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Abstract

This paper presents an overview of our work on track-
ing focus of attention in meeting situations. We have devel-
oped a system capable of estimating participants’ focus of
attention from multiple cues. In our system we employ an
omni-directional camera to simultaneously track the faces
of participants sitting around a meeting table and use neu-
ral networks to estimate their head poses. In addition, we
use microphones to detect who is speaking. The system pre-
dicts participants’ focus of attention from acoustic and vi-
sual information separately, and then combines the output
of the audio- and video-based focus of attention predictors.

In addition this work reports recent experimental results:
In order to determine how well we can predict a subject’s
focus of attention solely on the basis of his or her head
orientation, we have conducted an experiment in which
we recorded head and eye orientations of participants in
a meeting using special tracking equipment. Our results
demonstrate that head orientation was a sufficient indica-
tor of the subjects’ focus target in 89% of the time. Further-
more we discuss how the neural networks used to estimate
head orientation can be adapted to work in new locations
and under new illumination conditions.

1 Introduction

In recent years much research has been done in building
computerized intelligent environments, which aim at sup-
porting humans during various tasks and situations. Re-
search projects include the “digital office” [5], ”intelligent
house,” which adapts illumination and heating to a user’s
needs [12], ”intelligent classrooms,” which automatically
takes notes and provides students with relevant web pages
[1], and ”smart conferencing rooms,” which aim to support
cooperative work and help to document and analyze the ac-
tivities that occur in meetings [7, 18].

In order to make such intelligent and interactive envi-
ronments respond appropriately to their users’ needs, it is
necessary to equip them with perceptive capabilities to cap-
ture as much relevant information about its users and the
context in which they act as possible. Obtaining knowledge
about a person’s focus of attention is a major step towards
a better understanding of what users do, how and with what

or whom they interact or to what they refer.
In this research, we address the problem of tracking the

focus of attention of participants in a meeting, i.e. track-
ing who is looking at whom during a meeting. Such infor-
mation can for example be used to control interaction with
a smart meeting room or to index and analyze multimedia
meeting records.

A body of research literature suggests that humans are
generally interested in what they look at [19, 4, 9] and the
close relationship between gaze and attention during social
interaction has been emphasized [2, 3, 8]. In addition, re-
cent user studies reported strong evidence that people natu-
rally look at the objects or devices with which they interact
[11, 6].

A first step to determine someone’s focus of attention,
therefore is, to find out in which direction the person looks.
There are two contributing factors in the formation of where
a person looks: head orientation and eye orientation. In this
work head orientation is considered as a sufficient cue to
detect a person’s direction of attention. Relevant psycho-
logical literature offers a number of convincing arguments
for this approach (e.g. [8, 3, 17]) and the feasibility of this
approach is demonstrated experimentally in this paper.

A practical reason to use head orientation to estimate a
person’s focus of attention, is, that in scenarios such as ad-
dressed in this work, head orientation can be estimated with
non-intrusive methods while eye orientation can not.

Our approach to tracking at whom participants look, i.e.
their focus of attention, is the following:

1. Detect all participants in the scene,

2. estimate each participant’s head orientation and

3. map each estimated head orientation to its likely tar-
gets using a probabilistic framework.

This approach is of course not perfect. Since eye gaze
is neglected, a certain amount of errors is introduced. The
noisy estimation of head orientations from camera images
introduces additional errors.

To improve the robustness of focus of attention tracking,
we therefore would like to combine various sources of infor-
mation. We have found that focus of attention is correlated
to who is speaking in a meeting and that it is possible to esti-
mate a person’s focus of attention based on the information
of who is talking at or before a given moment. To estimate



Figure 1. Panoramic view of the scene around the table. Faces are automatically detected.

where a person is looking, based on who is speaking, proba-
bility distributions of where participants are looking during
certain “speaking constellations” are used.

The accuracy of sound-based prediction of focus of at-
tention can furthermore significantly be improved by taking
a history of speaker constellations into account. We have
trained neural networks to predict focus of attention based
on who was speaking during a short period of time.

