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1. INTRODUCTION

The identification of an utterance’s non-verbal cues, such
as speaker, accent and language, can provide useful infor-
mation for speech analysis. In this paper we investigate
far-field speaker identification, as well as accent and
language identification, using multilingual phone strings
produced by phone recognizers trained on data from
different languages.

Currently, approaches based on Gaussian Mixture Models
(GMMs) [4] are the most widely and successfully used
methods for speaker identification. Although GMMs have
been applied successfully to close-speaking microphone
scenarios under matched training and testing conditions,
their performance degrades dramatically under mismatched
conditions. The term “mismatched condition” describes a
situation in which the testing conditions, e.g. microphone
distance, are quite different from what had been seen during
training. For language and accent identification, phone
recognition together with phone N-gram modeling has been
the most successful approach in the past [6]. More recently,
Kohler introduced an approach for speaker recognition
where a phonotactic N-gram model is used.

In this paper, we extend this idea to far-field speaker iden-
tification, as well as to accent and language identification.
We introduce two different methods based on multilingual
phone strings to tackle mismatched distance and channel
conditions and compare them to the GMM approach.

2. THE MULTILINGUAL PHONE STRING
APPROACH

The basic idea of the multilingual phone string approach
is to use phone strings produced by different context-
independent phone recognizers instead of traditional
short-term acoustic vectors [1]. For the classification of an
audio segment into one of n classes of a specific non-verbal
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Fig. 1. Error rate vs number of phones in 8 languages

cue, m such phone recognizers together with m x n
phonotactic N-gram models produce an m x n matrix of
features. A best class estimate is made based solely on this
feature matrix. The process relies on the availability of
m phone recognizers, and the training of m x n N-gram
models on their output.

By using information derived from phonotactics rather
than directly from acoustics, we expect to cover speaker
idiosyncrasy and accent-specific pronunciations. Since this
information is provided from complementary phone recog-
nizers, we anticipate greater robustness under mismatched
conditions. Furthermore, the approach is somewhat lan-
guage independent since the recognizers are trained on data
from different languages.

2.1. Phone Recognition

For the experiments presented here, the m phone recogniz-
ers were borrowed without modification from among the
eight available within the GlobalPhone project: Mandarin
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Fig. 2. Training of feature-specific phonotactic models

Chinese (CH), German (DE), French (FR), Japanese (JA),
Croatian (KR), Portuguese (PO), Spanish (SP) and Turkish
(TU). Figure 1 shows phone error rates per language in
relation to the number of modeled phones. See [5] for
further details.

2.2. Phonotactic Model Training

In classifying a non-verbal cue C' into one of n classes,
C;, our feature extraction scheme requires m x n distinct
phonotactic models PM; ;, 1 <i <mand 1 < j < n, one
for each combination of phone recognizer PR, with output
class C;. PM, ; is trained on phone strings produced by
phone recognizer PR; on C; training audio as shown in
Figure 2. During the decoding of the training set, each PR;
is constrained by an equiprobable phonotactic language
model. This procedure does not require transcription at any
level.

2.3. Classification

We present two multilingual phonotactic model (MPM)
approaches to feature extraction, MPM-pp and MPM-dec.

In MPM-pp, each of m phone recognizers {PR;}, as used
for phonotactic model training, decodes the test audio
segment. Each of the resulting m phone strings is scored
against each of » phonotactic models {PM, ;}. This results
in a perplexity matrix PP, whose (PP); ; element is the
perplexity produced by phonotactic model PM; ; on the
phone string output of phone recognizer PR;. Although
we have explored some alternatives, our generic decision
algorithm is to propose a class estimate C; by selecting
the lowest ) .(PP),;. Figure 3 depicts the MPM-pp
procedure.

