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Abstract
Linguists estimate the number of currently existing languages
to be between 5,000 and 7,000. In order to be able to cover as
many languages as possible, techniques have to be developed
in order to rapidly port speech recognition systems to new lan-
guages in a cost efficient way. In the past, phoneme based, lan-
guage independent acoustic models have been studied for boot-
strapping an acoustic model in a new language. These language
independent models usually have seen multiple languages dur-
ing training, and work under the assumption that phonemes are
pronounced the same across languages. Similarly, models for
acoustic features, describing the articulator targets of the dif-
ferent phonemes, can also be accurately recognized across lan-
guages and can be trained to become language independent in
the same way as phonemes can. In the past we combined them
with phoneme based models and their behavior on the training
languages of the multilingual models was examined.

In this paper we present experiments examining the suit-
ability of monolingual and multilingual acoustic features for
porting speech recognition systems to new languages. We com-
bined them with monolingual and multilingual, phoneme based
models in a stream based frame work in order to bootstrap a
model in a new language. The results show that the incorpora-
tion of models for articulatory features into the porting frame-
work significantly improves the performance when porting ASR
systems to new languages, reducing the word error rate by up to
4.5% relative.

1. Introduction
Linguists estimate the number of currently existing languages
to be between 5,000 and 7,000. The fifteenth edition of the
Ethnologue [1] lists 7,299 languages. Only for a small frac-
tion of these languages automatic speech recognition (ASR)
systems have been developed so far. Languages addressed are
mainly those with either a large population of speakers, with
sufficient economic funding, or with high political impact. The
fact that applications using ASR only address a small fraction
of the world’s languages bears the danger of creating a digital
divide between those languages for which ASR systems exist
and those without one.

Current state-of-the art speech recognition systems require,
among other things, large amounts of transcribed audio data
for training. Transcriptions are usually done at word level
and are produced manually. Typical amounts of training data
used nowadays range between one hundred to several thousands
of hours of transcribed speech. The costs of collecting these
amounts of data are so high, that this task impossible to perform

for all languages in the world, especially for under resourced
languages.

Thus, in order to be able to cover as many languages as pos-
sible, techniques have to be developed in order to rapidly port
speech recognition systems to new languages in a cost efficient
way. The techniques have to be able to be applied to the new
language without the need for large amounts of training materi-
als.

Past research has shown that porting phoneme based ASR
models to new languages can be achieved by using multilingual
models for bootstrapping [2, 3]. [4, 5] have further shown that
the addition of articulatory features (AF), such as place and
manner of articulation, can improve the performance of mono-
lingual ASR systems, and that articulatory features can be mod-
eled in a multilingual way and can be reliably recognized across
languages. Preliminary experiments [6] have given indication
that crosslingual and multilingual articulatory features can im-
prove the performance of ASR systems when applying them to
a new, previously unseen language, thus improving the possibil-
ities in creating a speech recognition system in a new language.

In this work we expand these preliminary experiments
by examining more scenarios of multilingual and crosslingual
combinations of phoneme models and articulatory feature mod-
els, and by applying a discriminative training scheme for finding
the weights for combining the phoneme and articulatory feature
models which is crucial for the performance of the combined
models.

2. Multilingual Acoustic Modeling using
ML-MIX

When using the term Multilingual Automatic Speech Recogni-
tion (ML-ASR) we follow [3] which defines multilingual recog-
nition systems as systems that are capable of simultaneously
recognizing languages which have been presented during train-
ing. [3] has demonstrated, that by combining the phoneme sets
from several languages into a single one and sharing the train-
ing data from several languages, it is possible to train multilin-
gual, acoustic models that can be used to bootstrap the acoustic
model of a new, previously unseen language. For the purpose
of finding a phoneme set common to all languages, phonemes
are identified by their symbol in the International Phonetics Al-
phabet (IPA). Phonemes from different languages that share the
same IPA symbol share now one model, and the training data
from the available languages is pooled to train these models.
Any information about which languages a model and its train-
ing data belong to is discarded in the process. [3] calls this
technique ML-MIX.



With respect to creating an universal, acoustic model for
all languages, the idea is that, if enough data from many dif-
ferent languages has been seen by the ML-MIX model, the
phoneme set of a new target language might have already to a
large degree been seen, and the diversity of the different training
languages is so high, that the acoustic manifestation of the re-
spective phonemes in the new target language has already been
learned. Such a model would be able to be applied to all lan-
guages in the world.