Finally, the head pose based and the sound-based esti-
mations are combined to obtain a multimodal estimation of
the participants’ focus of attention. This leaded to signifi-
cant improvements compared to using just one modality for
focus of attention tracking alone.

Our system for focus of attention detection in meetings
has been successfully installed in both our labs at the Uni-
versiẗat Karlsruhe, Germany and at Carnegie Mellon Uni-
versity in Pittsburgh, USA. A problem when porting the
system to a new location is the need for appropriate train-
ing images for the neural network based approach to head
orientation estimation. We therefore also investigated how
much training/adaptation data is necessary to port the sys-
tem to a new location.

The remainder of this paper is organized as follows: In
section 2 we discuss how participants are tracked and how
head pose is estimated in our system. In section 3 we intro-
duce our probabilistic approach to model at whom subjects
look at based on their head orientations. In section 4 we
present a user study investigating how reliably focus of at-
tention can be estimated based on head orientation alone
in meetings. In section 5 we suggest that focus of attention
tracking could benefit from also tracking other relevant cues
and show that information about who is or has been speak-
ing at a given moment can be used to improve focus of atten-
tion tracking accuracy. In section 6 we discuss portability
issues of our system. We conclude the paper in section 7.

2 Simultaneous Head Pose Tracking in Meet-
ings

We use an omni-directional camera to capture the scene
around a meeting table. Compared to using several cameras
to capture the scene, this simplifies the recording since no
camera control, calibration or synchronization is necessary.

In the panoramic view of the meeting scene (see Figure
1 for an example) we then detect the participants faces by
searching for skin-colored regions and use some heuristics
to distinguish skin-colored hands from faces [13].

For each detected participant a rectified (perspective)

view is computed (see Figure 2. Faces extracted from these
views are then used to estimate each participant’s head pose.

2.1 Head Pose Estimation with Neural Networks

We use neural networks to estimate head pan and tilt
from such facial images [13]. In our approach, prepro-
cessed facial images are used as input to the neural net-
works, and the networks are trained so as to estimate the
horizontal (pan) or vertical (tilt) head orientation of the in-
put images. Separate networks were trained to estimate
head pan and tilt. These networks contained one hidden
layer and one output unit, which encodes the head orienta-
tion in degrees. By training multi-user networks on images
from twelve users we achieved average estimation errors as
low as three degrees for pan and tilt. On images from new
users, head orientation could be estimated with an average
error of 10 degrees for pan and tilt. More details can for be
found in [13].

3 From Head Pose to Focus of Attention

In our approach we first estimate a persons head orien-
tation and then detect at whom a person was looking based
on his or her estimated head orientation.

Compared to directly classifying a person’s focus of at-
tention target – based on images of the person’s face for ex-
ample – our approach has the advantage that different num-
bers and positions of participants in the meeting can be han-
dled. If the problem was treated as a multi-class classifica-
tion problem, and a classifier such as a neural network was
trained to directly learn the focus of attention target from the
facial images of a user, then the number of possible focus
targets would have to be known in advance. Furthermore,
with such an approach it would be difficult to handle situ-
ations where participants sit at different locations than they
were sitting during collection of the training data.

Figure 2. Perspective views of participants.
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Figure 3. Unsupervised adaptation of model parameters to find P (Focus|HeadPan) (see text).

We have developed a Bayesian approach to estimate at
which target a person is looking, based on his observed
head orientation [14, 15]. More precisely, we wish to find
P (FocusS = Ti|xS), the probability that a subjectS is
looking towards a certain target personTi, given the sub-
ject’s observed horizontal head orientationxS , which is the
output of the neural network for head pan estimation. Using
Bayes formula, this can of be decomposed into

P (Foc.S = Ti|xS) =
p(xS |Foc.S = Ti)P (Foc.S = Ti)

p(xS)
,

wherexs denotes the head pan of personS in degrees and
Ti is one of the other persons around the table.

