multi-mixture MLE
model. But thefact of high correlation within the residual covariance
matrix is not in accordance with the assumption of Gaussian
modeling when we designed thistrajectory model in section |.

In our gpproach, we used a tranformation matrix trained under
Minimum Classification Error (MCE) criteriato reduce this negative



effect. From the formula of (13), it is not easy to directly tune the
parameters of B, andzm, especialy for the case of full zmmatrix.

But in fact, full matrix of ¥ yields amuch better performance than
the diagona ¥, and is more preferred. So we intended to design

discriminative training algorithm for transformation matrix for the
cases of both thediagonal and full = matrix.

Our intention is to give the parametric trajectory parameters B a
rotation in the feature space to increase the discrimination and
reduce the high within correlation in the residual covariance of the
parametric feature. By this way, we can tune the likelihood of
[ (k | m) . Without prior knowledge about the transformation matrix,

we here use discriminative criteria to get this matrix from training

process. The transformation matrix is defined as follows:
T(B,)=TIB, (18)

Tis alinear transformation. Plug in the transformation in (13), we

can seethetransformed Iikelihood is.
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Note that if matrixT is an identity matrix, the posterior probability
is the same as the original I(k |m) in (13). The transformed
likelihood of (19) showed that | (k | m) now isnot simply a function

of the individud trajectory. The full covariance representing the
interaction from frame to frame within the trajectory also plays an
important role.

This interaction within the individua trajectory is caused by the
contemporaneous correlation  existing between the residuals
associated with each individual trajectory respectively. And the
transformation matrix T acts as a coordination function on the
interaction between the individual trajectory features given the
variance of the residuals associated with different features.

From the transformed likelihood of [(k |m) of (19), we can now
train the transformation matrix T via MCE. Given training sample
of segment k with the reference model m,, firgt calculate the best
competitor I, , we can denote the following formula for MCE
training:

d, = —log[l(k [m,)] +log[l(k [m.)] (20)
Lossfunction is defined as:

L, (d,) = sigmoid(d, ) =

1 (21)
1+exp(-yLd, +6)
After al loss value for each training sample is calculaed, we can do
the MCE training for each element 'I:uvof the transformation matrix
T asfollows:
6L
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Plug in the transformed likelihood | (k |m,;) of equation (19), it is
now graightforward to caculate (22) and hence do the MCE training
for each element '|:uv of the transformaion matrix. From (19) and

(22), we can also see that this gpproach can handle with both the
diagonal and the full matrix of theresidual error variance.

Our MCE dgorithm goes asfollows:

l. Initialization; set 'I: to be an identity matrix;
Il.  Scan all thetraining datato calculate the loss and build up

the derivatives for 'fuv;

I1l.  Usdng Minimum Classification Error (MCE) GPD to
update each T,

IV. Usdng the updated transformation matrix to update the
likelihood of [(k | m) for each training samplek;

V. Stop when overall loss value does not change, otherwise
goto step Il for more iterations.

By using the transformation matrix, we update the likelihood of (19),
and this discriminative approach somewhat satisfies the observation-
independence of modeling assumption in section 1.

4. Experiments

All our experiments are carried out on the SpeechDAT(Il) MDB.
The speech data are isolated phrases such as digits, city names and
application words. Using HTK3.1 [6], like [7], we built a standard
monophone and adecision tree based state-tied word internal context
dependent 32-mixture triphone acougtic model, which was used to
do force alignment to get the vowel segments’ reference. To evaluate
the segmental model, we performed our experiments on a speaker
independent vowel classification task. The task includes 16 vowels:
liy, ih, ey, eh, ag, aa, ah, a0, ow, uw, uh, us, er, ay, oy, aw/. We use
the force alignment as the reference label and extracted the 16
vowels' training and testing tokens from thefirst 2 CDs. The number
of training tokens extracted is 52735. The extracted testing tokens
are from the test set secified by SpeechDat(Il). There are totally
200 test speakers and the number of extracted test tokens is 3529.
The trajectory models in this paper are context independent, full
residual error covariance matrix, and quadratic polynomial trajectory
model.