2.1. Using Multilingual Models for Porting

When compared to monolingual ASR systems trained on suf-
ficient amounts of monolingual data, multilingual models lack
in performance on their training languages as well as on lan-
guages not seen during training. But they can serve as a good
starting base in scenarios in which only little training data in a
language is available. Adapting a multilingual model with the
small amount of data in the new language often outperforms
training a recognition system solely on the available data. We
call this process of applying a multilingual or language inde-
pendent acoustic model to a new language and adapting it on
a very limited amount of adaptation data in that new language
porting.

For that we assume that only a limited set of 15 minutes of
adaptation data in the target language is available, being aware
that this will lead to a recognition performance that will be sig-
nificantly worse than when training on large amounts of data
from that language. Our results are in line with results reported
in [3] when using the same amount of adaptation data as we do.
[3] improved theses results by using larger amounts of adapta-
tion data and good forced alignments obtained from a full blown
recognizer in the target language. Our work, however, concen-
trates on the case with very limited knowledge and data in the
target language. Even if these recognizers do not give a perfor-
mance that is good enough to use them as stand-alone systems
they can be used as initial systems for iterative improvement as
for example described in [7, 8].

3. Articulatory Features
Current state-of-the-art ASR systems usually model speech
with Hidden Markov Models (HMMs) whose states correspond
to phonemic or sub-phonemic units. It ignores the fact that
phonemes, as for example defined by the IPA, are only a short-
hand notation of a bundle of articulatory targets which are
characteristic for that sound. They thus neglects the fact that
the Human articulators are in constant motion. Transitions
among them are asynchronous and articulatory targets might be
reached to differing degrees, e.g. depending on the phonetic
context.

Past research [4] has shown, that enhancing monolingual,
phoneme based recognizers with articulatory feature models
improves recognition performance. In order to recognize AF,
[4] introduced binary detectors for the presence and absence of
a feature, e.g. whether a sound is voiced or not. Continuous
features, e.g. such as the horizontal Dorsum position for vow-
els, are modeled by multiple binary AF detectors for discrete
positions, e.g for front, middle, and back. The binary detectors
are modeled by Gaussian Mixture Models (GMMs) with 128
Gaussians per model, one GMM for detecting the presence of
the feature, and one for detecting its absence.

A flexible stream architecture is used to integrate the artic-
ulatory feature detectors into the recognition process. In this
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Figure 1: Stream based architecture for integrating the articula-
tory feature models

architecture the scores from the AF detectors and the emission
probabilities from the the phonetic HMMs are linearly com-
bined at the state level. E.g., if we compare the emission proba-
bility of a state that is a voiced sound, but not a plosive, we cal-
culate the emission probability of that state as a weighted sum
of the phonemic model of the sound, the voiced GMM, and the
non-plosive GMM (see Figure 1). The linear combination re-
quires the selection of suitable weights for the scores coming
from the detectors and the phoneme models which is discussed
in more detail in Section 4.

3.1. Multilingual Articulatory Features

[9, 5] have shown that articulatory features can be reliably
recognized across languages. So, for example, AF detectors
trained on English can be used to reliably detect the features of
German speech. In that work it was also shown that AF can be
modeled in a multilingual way. The share factor, that measures
the overlap between different languages, was also shown to be
larger for AF than for phonemes, indicating that AF might be
very suitable for multilingual modeling and porting ASR sys-
tems to new languages. It was further demonstrated that in
a monolingual scenario, in which the phoneme models were
trained on the same language as the test set, performance can
be improved by multilingual and crosslingual AF detectors.

4. Selecting Stream Weights
The combination of AF detectors and phoneme based models in
the stream based architecture described in Section 3 requires the
selection of suitable set of stream weights. For the past, mono-
lingual experiments we used two different approaches to select
appropriate weights. The first approach is a simple heuristic
based on the classification accuracy of the feature detectors, the
second approach a discriminative training approach trying to se-
lect weights that minimize the word error rate of the resulting
recognizer.

4.1. Heuristic Weight Selection

For the heuristic approach one first preselects a fixed weight for
any of the articulatory feature detectors used, in our case 0.05,
and then successively starts to add feature detectors in the order
of their classification accuracy on the development set of their
training language. The weight of the phoneme HMM is chosen
in such a way that all weights sum up to 1.0. By measuring
the WER of the resulting recognizers on the development set
the best number of feature detectors added to the recognition



system is determined.

4.2. Discriminative Model Combination

For training the feature weights instead of using the simple
heuristic, we implemented the iterative approach of the ‘Dis-
criminative Model Combination’ (DMC), developed by Peter
Beyerlein [10], called ‘Minimum Word Error Rate’ (MWE).
MWE is based on the ‘Generalized Probabilistic Descent’
(GPD) [11].

