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Abstract

This paper presents our work on building a real time dis-
tributed system to track 3-D locations of people in an in-
door environment, such as a smart room, using multiple cal-
ibrated cameras. In our system, each camera is connected
to a dedicated computer on which foreground regions in the
camera image are detected. This is done using an adpa-
tive background model. These detected foreground regions
are broadcasted to a tracking agent, which computes be-
lieved 3-D locations of persons based on the detected im-
age regions. We have implemented both a best-hypothesis
heuristic tracking approach as well as a probabilistic multi-
hypothesis tracker to find the object tracks from these 3-D
locations. The two tracking approaches are evaluated on
a sequence of two people walking in a conference room
recorded with three cameras. The results suggest that the
probabilistic tracker shows comparable performance to the
heuristic tracker.

1 Introduction

Keeping track of people is a vital topic in smart environ-
ment research. The context knowledge gained from peo-
ples’ positions can help a lot to predict what people might
expect from a smart environment or to enable other sensors
to focus on areas where people are. As an example a person
standing next to a white board and several people located
around a table provides enough evidence to guess that peo-
ple attend a presentation or lecture. Furthermore the loca-
tion and number of people in a room also is a useful feature
for activity classification.

For indoor environments several tracking approaches are
possible: Vision based methods [7, 4, 6], speaker local-
ization [12], or simply attaching tracking badges to people
[10].

As attaching physical devices to people is undesirable
and speaker localization only works if people are talking,
vision based tracking still is and will be an important prob-
lem to solve.

Most of vision based tracking research has been done
with sequences from a single perspective: Haritiaoglu’sW 4

tracked several people in real time with a single camera [4],
Darell [3] used a stereo camera to track faces and the well
known pfinder system by Wren [11] tracked body parts of

single users with one camera.
Considerably less work was published on tracking hu-

mans with multiple cameras. This might be due to the fact
that the correspondence problem among features from dif-
ferent perspectives creates a lot of difficulties for tracking
algorithms. On the other hand, multiple perspectives help
to solve ambiguities caused by occlusion or segmentation
errors and provides 3-D information.

To help solve the correspondence problem most of the
research on tracking with multiple cameras used fully cal-
ibrated sensors. Cai and Aggarwal [2] track points on the
medial axes of humans which are brought to correspon-
dence using epipolar line constraints between multiple per-
spectives.

Mikic et al. [7] used in the AVIARY project multiple
calibrated cameras to track people in real time by matching
foreground regions obtained from background subtraction
exploiting geometric constraints between multiple views.

In more recent work Krumm et al. [6] used two stereo
cameras to track people in a living room identifying people
with color histograms.

2 Overview of the tracking system

Our tracking system was mainly inspired by the work in
[7] using the same triangulation technique from centroids of
foreground regions. However, our system uses a probabilis-
tic tracking approach instead of a best-hypothesis Kalman
filter based method. In addition, a more sophisticated back-
ground subtraction algorithm is used.

Our system is designed as a distributed sensor network
consisting of several low level and one high level compo-
nent connected through the network:

The low level component is the background subtraction
module. At each camera one instance of this module pro-
duces a feature stream which is sent to the high level com-
ponent, the tracking agent. The tracking agent collects
these feature streams to produce 3-D tracks of objects in
the scene. Figure 1 shows a typical set up of the tracking
system.

To ensure a consistent view of the scene, all the data from
the lower level components is time stamped and the partic-
ipating machines in the sensor network are synchronized
using NTP [8].

Furthermore, in an initial setup step, the cameras of the
sensor network were calibrated using the camera calibra-



Figure 1. Components of the tracking system

tion toolbox by Bouguet [1]. In order to extract the in-
trinsic parameters and extrinsic parameters of each camera
this method only needs several images of a checker board in
various arbitrary positions. As the cameras are not moved,
panned or tilted, the obtained camera models do not change
during the operation of the tracking system.