In MPM-dec, we also use all m phone recognizers {PR;},
but this time when decoding a test utterance we replace
the equiprobable phonotactic language model used dur-
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ing phonotactic training with each of the n phonotactic
models PM; ; in turn. The test audio segment is therefore
decoded by each of the m phone recognizers n times,
resulting in a decoding score matrix SCORE, whose
(SCORE); ; element is the decoding score produced
jointly by phone recognizer PR; and phonotactic model
PM; ; during decoding. As in MPM-pp, the class C7
whose >, (SCORE); ; is lowest is hypothesised. The key
behind this method is that a phonotactic model PM, ; is
used directly in the decoding; however, this means that a
test utterance must be decoded m x n times as opposed to
only m times for MPM-pp. Furthermore, this procedure
relies on the ability to produce reliable phonotactic models
{PM;;} from the training data which are suitable for
decoding.

3. EXPERIMENTS

3.1. Speaker Identification (SID)

Real world speaker identification is expected to work under
mismatched conditions, regardless of the microphone
distances during training and testing. To investigate robust
speaker 1D, a database has been collected in our lab
containing 30 speakers reading different articles. Each
of the five sessions per speaker are recorded using eight
microphones in parallel: one close-speaking microphone



(Dis 0), one lapel (Dis L) microphone worn by the speaker,
and six other lapel microphones at distances of 1, 2, 4,
5, 6, and 8 feet from the speaker. About 7 minutes of
spoken speech (approximately 5000 phones) is used for
training the PMs, while for training the GMMs one minute
was used. The different amount of training data for the
two approaches seems to make the comparison quite
unfair; however, the training data is used for very different
purposes. In the GMM approach, the data is used to train
the Gaussian mixtures. In the MPM approach, the data is
solely used for creating phonotactic models; no data is used
to train the Gaussian mixtures of the phone recognizers.
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Fig. 5. GMM performance with increasing training data

Figure 5 shows the performance of the GMM approach
with increasing amounts of training data, from 10 seconds
to 90 seconds, on 10 seconds of test data. The graph
indicates that for a fixed configuration of GMM structure,
adding more training data is not necessary.

Testing Training

Dis0 | Dis1 | Dis2 | Dis6
Dis 0 100 | 433 30 26.7
Dis 1 56.7 90 76.7 40
Dis 2 56.7 | 63.3 | 93.3 | 533

Dis 6 40 30 60 83.3

Table 1. GMM performance under matched and mis-
matched conditions

The GMM approach was tested on 10-second chunks,
whereas the phone string approach was additionally tested
on shorter and longer (up to one minute) chunks. We
report results for closed-set text-independent speaker
identification. Table 1 shows the GMM results with one
minute training data on 10 seconds of test data. It illustrates

that the performance under mismatched conditions de-
grades considerably when compared to performance under
matched conditions.

| Language || 60s | 40s [ 10s | 5s | 3s |

CH 100 | 100 | 56.7 | 40.0 | 26.7
DE 80.0 | 76.7 | 50.0 | 33.3 | 26.7
FR 70.0 | 56.7 | 46.7 | 16.7 | 13.3
JA 30.0 | 30.0 | 36.7 | 26.7 | 16.7
KR 40.0 | 33.3 | 30.0 | 26.7 | 36.7
PO 76.7 | 66.7 | 33.3 | 20.0 | 10.0
SP 70.0 | 56.7 | 30.0 | 20.0 | 16.7
TU 53.3 | 50.0 | 30.0 | 16.7 | 20.0
Int. ofall LM || 96.7 | 96.7 | 96.7 | 93.3 | 80

Table 2. MPM-pp SID rate on varying test lengths at Dis 0

Table 2 shows the identification results of each phone
recognizer and the combination results for eight language
phone recognizers for Dis 0 under matched conditions.
This shows that multiple languages compensate for poor
performance on single engines, an effect which becomes
even more important on shorter test utterances.

| TestLength [| 60s | 40s | 10s | 5s |

Dis 0 96.7 | 96.7 | 96.7 | 93.3
Dis L 96.7 | 96.7 | 86.7 | 70.0
Dis 1 90.0 | 90.0 | 76.6 | 70.0
Dis 2 96.7 | 96.7 | 93.3 | 83.3
Dis 4 96.7 | 93.3 | 80.0 | 76.7
Dis5 93.3 | 93.3 | 90.0 | 76.7
Dis 6 83.3 | 86.7 | 83.3 | 80.0
Dis 8 93.3 | 93.3 | 86.7 | 66.7