In order to computeP (FocusS = T |xS), it is necessary,
to estimate the class-conditional probability density func-
tion p(xS |FocusS = T ), the class priorP (FocusS = T )
andp(xS) for each person. Findingp(xS) is trivial and can
be done by just building a histogram of the observed head
orientations of a person over time.

In order to adapt the parameters of our model to varying
target locations and to the different head turning styles of
the participants, we have developed an unsupervised learn-
ing approach to find the head pan distributions of each par-
ticipant when looking at the others.

In our approach, we assume that the class-conditional
head pan distributions can be modeled as Gaussian distri-
butions. Then, the distributionp(x) of all head pan obser-
vations from a person will result in a mixture of Gaussians,

p(x) ≈
M∑

j=1

p(x|j)P (j),

where the individual component densitiesp(x|j) are given
by Gaussian distributionsNj(µj , σ

2
j ).

The number of GaussiansM is set to the number of
other participants that are detected around the table. The
parameters of the mixture model can be adapted so as to
maximize the likelihood of the pan observations given the
mixture model using the EM algorithm (for further details
see [14]). To initialize the meansµj of the mixture model,
k-means clustering is performed on the pan observations.
Parameters are iteratively updated as follows:

After adaptation of the mixture model, we use the in-
dividual Gaussian components as an approximation of the

Meeting A B C D Avg.
Accuracy 68.8 73.4 79.5 69.8 72.9

Table 1. Correctly assigned focus targets based on
head pan (in percent)

class-conditionalsp(x|Focus= T ) of our focus of atten-
tion model described in equation (3). We furthermore use
the priors of the mixture model,P (j), as the focus priors
P (Focus= T ). To assign the individual Gaussian compo-
nents and the priors to their corresponding target persons,
the relative position of the participants around the table are
used.

Figure 3 shows an example of the adaptation on pan ob-
servations from one user. The mixture of Gaussian distri-
bution is adapted to the distribution of all head pan obser-
vations of the user (Fig. 3(A)). Figure 3(B) depicts compo-
nents of the mixture model. For comparison, the real class-
conditional head pan distributions are shown. Figure 3(C)
depicts the resulting posterior distributions.

3.1 Experimental Results

We evaluated our approach on several meetings that we
recorded. In each of the meetings four participants were
sitting around a table and were discussing a freely chosen
topic. Video was captured with the panoramic camera and
audio was recorded using several microphones.

In each frame we manually labeled at whom each par-
ticipant was looking. These labels could be one of“Left”,
“Right” or “Straight” , meaning a person was looking to
the person to his left, to his right, or to the person at the
opposite. If the person wasn’t looking at one of these tar-
gets; e.g., the person was looking down on the table or was
staring up to the ceiling, the label“Other” was assigned.
In addition, labels indicating whether a person was speak-
ing or not, were manually assigned for each participant and
each video frame.

Table 1 shows the evaluation results on the four recorded
meetings. In the table, the average accuracy on the four
participants in each meeting is indicated.

For the evaluation the faces of the participants were au-
tomatically tracked. Head pan was then computed using the
neural network-based system to estimate head orientation.



For each of the meeting participants, the class-conditional
head pan distributionp(x|Focus), the class-priorsP (Focus)
and the observation distributionsp(x) were adapted as de-
scribed in the previous section, and the posterior probabili-
tiesP (Focus= Ti|x) for each person were computed. Dur-
ing evaluation, the target with the highest posterior proba-
bility was then chosen as the focus of attention target of the
person in each frame.

For the evaluation, we manually marked frames where a
subject’s face was occluded or where the face was not cor-
rectly tracked. These frames were not used for evaluation.
Face occlusion occurred in 1.6% of the captured images.
Occlusion sometimes happened, when a user covered his
face with his arms or with a coffee mug for example; some-
times a face was occluded by one of the posts of the camera.
In another 4.2% of the frames the face was not correctly
tracked. We also did not use frames where a subject did
not look at one of the other persons at the table. This hap-
pened in 3.8 % of the frames. Overall 8.2% of the frames
were not used for evaluation since at least one of the above
indications was given.