3 Background subtraction

At each camera a background subtraction module ex-
tracts foreground regions from the live camera images. The
centroids of foreground regions are later used by the track-
ing agent in connection with camera models to discover the
3-D position of objects of interest.

The key idea in the implemented segmentation algorithm
is to subtract the still background from the current image
yielding people or recently moved objects.

The critical part of this approach is to adapt the back-
ground estimation over time in such a way that gradual
lighting changes or moved objects do not result in a seri-
ously erroneous background estimate.

Most of the background subtraction algorithms estimate
the background color of each pixel in the image continously.
Our tracking system uses the background estimation pro-
cess developed in [9]. The process uses a mixture of Gaus-
sians to estimate the background color per pixel. This pro-
vides a more robust foreground region extraction compared
to single Gaussian approaches.

Background models that estimate the background color
per pixel tend to detect shadows as foreground (false pos-
itives), if the underlying color space has an intensity com-
ponent as in Figure 2(b). To counter this problem the back-
ground color can be estimated only on a chromatic color
space. But this does not always solve the problem, since a
number of foreground objects might not be detected (false
negatives) or an object dissolves into several regions as in
Figure 2(c).

The implemented segmentation algorithm uses both

chromatic and intensity information to ensure a low number
of false positives and negatives. The process of segmenta-
tion is illustrated in Figure 2:

From the camera image (Figure 2(a)) the adaptively es-
timated background image on the intensity channel Y of
the YUV color space is subtracted. This yields foreground
regions as shown in Figure 2(b). In the same manner the
background image estimated on the RG color space is sub-
tracted from the current image (Figure 2(c)). Then each
RG region is matched to a Y region, if it is inside this Y
region. For each Y foreground region the bounding box
of its matched or interior RG regions is computed (Figure
2(d)). The bounding boxes are filled and pixel-wise inter-
sected with the Y foreground regions (Figure 2(e)).

This approach cuts off most of the shadows due to the
use of chromatic information while exploiting intensity in-
formation to obtain smoother silhouettes.

From these foreground regions the RG color histogram,
the bounding box, the centroid, and the size are computed
and broadcasted appropriately packaged and time stamped.

4 Tracking

The tracking agent as the higher level component col-
lects data streams from the image processing components
(centroids of foreground regions). From this data the track-
ing agent computes 3-D locations and tracks of objects with
the help of the previously obtained camera models.

Two tracking agents were implemented. One tracking
agent is a re-implementation of the work in [7] which basi-
cally holds a Kalman filter per tracked object and can there-
fore be depicted as a best-hypothesis approach.

In order to have a better understanding which tracks cor-
respond to real objects a probabilistic tracking algorithm
was implemented. A probabilistic tracker naturally pro-
vides a confidence measure for each track by the corre-
sponding a posteriori probability. As well our probabilistic
tracker was designed to use multiple hypotheses per track
with the intention to track objects more consistently. In the
following we will refer to this way of tracking as the multi-
hypothesis probabilistic approach or just the probabilistic
approach.

In section 4.2 and 4.3 the two different tracking algo-
rithms are described in more detail. Both agents use the
same preprocessing of foreground and camera model data
to generate hypothetical 3-D measurements of objects. Sec-
tion 4.1 explains this localization process.

4.1 Creating 3-D measurements from low level
data

To compute candidate 3-D locations of objects an agent
guesses which foreground regions from different cameras
belong to the same object. We depict such a grouping of
foreground regions as a correspondence guess. In order
to tell valid correspondence guesses from invalid guesses
a measure is used that calculates how accurately an object
can be localized with that guess using the camera models.
The following paragraphs give a brief explanation how this
measure is obtained:



Figure 2. Extracting foreground (see text for details)

Each foreground region in a correspondence guess has a
centroid. Assuming that the projected centroid of an object
is close to the centroid of its foreground regions, a ray can
be cast from the center of projection of the camera through
the centroid of the foreground region towards the object’s
centroid in the scene (see Figure 3).

If the correspondence guess is correct as in Figure 3(b),
the rays intersect nearly at one point, the location of the real
object.