Table 3. MPM-pp SID rate on varying test lengths at
matched training and testing distances

Table 3 and Table 4 compare the identification results
for all distances on different test utterance lengths under
matched and mismatched conditions, respectively. Under
matched conditions, training and testing data are from the
same distance. Under mismatched conditions, we do not
know the test segment distance; we make use of all p = 8
sets of PM; ; phonotactic models, where p is the number
of distances, and modify our decision rule to estimate
C; = min; (ming, Y, PM; ; x), where 4 is the index over
phone recognizers, j is the index over speaker phonotactic
models, and 1 < k& < p. These two tables indicate that
the performance of MPM-pp, unlike that of GMM, is



| Testlength || 60s | 40s | 10s [ 5s |

Dis0 96.7 | 96.7 | 96.7 | 90.0
Dis L 96.7 | 100 | 90.0 | 66.7
Dis1 93.3 | 93.3 | 80.0 | 70.0
Dis 2 96.7 | 96.7 | 86.7 | 80.0
Dis 4 96.7 | 96.7 | 93.3 | 80.0
Dis 5 933 | 93.3 | 86.7 | 70.0
Dis 6 93.3 | 86.7 | 83.3 | 60.0
Dis 8 93.3 | 93.3 | 86.7 | 70.0

Table 4. MPM-pp SID rate on varying test lengths at mis-
matched training and testing distance

comparable for matched and mismatched conditions.

| Language | MPM-pp (%) | MPM-dec (%) |

CH 100 53.3

DE 80 40.0

FR 70 23.3

JA 30 26.7

KR 40 26.7

PO 76.7 30.0

SP 70 26.7

TU 53.3 26.7
[Int ofallPM | 967 | 60 |

Table 5. Comparison of SID rate using MPM-pp and MPM-
dec

Table 5 compares the performance of MPM-dec at Dis 0
under matched conditions with that of MPM-pp on test
utterances of 60 seconds in length. Even though MPM-dec
is far more expensive than MPM-pp, its performance is
only 60% under matched conditions for close-speaking
data while MPM-pp yields 96.7%. The considerably poorer
performance of MPM-dec seems to support the assumption
made earlier that the phonotactic models we produced,
which perform well within the MPM-pp framework, are
not sufficiently reliable to be used during decoding as
required by MPM-dec. These findings led us to focus on
the use of the MPM-pp approach for accent and language
identification.

3.2. Accent Identification (AID)

In this section we apply our non-verbal cue identification
framework to accent identification. In a first experiment, we
use the MPM-pp approach to differentiate between native
and non-native speakers of English. Native speakers of

Japanese with varying English proficiency levels make up
the non-native speaker set [2]. Each speaker was recorded
reading several news articles aloud; training and testing sets
are disjoint with respect to articles as well as speakers. The

data used for this experiment is shown in Table 6.

use native non-native
Nepk | training 3 7
testing 2 5
> nut | training 318 680
testing 93 210
> Tutt | training | 23.1min | 83.9 min
testing | 7.1min | 33.8 min

Table 6. Number of speakers, total number of utterances
and total length of audio for native and non-native classes

We employ 6 of the GlobalPhone phone recognizers,
PR; € {DE,FR,JA KR,PO,SP}. In training, native
utterances are used to produce 6 phonotactic models
PM; nat; the same is done for non-native speech resulting
in 6 PM; non. During classification, the 6 x 2 phonotactic
models produce a perplexity matrix for the test utterance
to which we apply our lowest average perplexity decision
rule; the class with the lower perplexity is identified as the
class of the test utterance.