4 Head Pose versus Eye Gaze

In this work, head orientation is used to predict a per-
son’s focus of attention in meetings. This is done because
head orientation is assumed to be a reliable indicator of the
direction of someone’s attention during social interaction
and because eye gaze of several meeting participants can-
not be easily tracked without the use of intrusive hardware.

Since we estimate where a person is looking at based on
his head orientation, the following question suggests itself:
how well can we predict at whom a person is looking at,
merely on the basis of his or her head orientation?

To answer this question, we have analyzed the gaze of
four people in meetings using special hardware equipment
to measure their eye gaze and head orientation [16]. We
have analyzed the gaze and head orientation data of the four
people to answer the following questions:

1. How much does head orientation contribute to gaze?

2. How accurately can we predict at whom the person
was looking at, based on his head orientation only?

4.1 Data Collection

The setting in this experiments is a round-table meeting.
There are four participants in the meeting, and a session
of data for about ten minutes with each participant is col-
lected. In each session, one of the participants, the subject,
wears a head-mounted gaze tracking system from ISCAN
Inc. [10].This system can estimate and record the following
data with a frame rate of 60 Hz: the subject’s head position,
head orientation, eye orientation, pupil diameter, and the
overall gaze (line of sight) direction. All these estimations
have a precision of better than one degree. head-mounted
gaze-tracker.

Figure 4. A participant wearing the head-mounted
eye and head tracking system.

4.2 Contribution of Head Orientation to Gaze

First, we analyzed the contribution of head orientation
and eye orientation to the overall gaze direction along the
horizontal axis. On the data from the four participants we
found that in 87% of the frames head orientation and eye
gaze pointed in the same direction (left or right). For these
frames we calculated the contribution of head orientation
to the overall line of sight orientation. Since the horizontal
component of the line of sightlosx is the sum of horizontal
head orientationhox and horizontal eye orientationeox, the
percentage of head orientation to the horizontal direction of
gaze is computed as head contribution= hox

losx
.

Table 2 summarizes the results of four experiment ses-
sions. From the results, we can see several interesting
points: 1) Most of the time, the subjects rotate their heads
and eyes in the same direction to look at their focus of at-
tention target (87%). 2) The subjects vary much in their
usage of head orientation to change gaze direction: from
Subject 2’s 53% to Subject 4’s 96%, with an average of
68.9%. 3) Even for Subject 2, whose head contribution is
the least among the four participants, head orientation still
contributes more than half of the overall gaze direction. 4)
Eye-blinks (or eye-tracking failures) take about 20% of the
frames, which means even for commercial equipments as
accurate as the ISCAN system we used, eye orientation, and
thus the overall gaze direction cannot be obtained in about
a fifth of the time.

Subject eye blinks same direct. head contrib.
1 25.4% 83.0% 62.0%
2 22.6% 80.2% 53.0%
3 19.2% 91.9% 63.9%
4 19.5% 92.9% 96.7%

Average 21.7% 87.0% 68.9%

Table 2. Eye blinks and contribution of head orien-
tation to the overall gaze.
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Figure 5. Histograms of horizontal gaze directions
of two subjects.

4.3 Predicting the Gaze Target Based on Head
Orientation

We approached the second question we proposed before
in this particular meeting application: How accurately can
we predict at whom the subject was looking at, on the basis
of his head orientation? Answering this question gives us an
idea of the upper limit of the accuracy that can be obtained
when the focus of attention target is estimated based on head
orientation alone.

Labeling Based on Gaze Direction

To automatically determine at which target person the sub-
ject was looking at (focus of attention), the gaze direction
was used. Figure 5 shows the histograms of the horizon-
tal gaze direction of two of the participants. In each of the
histograms, it can be seen that there are three peaks. We
assume that these belong to the direction where the other
participants at the table were sitting. We have automatically
determined the peaks in the horizontal line-of-sight data-
files using the k-means algorithm. The peaks found were
then used as the directions where the other persons were
sitting; and in each frame focus of attention labels were as-
signed based on the least distance of the actual horizontal
line-of-sight to the three target directions.