If the correspondence guess is not correct, the rays will
not intersect at one point as in Figure 3(a).

Using the camera models the intersection of the men-
tioned rays can be expressed as an overdetermined linear
equation. The residualr of the equation is the above men-
tioned measure for telling correct from incorrect correspon-
dence guesses (see [7] for details).

The tracking agent computes for each frame all possi-
ble correspondence guesses and discards all guesses whose
residualr is above a threshold (for instance 50mm per cam-
era). The remaining correspondences are sorted by the num-
ber of foreground regions supporting it and secondarily by
their residualr.

As each correspondence provides a believed object posi-
tion, this produces an ordered list of hypothetical 3-D object
positions or measurements (zt = (xt, yt, zt)):

Zt = (z1
t , z

2
t , z

3
t , . . .) (1)

4.2 Best-hypothesis heuristic tracker

The best-hypothesis tracker is a re-implementation of the
tracking approach as described in [7].

In this approach each object is tracked with a Kalman
filter estimating velocity and position. Assuming that the
tracking agent already has some valid tracks of the objects
in the scene, the task is to match each measurement inZt to
one of the already existing tracks.

To associate measurements with tracks several tech-
niques can be used such as nearest fit or methods that mini-
mize a penalty function defined for an assignment guess of

the entire set of tracks to measurements as described in [7].
A thresholdV is used to discard measurements that are too
far away from a current object location for a given track.

For measurements that are not matched to tracks a new
Kalman track is started. Tracks are only considered as valid
tracks, if measurements were matched to them over some
amount of time (for instance more than a half a second). If
no measurements are matched to a valid track for a certain
time (more than a second), the track is discarded.

4.3 Multi-hypothesis probabilistic tracker

The multi-hypothesis tracker uses a probabilistic ap-
proach to update and create tracks from the list of measure-
mentsZt.

Assuming for the moment that the tracker has already
produced some valid tracks, the task is to update the tracks
given some new hypothetical 3-D locations of objectsZt.
The tracker has to keep the most promising and to discard
the most unlikely tracks.

As the tracker uses multiple hypothesis per track, it is
important to understand that each track consists of several
track paths.

Assigning probabilities to track paths

In order to tell good from bad track paths the a posteriori
probabilityP (Xt|Zt) for each track pathXt is computed.
To be more specific each track path is a time stamped se-
quence of 3-D locations(xt, yt, zt):

Xt = {(x1), (x2), ..., (xt)} (2)

Zt are all the measurementsZt seen up to timet:

Zt = {Z1, . . . ,Zt} (3)

The a posteriori probability for a track path given a history
of observations is formally:



Figure 3. (a) A wrong correspondence (b) A correct correspondence

P (Xt|Zt) =
P (Zt|Xt)P (Xt)

P (Zt)
(4)

Assuming thatZt only depends on the current track position
hypothesisxt and that prior measurementsZt−1 does not
depend onxt, the above equation yields:

P (Xt|Zt) =
P (Zt−1|Xt−1)P (Zt|xt)P (xt,Xt−1)

P (Zt)
(5)

We compute the probabilityP (Zt|xt) in the following
way: The probability distribution that a measurement is
seen at locationzt given the current position of the track
xt is modeled as a Gaussian distribution:

p(zit|xt) =
1

(2πσ2)
3
2

exp−
1

2σ2 (xt−zit)
2

(6)

,whereσ is a value between20 to 40cm.
As measurements are not equally likely, the overall prob-

ability P (Zt|xt) can be seen as a weighted sum ofP (zit|xt)
probabilities. The weightsP (zit) are modeled to be depen-
dent on the triangulation error and the number of foreground
regions supporting the corresponding measurementzit. This
yields forP (Zt|xt):

P (Zt|xt) =
n∑
i=1

P (zit) ∗ P (zit|xt) (7)

P (xt,Xt−1) can as well be described with a Gaussian
distribution:

p(xt,Xt−1) =
1

(2πσ2)
3
2

exp−
1

2σ2 (xt−xt−1)2

∗p(Xt−1)

(8)

Updating and creating tracks

For the updating process several possible actions how to
continue a path have to be evaluated: A track path can
be updated with a measurement using a Kalman filter. As
well a path can be updated by reinitializing - jumping di-
rectly to the position of a measurement, and finally from a

Kalman filter model a new position can be guessed without
a measurement. For each action the overallP (Xt+1|Zt+1)
is computed.