DMC can be used to integrate multiple acoustic models into
one log-linear posterior probability distribution, combining the
different scores in a weighted sum at the log likelihood level.
This is just what is done for the combination of the standard
acoustic models and feature detectors in our stream based ar-
chitecture.

MWE implements a gradient descent on a numerically esti-
mated and smoothed word error rate function that is dependent
on the weight vector Λ for the combination of the models. The
smoothed approximation of the error function EMWE that is
used for MWE is:

EMWE(Λ) =
1PN

n=1 Ln

NX
n=1

X
k 6=kn

L(k, kn)S(k, n,Λ) (1)

In this equation the kn (n = 1 . . . N ) are the N given
training references for the discriminative training, while the
k 6= kn are all other possible hypotheses. Ln is the length of
the nth training utterance, L(k, kn) the Levenshtein-distance.
S(k, n,Λ) is an indicator function that is used for smoothing
the Levenshtein-distance. In order to get a differentiable error
function EMWE , S is set to be:

S(k, n,Λ) =
pΛ(k|xn)ηP
k′ pΛ(k′|xn)η

(2)

pΛ(k|xn) is the posterior probability of hypothesis k, given
the set of weights Λ and the internal model of the recognizer, for
the feature vector xn of the nth training utterance. η determines
the amount of smoothing that is done by S. The higher η is the
more accurately S describes the decision of the recognizer, and
thereby the real error function. However η should not be chosen
to be too large, in order to be able to numerically compute S.
For our experiments we used η = 3 and also approximated
the posterior probabilities of the hypotheses by their acoustic
likelihood.

For the approximation of all possible hypotheses k used in
equation 1 and 2, we used the hypotheses from an n-best list,
where n was set to 150, that resulted from a lattice rescoring.
By determining the gradient of EMWE one can search for a
good set of weights by doing a gradient descent.

5. Experiments
In order to test whether AF models can help when porting ASR
systems to new languages, we examined several different sce-
narios. In all scenarios German takes the role of the new, previ-
ously unseen language, to which we want to port ASR models.
We ran experiments for porting monolingual, English phoneme
models enhanced by monolingual articulatory feature detectors
from one and multiple languages, and for porting multilingual
phoneme models enhanced by monolingual and multilingual ar-
ticulatory feature detectors to German.

For the selection of suitable stream weights we compare the
performance of the heuristic described in 4.1 against the perfor-
mance of weights determined by the DMC as described in 4.2.

5.1. Corpus

The experiments in this paper were conducted on a selection of
languages from the GlobalPhone [12] corpus. GlobalPhone is
an ongoing data collection effort that now provides transcribed
speech data that was collected in an uniform way in 18 lan-
guages. The corpus is well suited for research in multilingual
speech recognition and rapid deployment of speech processing
systems in new languages, because data collection in all lan-
guages has been done in an uniform way. The corpus is mod-
eled after the Wall Street Journal 0 (WSJ0) corpus and contains
newspaper articles collected with close talking microphones.
The articles were read by native speakers of the respective lan-
guage.

For the work presented, the four languages English (EN),
German (GE), Russian (RU), and Spanish (SP) were used.
Since English is not part of GlobalPhone, the WSJ0 corpus was
used instead. For every language three data sets are available:
one for acoustic model training (train), one for development
work (dev) such as finding the correct language model weight,
and one for evaluation (eval). All three sets are speaker dis-
junct. Table 1 shows the sizes in hours, number of utterances,
and number of speakers of the different data sets.

Languages EN GE RU SP

train hours 15.0 16.0 17.0 17.6
#utt 7,137 9,259 8,170 5,426
#spkrs 83 65 84 82

dev hours 04. 0.4 1.3 2.1
#utt 144 199 898 680
#spkrs 10 6 6 10

eval hours 0.4 0.4 1.6 1.7
#utt 152 250 1,029 564
#spkrs 10 6 6 8

Table 1: Size of the data sets for the different languages in
hours, number of utterances, and number of speakers

5.2. Baseline Systems

As a baseline for our experiments serves the performance of
monolingual phoneme based speech recognition systems tested
on their training language. The acoustic models of the recog-
nizers are left-to-right continuous HMMs with three states per
phoneme. All experiments in this work were performed with the
help of the Janus Recognition Toolkit (JRTk) that features the
Ibis single pass decoder [13]. Training was done with the help
of forced alignments obtained from previous systems. For train-
ing the acoustic models, first the LDA matrix was estimated, af-
ter that random samples for every model were extracted in order
to initialize the models with the help of the k-means algorithm.
Then these models were refined by six iterations of label train-
ing along the forced alignments and four iterations of expec-
tation maximization (EM) training. The resulting models were
used to obtain new forced alignments and the training proce-
dure was iterated until a minimal word error rate (WER) on the
development set was reached. Context-independent (CI) as well
as context-dependent (CD) models were trained in this way. Ta-
ble 2 shows the word error rates of the context-independent and
context-dependent models for every language on their respec-
tive development and evaluation sets. The trigram language



models used for English, Russian, and Spanish were unchanged
from previous experiments, e.g. in [3, 14].