Prediction Results

To see how accurate the focus target can be estimated based
on observing head orientation alone, we used exactly the
same method to find the focus targets as described in section
3. The only difference now is, that in the previous experi-
ment, focus was determined based on noisy head panesti-
matesas given by the neural networks, whereas now, focus
targets are found based on accurate head panmeasurements
as given from the gaze tracking equipment.

Subject 1 2 3 4 Avg.
Accuracy 85.7 82.6 93.2 93.2 88.7

Table 3. Focus detection based on exact measure-
ments of horizontal head orientation (in percent).

.

Table 3 summarizes the results on the four participants.
The results show that the focus of attention target can be
correctly estimated with only head orientation data in 82.6%
(Subject 2) to 93.2% (Subject 3 and 4) of the frames, with
an average of 88.7%. This can be seen as the upper limit
of accuracy that we can get in head orientation based fo-
cus of attention estimation in such a scenario. These results
also show that head orientation is indeed a reliable cue for
detecting at whom participants look at in meetings.

5 Predicting Focus Based on Sound

Attention is clearly influenced by external stimuli, such
as noises, movements or speech of other persons. Moni-
toring and using such cues might therefore help us to bias
certain targets of interests against others.

We have found that focus of attention is correlated to
who is speaking in a meeting and that it is possible to esti-
mate a person’s focus of attention based on the information
of who is talking at or before a given moment [14, 15].

In our first experiment to predict focus from sound
(speakers) we analyzed at whom the four participants in the
recorded meetings were looking during certain “speaking”
conditions. Here, “speaking” was treated as a binary vec-
tor; i.e., each of the four participants was either labeled as
“speaking” or “not speaking” in each video frame. Now,
using this binary “speaking” vector and having four partici-
pants, there exist24 possible “speaking” conditions in each
frame, ranging from none of the participants is speaking to
all of the participants are speaking [14].

By using only the speaker labels to make a sound-based
focus prediction, we were able to predict the correct focus
of each participant 56.3% of the time in the evaluation meet-
ings.

5.1 Using Temporal Speaker Information to Pre-
dict Focus

We have also investigated, whether the prediction of the
focus of attention could benefit from temporal speaker in-
formation.

Thus, we trained neural networks to estimate at which
target person a subject is looking at, given a history of
audio-observations as input. The neural net we use consists
of an input layer of (N+1)*4 input units, corresponding to
the (N+1) audio-observation vectors, one hidden layer and
three output units, corresponding to the three target persons
that a subject can look at. As audio-observations at each
time step, the binary audio-observation vectors described in
the previous section, were chosen.

As output representation a 1-of-N representation was
used; i.e., during training the output corresponding to the
correct target class was set to 1 and the other output units
were set to zero. As error criterion, the commonly used
mean square error criterion was used.

After training, such a network will approxi-
mate the a posteriori probabilities of the focus
targets Fi given the sequence of observed audio-
information:P (Focus|At, At−1, ..., At−N ).



Figure 6. Sound-based focus prediction results
with different audio-history lengths and different
number of hidden units.

Figure 6 shows the average sound-based focus predic-
tion results on the four evaluation meetings for different
histories of audio-vectors used as input and for networks
with different amounts of hidden units. The best accuracy
is 66.1%. This was achieved using three hidden units and
a history of 20 audio-vectors, corresponding to approxi-
mately eight seconds of audio-information. Please refer to
[14] or [15] for more details.

5.2 Combining Head Pose and Sound to Predict
Focus

The two independent predictions of a person’s focus –
P (Focus|Sound) andP (Focus|HeadPose) – can be com-
bined to obtain a prediction of a person’s focus which is
based on both the observation, who is speaking, and based
on the person’s head rotation.

We combined the predictions by computing the weighted
sum of both modalities:

P (Focus) = (1−α)P (Focus|Head Pose)+αP (Focus|Sound).