As the tracker uses multiple hypotheses for a given track,
the algorithm keeps the best n resulting track paths per
track.

After the update process there might be measurements
which were not used to extend any tracks. Such a mea-
surement creates a new track whose initial position is the
location of the unused measurement.

To ensure that track paths do not accumulate at the same
3-D position, paths with a smaller confidence measure are
deleted if they come closer than the exclusion thresholdE
to a track path with a higher confidence measure. The value
of E was varied in the experiments between 100mm and a
500mm.

Last but not least during the tracking process there will
be tracks that were created earlier than other tracks. In or-
der to make theP (Xt|Zt) values comparable among these,
a penalty per missing frame is added to the confidence mea-
sureP (Xt|Zt). The value of the penalty corresponds to the
probability that the younger track jumped by one meter and
that the track was one meter away from the nearest measure-
ment. This rather large penalty ensures that older tracks are
kept unless there is no data supporting them.

5 Results

In operation our tracking system is able to track two peo-
ple using three cameras at a frame rate of 3-7 frames per
second on four Pentium II 400 MHz machines. The track-
ing agent has a smaller run time for a tracking step than
the vision components. This is the reason why the frame
rate mainly depends on the background subtraction mod-
ules that update their background models continously on a
160x120 image.

To evaluate the two tracking algorithms a fifty second
long sequence of two people walking in a conference room
was recorded at 5 frames per second with three cameras and
segmented manually to produce ground truth data. In the
sequence one of the two people is always in the field of view
of all cameras, while the other person leaves the observation
area for about5 seconds.

The foreground region data from the background pro-
cessing modules were logged in real time during the record-
ing of the sequence (see Figure 4). From these logs the



Figure 5. Percentage of tracking errors for
different tracking variants

tracking algorithms produced their tracks which were com-
pared to the ground truth data.

For each person the tracking error was computed in mil-
limeters and a track of a person was considered to be lost,
if the error was larger than 750mm. The meanµ and stan-
dard deviationσ of the 2-D position for each person was
computed for frames that had a tracking error smaller than
750mm. As well we calculated for each person the percent-
ageα how often its track was lost.

For the best-hypothesis tracker two different variants
were used. The first oneS1 is a re-implementation of the
approach described in [7]. Though this method worked well
in general, it tended to lose track when a person turned
around a corner; the Kalman filter continued on a straight
line. To counter this problem the tracker variantS2 adap-
tively increased theV threshold for those tracks. This en-
abled tracks to search for valid measurements in a larger
area and solved the above described problem in most cases.

The probabilistic tracker was evaluated varying the num-
ber of allowed hypotheses per track between one and
three (tracker variantsM1,M2,M3). As well variants
of the tracker were evaluated with differing exclusion
thresholdsE ranging from 100mm to 500mm (variants
M100,M250,M500 where the number of hypotheses per
path was three).

For each tracker those tracks were considered valid
which had been updated in the last second and that were
created at least half a second ago.

If less than two tracks were valid, the tracker only re-
ported its single valid track or no track at all. If two or
more tracks were valid, the best-hypothesis tracker reported
the two longest valid tracks and the probabilistic tracker re-
ported the two valid tracks with the highest probability.

In order to reflect the amount of false alarms produced by
the trackers, we compute an additional evaluation measure
β. It is the percentage how many times a tracker failed to
judge the exact number of valid tracks in the room.

Figure 5 and Table 1 summarize the result for the various
tracker variants.