On our evaluation set of 303 utterances, this system classi-
fies with an accuracy of 93.7%. The separability of the two
classes is demonstrated in the average perplexity of each
class of phonotactic model over all test utterances. The
average perplexity of non-native models on non-native data
is lower than the perplexity of native models on that data.
Similarly, native models give lower scores to native data
than do non-native models. Table 7 shows these averages.

Phonotactic Utterance class
model non-native | native

non-native 29.1 31.7
native 325 28.5

Table 7. Average phonotactic perplexities for native and
non-native classes

The accented speech experiment is unique among our
classification tasks in that it attempts to determine the
class of an utterance in a space that varies continuously
according to the English proficiency of its speaker. Al-
though classification among native and non-native speakers
is discrete, it can be described as identifying speakers



who are clustered at the far ends of this proficiency axis.
In a second experiment, we attempt to further classify
non-native utterances according to proficiency level.

The original non-native data was labelled with the pro-
ficiency of each speaker on the basis of a standardized
evaluation procedure conducted by trained proficiency
raters [2]. All speakers received a floating point grade
between 0 and 3, with a grade of 4 reserved for na-
tive speakers. The distribution of non-native training
speaker proficiencies shows that they fall into roughly
three groups and we create three corresponding classes
for our new discrimination task. Class 1 represents the
lowest proficiency speakers, class 2 contains intermediate
speakers, and class 3 contains the high proficiency speakers.

We apply the MPM-pp approach to classify utterances
from non-native speakers according to assigned speaker
proficiency class. The phonotactic models are trained as
before, with models in 6 languages for each of 3 proficiency
classes; our division of data is shown in Table 8.

use class 1 class 2 class 3
Nispk training 3 12 4
testing 1 5 1
> nyue | training 146 564 373
testing 78 477 124
> Tutt | training | 23.9 min | 82.5 min | 40.4 min
testing | 13.8 min | 59.0 min | 13.5 min
ave. prof | training 1.33 2.00 2.89
testing 1.33 2.00 2.89

Table 8. Number of speakers, total number of utterances,
total length of audio and average speaker proficiency score
per proficiency class

Phonotactic Utterance proficiency
model Class1 | Class 2 | Class 3
Class 1 28.35 | 23.85 | 25.46
Class 2 23.85 23.86 24.17
Class 3 2546 | 2394 | 2391

Table 9. Average phonotactic perplexities per proficiency
class

Our results indicate that discriminating among proficiency
levels is a more difficult problem than discriminating
between native and non-native speakers. Table 9 shows that
the class models in this experiment were more confused
than the native and non-native models, and classification

accuracy suffered as a result. We were able to achieve
84% accuracy in differentiating between class 1 and class
3 utterances, but accuracy on 3-way classification ranged
from 34% to 59%.

Overall, the phone string approach worked well for clas-
sifying utterances from speaker proficiency classes that
were sufficiently separable. Like the other applications
of this approach, accent identification requires no hand-
transcription and could easily be ported to test languages
other than English/Japanese.

3.3. Language ldentification (LID)

In this section, we apply the non-verbal cue identification
framework to the problem of multiclassification of four
languages: Japanese (JA), Russian (RU), Spanish (SP) and
Turkish (TU).

We employed a small number of phone recognizers in
languages other than the four classification languages in an
effort to duplicate the circumstances common to our other
non-verbal cue experiments, and to demonstrate a degree of
language independence which holds even in the language
identification domain. Phone recognizers in Chinese (CH),
German (DE) and French (FR), with phone vocabulary
sizes of 145, 47 and 42 respectively, were borrowed from
the GlobalPhone project as discussed in [5].

The data for this classification experiment, also borrowed
from the GlobalPhone project but not used in training the
phone recognizers, was divided up as shown in Table 10.
Data set 1 was used for training the phonotactic models,
while data set 4 was completely held-out during training and
used to evaluate the end-to-end performance of the complete
classifier. Data sets 2 and 3 were used as development sets
while experimenting with different decision strategies.