By settingα to 0.6, we achieved an average accuracy of
75.6% on the recorded meetings. Table 4(a) summarizes the
results we obtained by using sound-only based focus pre-
diction, head orientation-only based focus estimation and
combined estimation.

Head Pose only Sound only Combined
Meeting A 68.8 59.2 69.1
Meeting B 73.4 69.6 77.8
Meeting C 79.5 61.3 80.6
Meeting D 69.8 74.3 74.7
Average 72.9 66.1 75.6

Table 4. Focus-prediction results (in percent).

While the presented combination of head pose- and
sound-based prediction is done heuristically by choosing
a weighting parameter, we expect that by using more ad-
vanced and adaptive fusion methods, better combination re-
sults will be obtained.

6 Portability of the System

In this section we discuss how the presented system for
focus of attention tracking can be installed in a new loca-
tion.

The main problem when installing the system in a new
location is that the illumination conditions in the new loca-
tion might be completely different from the conditions in
which the training data for the neural networks for head ori-
entation estimation was collected.

To investigate which steps are necessary to successfully
move the focus of attention tracking system to a new loca-
tion, we have installed the system in both our labs at the
Universiẗat Karlsruhe in Germany and at Carnegie Mellon
University in Pittsburgh, USA.

In the remainder of this section we report about experi-
ments on how the neural network for head pan estimation
can be adapted to work under new conditions. We examine
how much adaptation data is necessary to obtain reasonable
focus of attention tracking performance and compare the
results with adapted networks to the results obtained with
neural networks that are trained from scratch with new data.

6.1 Data Collection at CMU

In order to train neural networks for head pan estimation
in the new location, we have collected training images from
twelve users in our lab at CMU (the new location). As dur-
ing the data collection in Karlsruhe, subjects had to wear a
head band with a Polhemus pose tracker sensor attached to
it so that true head pose could be determined. Images of the
person’s head were captured with an omni-directional cam-
era as described in section 2 and were recorded together
with the person’s head pose. From each person, we col-
lected training images at several locations around the meet-
ing table. The data collection took about fifteen minutes
for each participant. Altogether we collected around 27.000
training images from twelve persons.

6.2 Training New Networks from Scratch

We first trained neural networks for head pan estimation
using only the data that was collected at CMU. To see how
much training data is necessary for reasonable generaliza-
tion, we trained different networks using increasing subsets
of the data. To evaluate the performance of the networks,
data from four subjects was kept aside as a user-independent
test set.

We trained networks on images from one up to all eight
subjects in the training set. The neural network architecture
and training was identical to those used with the networks
trained with the data from Karlsruhe. The networks were
trained on the training data set and a cross-evaluation set
was used to determine the number of training iterations.

Figure 7 shows the results obtained on the user indepen-
dent test set from CMU (top curve). It can be seen that
the average pan estimation error on the test set is as high
as twenty degrees when only images from one subject were
used for training. The pan estimation error then gradually
decreases, when training images from more subjects are
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added. When all eight subjects were used for training, an
average pan estimation error of 13 degrees was obtained.

We also trained one neural network on images on all
the available twelve subjects. For training we used 80%
of all the images. 10% of the images were used for cross-
evaluation and the remaining 10% of the images were used
as a test set. With this multi-user network for pan estima-
tion, we achieved an average error of 7.6 degrees on the
test-set.

6.3 Adapting a Trained Network

We then investigated whether and how well the network
which was previously trained on data collected in Karlsruhe
– the “UKA-network”’ – could be adapted to the new CMU
images, by using the different training data sets from CMU
for adaptation.

We adapted the UKA-network by retraining all its
weights on the different adaptation data sets from CMU.
Training was done using standard back-propagation with a
learning parameter of 0.1. To determine when the adap-
tation process should stop, a cross-evaluation set contain-
ing images from an additional subject was used. Typically,
adaptation stopped after two to six iterations.

We adapted the UKA-net with images from one to all
eight subjects of the CMU training set. The performance
of the adapted networks was then evaluated on the the user-
independent from CMU.