Table 1. Tracking accuracy of different algo-
rithms (Values in mm)

µ1 µ2 σ1 σ2

S1 193 210 127 138
S2 194 216 120 145
M1 196 215 120 139
M2 197 207 123 140
M3 197 210 122 142
M100 192 207 127 145
M250 188 203 120 142
M500 197 210 122 142

5.1 Discussion

By inspecting both tracker outputs frame by frame, we
found that they consistently kept track of the two subjects
as long as the subjects were more than a 1 meter apart in
the scene. The trackers failed, when the subjects came to
close to each other. In this case the background subtrac-
tion modules merged the subjects into one foreground re-
gion and thus one track out of two was lost. Although in one
instance of a closer encounter the track was only lost for a
second: The Kalman filter was able to dead reckon the per-
son’s location since the subject did not change its direction
or velocity. But in most cases the subjects changed either
their direction or their velocity (turning around the Table or
stopping temporarily) which caused the loss of their track
during the encounter.

It is interesting to mention that both approaches managed
to detect that one subject left the observation area for five
seconds.

The similar performance of the two tracking approaches
are also reflected in table 1. The mean and standard devia-
tion of the tracking accuracy does not differ a lot among the
algorithms. This is probably due to the wayµ andσ were
computed and to the fact that the triangulation process itself
is identical for the trackers.

Additionally, the percentages of lost tracks (measuresα1

andα2) are of the same order for both tracking approaches.
For the best hypothesis trackerS2 (S1) α1 = 0.11(0.17)
andα2 = 0.16(0.18), while for the probabilistic tracker
variantsM1,M2, ..,M500 α1 ranges from0.12 to 0.15 and
α2 ranges from0.16 to 0.18.

The main difference between the two approaches is the
amount of false alarms. The measureβ shows that the
S1 andS2 estimate the number of tracks more accurately
than the probabilistic tracker (0.23,0.26). The probabilistic
tracker produces 10 percent more false alarms: For instance
M3 has aβ = 0.33. This is why the best heuristic approach
might be preferable at the moment, but we think that re-
fining the simplistic probabilistic model might improve the
false alarm rate. On the long run a more sophisticated prob-
abilistic approach should be preferable, because its poste-
rior probabilities should provide a more precise confidence
measure of tracks. The comparable tracking performance
results for the so far simplistic probabilistic model and the
best hypothesis approach suggest that the subject of prob-



Figure 4. Snap shot of the evaluation sequence

abilistic tracking in this domain of application is a worth-
while for future research.

Finally, we found that multiple hypotheses did not pro-
vide an improvement on this test sequence. Multiple hy-
potheses on this sequence even produced a slightly higher
false alarm rate. Inspecting the trackers output frame by
frame showed that the extracted foreground region provided
a rather clear foreground region signal that did not give
much opportunity for alternate paths. With such a clear se-
quence a multiple hypotheses tracking approach does not
seem to be worthwhile. A single hypothesis approach ei-
ther based on heuristics or a probabilistic model seems to
suffice.

6 Conclusion

We have build a real time 3-D tracking system using mul-
tiple calibrated cameras to locate and track objects and peo-
ple in a conference room. The system is designed as a dis-
tributed sensor network and relies on a quite sophisticated
adaptive background subtraction algorithm whose key fea-
ture is the fusion of chromatic and intensity information to
suppress shadows as false positives.

To have a better understanding which tracks are likely
to correspond to real objects in our system, a probabilistic
tracker was implemented. The implemented probabilistic
tracker leads to tracking results comparable to the results
achieved with a best-hypothesis tracker while providing ad-
ditional confidence measures for each track.

Improvements of the probabilistic tracker can certainly
be made by refining the rather simplistic probability model,
i.e. to incorporate the velocity from the Kalman filters,
as well as color and size information of the matched fore-
ground regions.

Currently, we are evaluating our tracker on several longer
test sequences and we are trying to improve the tracker
using a more sophisticated probabilistic tracking model to
provide better confidence measures for tracks.

In the future we plan to also use stereo cameras in the
sensor network to be able to fuse geometric, color and depth
information to increase the robustness of our system.
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