Set JA RU SP TU
Nepk 1 20 20 20 20
2 5 10 9 10
3 3 5 5 5
4 3 5 4 5
Songe | all | 2294 | 4923 | 2724 | 2924
S 7utt | all | 6hrs | 9hrs | 8hrs | 7 hrs

Table 10. Number of speakers per data set, total number of
utterances and total length of audio per language

For phonotactics, utterances from set 1 in each
L; € {JA,RU,SP,TU} were decoded using each of
the three phone recognizers PR; € {CH,DE,FR} and 12



separate trigram models were constructed with Kneser/Ney
backoff and no explicit cut-off. The training corpora
ranged in size from 140K to 250K tokens, and the resulting
models were evaluated on corpora constructed from set 2
utterances, of size 27K to 140K tokens. Trigram coverage
for all 12 models fell between 73% to 95%, with unigram
coverage below 1%.

In order to explore classification in a timeshift-invariant
setting, we elected to extract features from segments of
audio selected from anywhere in each utterance. For each
of PR; € {CH,DE, FR}, phone strings for all utterances
of each speaker in data set 4 were concatenated following
decoding. Overlapping windows representing durations of
5, 10, 20 and 30 seconds, offset by 10% of their width,
were identified for classification, each leading to a matrix
of 3 x 4 perplexities. Duration was approximated using
each speaker’s average phone production rate per second
for each recognizer PR;. The number of testing exemplars
is depicted per segment length in Table 11.

[Set| 5s | 10s [ 20s | 30s |
| 4 | 23541 | 11689 | 5765 | 3789 |

Table 11. Number of test exemplars per segment length

Classification using lowest average perplexity led to
94.01%, 97.57%, 98.96% and 99.31% accuracy on 5s, 10s,
20s and 30s data respectively, as shown in Figure 6.

For comparison with our lowest average perplexity
decision rule, we contructed a separate 4-class multi-
classifier, using data set 2, for each of the four durations
T, € {bs,10s,20s,30s}; data set 3 was used for cross-
validation. With each speaker’s utterances concatenated
and then windowed as was done for data set 4, this led
to audio segments as in Table 12. These were subjected
to the same feature extraction as before, yielding a 3 x 4
perplexity matrix per datum.

A class space of 4 classes induces 7 unique binary par-
titions. For each of these, we trained an independent
multilayer perceptron (MLP) with 12 input units and 1

[Set| 5s | 10s | 20s | 30s |
2 | 48504 | 24092 | 11883 | 7815
3 | 28180 | 14003 | 6917 | 4556
Table 12. Number of ECOC/MLP training and cross-

validation exemplars per segment length
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Fig. 6. Language identification rate vs audio segment dura-
tion

output unit using scaled conjugate gradients on data set 2
and early stopping using the cross-validation data set 3. In
preliminary tests, we found that 25 hidden units provide
adequate performance and generalization when used with
early stopping. The output of all 7 binary classifiers was
concatenated together to form a 7-bit code, which in
the flavor of error-correcting output coding (ECOC) was
compared to our four class codewords to yield a best class
estimate. Based on total error using the best training set
weights and cross-validation set weights on the cross-
validation data, we additionally discarded those binary
classifiers which contributed to total error; these classifiers
represent difficult partitions of the data. Performance of
this ECOC/MLP classification scheme on 5s, 10s, 20s and
30s data from set 4 was 95.41%, 98.33%, 99.36% and
99.89% respectively, shown in Figure 6.

4. LANGUAGE DEPENDENCIES

Implicit in our non-verbal cue classification methodology
is the assumption that phone strings originating from phone
recognizers trained on different languages yield crucially
complementary information. Thus far we have not explored
the degree to which the phone recognizers must differ, nor
can we state how performance varies with the number of
phone recognizers used. In this section we report on two
experiments in the speaker identification arena intended to
answer these questions.