When doing the classification for an unknown test segment k coming
from model mwith M mixtures, the maximum a posterior probability

ruleisused as:
M

m = max {p”(Nklm)Z L,

i=1

(ék,iklém‘,imqp(m.)}

Where p(N, |m)is the duration probability that the segment k has
frames length of N, and computed as a histogram during training



similar to [3], & is exponential weight experimentally set as 5.6 in
experiments.

The first experiment is to compare the vowel classification between
standard monophone HMMs and the parametric trajectory models
using both LS and WLS estimation. The monophone HMM is
trained from 5 CD’ s data using 13 MFCC with delta and delta delta,
and the number of mixtures varies from 1 to 64. The trgectory
segmental model uses 10 MFCC and 10 delta MFCC, and the
number of mixtures varies from 1 to 24 mixtures. The number of the
parameters referred to the number of real parameters in the model
trained.
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Figl. HMM vs WL SLS trgectory modds

From the Fig 1, we see, for this vowel classification task, WLS
segmental model is better than the traditional LS segmental model,
and the segmental model is more powerful than monophone HMM
with the similar parameters size. Even trained with 2 CD’s data the
segmental model outperformed the standard monophone HMM.
Second, for segmental model, when the mixture number increased
over 8, under-training occurs. With this relatively small test set, the
performance curve of segmental model iswavy.

The second experiment is to evaluate the effect of MCE training for
the transformation matrix(s). Here we varied the number of the
mixtures (Mix num) and the number of the transformations. one is
an overall tied trandformation matrix, and the other is 16
transformation matrixes (16-trans) for each vowel class. Theresult is
shown in table 1:

Mix | Basdine WLS 1 Trans 16 Trans- | Error
num | LS-Seg Seg WLS WLS reduction
1 64.30 65.68 67.16 68.09 10.62 %

2 65.63 68.04 69.37 69.28 10.22 %
3 65.43 68.04 69.71 70.78 14.99 %
4 66.51 68.89 70.98 71.52 14.03 %
8 65.29 67.72 69.17 71.61 17.70%

Table 1. The vowe classification accuracy [%)]

We here did only 5 iterations of MCE training of the transformation
matrix, which cost a 900MHZ-CPU to run about 2~3 hours over the
52735 tokens From table 1, we can see that the proposed
transformation matrix to the trgjectory parameters together with the

weighted least square estimation is effective to improve the
modeling performance by up to 17.7% error reduction over
traditional least square estimation. Second, the performance drops
after the number of mixtures reaches more than 8, which might be
related to the relatively small training data.

The third experiment is to compare the performance of the
diagonal/full error residual matrix and to see the effect of adding
more training data. Theresult is shown in the Fig. 2:

BWLS-FULL-2CD
OWLS-FULL-2CD-16-Trans

OWL S-Diagonal-2CD
OWLS-FULL-5CD

0.72
0.7

0.68
0.66
0.64
0.62

0.6

1 mix 2 mix 3 mix 4 mix 8 mix

Fig 2. Performance of weghted least estimation

From Fig.2, we see that the full covariance matrix is better than the
diagonal one. This is because the diagona trgectory needs more
mixtures to model feature s high variation nature. And adding more
training data (5-CD, 133840 tokens) does improve the performance.
And transformed WLS segmenta model performed better than
adding more data. We see the proposed transformation can help to
satisfy the independence modeling assumption of the residual error,
and improve the performance.

5. Discussion and condusions

In this paper, we presented our approaches to improve the parametric
trajectory segmentad modeling power. The weighted linear
estimation gives a more robust estimation of the parametric
trajectory feature, and the following transformation of the feature
helps reduce the mismatch between the trajectory feature's nature
and the Gaussian independence assumption. Future works is to
incorporate the segmental model into the framework of HMM to
improve recognition performance.
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