The results are also shown in Figure 7 (lower curve).
With the unadapted UKA-network an average error of 19
degrees was obtained on the test set. By using images from
one subject from CMU for adaptation, the average error de-
creases to 15.6 degrees. When all training data from eight
subjects is used for adaptation, the average pan estimation
error decreases to 13 degrees.

It can be seen that pan estimation works significantly
better with the adapted networks when only little data is
available for training or adaptation. In our experiments, the
newly trained network only reached the performance of the
adapted UKA-network, when training images from at least
five subjects were available for training.
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Figure 8. Accuracy of focus of attention detection
on a meeting recorded at CMU (see text).

6.4 Focus of Attention Detection Results

To measure how well focus of attention can be estimated
using the different neural networks, we have collected a
meeting with four participants in our lab at CMU.

The focus of attention tracking system was run on the
recorded meeting with different networks for pan estima-
tion. For the evaluation we used the unadapted UKA-
network, the adapted UKA-networks and the neural net-
work that was trained on images from all twelve subjects
in our data set from CMU.

For each network we evaluated the focus of attention de-
tection accuracy using the mixture of Gaussian approach
presented in chapter 3. All parameters of the Gaussian mix-
ture model were adapted completely unsupervised.

Figure 8 shows focus of attention detection accuracy on
the meeting that was recorded at CMU for the different net-
works used for head pan estimation.

Using the UKA-network for head pan estimation, focus
of attention could be detected in only 60% of the time on the
meeting, with a possible upper limit of 76%. By adapting
the UKA-network with data collected at CMU the perfor-
mance increases to 75% focus of attention detection accu-
racy when images from four subjects were in the adaptation
set (“UKA + 4”). This performance is already as good as the
performance obtained with the CMU-network, which was
trained on images from twelve subjects collected at CMU.

6.5 Discussion

Our experiments suggest that a network which has al-
ready been trained to estimate head pan from images taken
in one location can be adapted to work in a new location
and under different illumination conditions by collecting a
limited number of images in the new location and adapt-
ing the networks’ weights with the new images. In our ex-
periments we achieved good focus of attention tracking re-
sults in the new location by using adaptation images from
only four subjects. These images could be collected in ap-
proximately one hour. Our experiments also showed that
adapting an existing network for pan estimation, which has
been trained on images taken in different lighting and cam-



era conditions, leads to better pan estimation results than
training networks from scratch with images from the new
location when only a small amount of training images are
available.

7 Conclusions

In this paper we presented a system to track the focus of
attention of participants in a meeting. The participants are
simultaneously tracked in a panoramic view and their head
poses are estimated using neural networks. For each par-
ticipant, probability distributions of looking towards other
participants are estimated from their head orientations us-
ing an unsupervised learning approach. These distributions
are then used to predict focus of attention given a head pose.
The accuracy of such predication is 73 % accurate in detect-
ing the participants’ focus of attention on our test data.

Furthermore, we have demonstrated how focus of atten-
tion can be predicted based on knowledge of who is cur-
rently speaking, and how this audio-based prediction can be
improved by taking the history of utterances into account.
On the recorded meetings, participants’ focus of attention
has been predicted correctly in 63 % of the frames by using
audio information only.

In addition, we have shown how the audio- and the
video-based predictions can be fused to get a more accurate
and robust estimation of participants’ focus of attention. By
using both head pose and sound, focus of attention could be
detected in 76 % of the frames in recorded meetings.

To answer how precisely focus of attention can be pre-
dicted in a meeting just based on the participants’ head ori-
entations we have recorded eye gaze and head orientations
of four subjects in a meeting. The user study clearly demon-
strated that head orientation is a reliable cue to detect at
whom someone is attending to. In the meetings which we
recorded for this study, we were able to correctly determine
at whom the subject was looking in 89% of the time just
based on the subject’s head orientation.

Finally, we have investigated how a neural network for
head pan estimation can be adapted to work in a new loca-
tion. Our experiments showed that adaptation images from
only four subjects were sufficient to achieve good focus of
attention detection accuracy in a new location with com-
pletely different illumination conditions.
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