4.1. Multi-lingual vs Multi-engine

We conducted one set of experiments to investigate whether
the reason for the success of the multilingual phone



string approach is related to the fact that the different
languages contribute useful classification information or
that it simply lies in the fact that different recognizers
provide complementary information. If the latter were the
case, a multi-engine approach in which phone recognizers
trained on the same language but on different channel or
speaking style conditions might do a comparably good job.
To test this hypothesis, we used a multi-engine approach
based on three English phone recognizers which were
trained on very different conditions, namely: Switchboard
(telephone, highly conversational), Broadcast News (vari-
ous channel conditions and speaking styles), and English
Spontaneous Scheduling Task (high quality, spontaneous).
The experiments were carried out on two different dis-
tances, Dis 0 and Dis 6, for the speaker identification
task. For a fair comparison between the three English
engines and the eight language engines, we generated all
possible language triples out of the set of eight languages
((§) = 56 triples) and calculated the average, minimum
and maximum performance for each. The results, given in
Table 13, show that for Dis 0 the multi-engine approach
lies within the range of the multilingual approach, and
even outperforms the average. On Dis 6, however, the
multi-engine approach is significantly outperformed by
all (%) language triples, and the average performance
achieves half of the errors. Even if the poor performance
of the multi-engine approach on Dis 6 is alarming and may
indicate some robustness problems, it cannot be concluded
from these results that multiple English language recog-
nizers provide less useful information for the classification
task than do multiple language phone recognizers. Fur-
ther investigations on other distances, as well as on other
non-verbal cues, are necessary to fully answer this question.

| Approach || Multi-Lingual | Multi-Engine |
DisO || 87.92 (66.7-100) 933
Dis 6 81.96 (66.7-93.3) 63.3

Table 13. Multi-Lingual vs Multi-Engine SID rates

4.2. Number of involved languages

In a second suite of experiments, we investigated the influ-
ence of the number of phone recognizers on speaker iden-
tification rate. These experiments were performed on an
improved version of our phone recognizers in 12 languages
trained on the above described GlobalPhone data. Figure
7 plots the speaker indentification rate over the number m
of languages used in the identification process on matched
60 second data at Dis 6. The performance is given in av-
erage and range over the (12) language m-tuples. Figure

7 indicates that the average speaker identification rate in-
creases with the number of involved phone recognizers. It
also shows that the maximum performance of 96.7% can
already be achieved using only two languages; in fact two
(out of (12) = 66) language pairs gave optimal results: CH-
KO, and CH-SP. However, the lack of a strategy for find-
ing the best suitable pair does not make this very helpful.
On the other hand, the increasing average indicates that the
probability of finding a suitable language-tuple which opti-
mizes performance increases with the number of available
languages. While only 4.5% of all 2-tuples achieved best
performance, as many as 35% of all 4-tuples, 60% of all 6-
tuples, 76% of all 8-tuples and 88% of all 10 tuples were
likewise found to perform optimally in this sense.
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Fig. 7. SID rate vs number of phone recognizers

5. CONCLUSIONS

We have investigated the identification of non-verbal cues
from spoken speech, namely speaker, accent, and language.
For these tasks, a joint framework is developed which
uses phone strings, derived from different language phone
recognizers, as intermediate features and which performs
classification decisions based on their perplexities. Our
good identification results validate this concept, indicating
that multilingual phone strings could be sucessfully applied
to the identification of various non-verbal cues, such as
speaker, accent and language. Our evaluation on variable
distance data proved the robustness of the approach,
achieving a 96.7% speaker identification rate on 10s chunks
from 30 speakers under mismatched conditions, clearly
outperforming GMM s on large distances. Furthermore, we
achieved 93.7% accent discrimination accuracy between
native and non-native speakers. The speaker and accent
identification experiments were carried out on English
data, although none of the applied phone recognizers were
trained or adapted to English spoken speech. For language
identification, we obtained 95.5% classification accuracy



for utterances 5 seconds in length and up to 99.89% on
longer utterances, showing additionally that some reduction
of error is possible using decision strategies which rely on
more than just lowest average perplexity. Additionally, the
language identification experiments were run on languages
not presented to the phone recognizers for training. The
language independent nature of our experiments suggests
that they could be successfully ported to non-verbal cue
classification in other languages.
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