Language EN GE RU SP

CI dev 19.5% 23.4% 51.8% 40.2%
eval 20.2% 28.1% 54.8% 28.7%

CD dev 9.0% 11.7% 33.9% 25.2%
eval 10.3% 13.0% 36.2% 17.2%

Table 2: WER of the monolingual phoneme based ASR systems
on the dev and eval sets of their respective language

We further trained a multilingual model using the technique
ML-MIX on the languages English, Russian, and Spanish. Ta-
ble 3 shows the word error rates of this model on the individual
training languages. As expected we can see that the word error
rates go up for the multilingual model in all cases. This is due
to the fact that sounds with the same IPA symbol are still pro-
nounced slightly differently in the various languages. Therefore
the models are broadened for the different model classes and do
not fit the individual languages as well as when trained exclu-
sively on one of them.

Language EN RU SP

CI dev 24.4% 56.5% 45.7%
eval 25.8% 59.6% 32.8%

CD dev 12.4% 38.8% 27.8%
eval 14.1% 40.7% 20.2%

Table 3: WER of the ML-MIX ASR system on the dev and eval
sets of its training languages

5.3. Articulatory Feature Detectors

Using forced alignments obtained from the phoneme based
ASR systems we trained models for the articulatory features
as described in Section 3. The GMMs for the feature detectors
consisted of 128 Gaussians per model. Since we assume that an
articulatory feature is most stable in the middle of a phoneme,
we trained the models only on the middle states of the phonemes
using 4 iterations of label training. The preprocessing for the
feature detectors was the same as for the phoneme based rec-
ognizers. We also trained multilingual detectors, as described
above and in [9], on the languages English, German, and Span-
ish, just as for the phoneme based ML-MIX recognizer.

5.4. Porting Across Languages

For our porting experiments we examined two principal scenar-
ios. In the first scenario we used an English recognizer which
we applied to the German test data, in the second scenario we
used an ML-MIX model trained on the languages English, Rus-
sian, and Spanish which we applied to the German data.

5.4.1. Porting the English Recognizer to German

In order to apply the English recognizer to German, the German
phonemes in the German pronunciation dictionary that were not
covered by the English model, were manually mapped to their

closest, English phoneme. As shown in Table 4, applying the
English acoustic model in this way leads to a WER of 73.4% on
the German development set, and 76.4% on the evaluation set.

Adding the English AF models to the phoneme based rec-
ognizer using the heuristic described in 4.1 reduces the WER
to 68.4% on the German development set. On the evaluation
set the WER goes slightly up to 76.6%. This increase in WER
on the evaluation set is a phenomena which we have observed
before. It means that the weights found with the heuristic often
do not generalize very well to unseen data. When calculating
the weights for the AF detectors using DMC as described in 4.2
the WER on the German development set drops down to 68.4%.
This is slightly more than with the heuristic. The weights were
optimized on the English development set, in order to use as
little German knowledge and training data as possible. On the
evaluation data the weights determined on the German devel-
opment set with DMC let the WER of the recognizer drop to
73.0%. So, unlike the heuristic, the DMC weights generalize
very well to unseen data, leading to a relative reduction in WER
of 4.5%.

In the past it was also shown to be beneficial to com-
bine monolingual phoneme models with feature detectors from
different languages. We therefore also combined the English
phonemes with the English, Russian, and Spanish feature detec-
tors. Since the number of feature detectors becomes large and it
is not clear whether the absolute classification error rates of the
feature detectors are comparable across languages, for this ex-
periment we only used the DMC for finding stream weights, but
not the heuristic. Again, DMC was performed on the English
development set. Using the detectors from all languages, the
word error rate reaches 71.8% on the German development set
and 75.3% on the evaluation set. An improvement compared to
the phoneme baseline but not as good as if only using English
feature detectors.

It is remarkable in the DMC experiments, that though the
stream weights have been determined on the English develop-
ment set, the weights that were found generalize very well to
German and still lead to good improvements. When selecting
weights for the AF detectors from all languages, however, this
works not quite as well, as when just using English AF detec-
tors.

EN to GE dev eval
heuristic DMC heuristic DMC

Phon. 73.4% 76.4%
Phon. + EN AF 68.7% 68.4% 76.6% 73.0%
Phon. + all AF — 71.8% — 75.3%

Table 4: WER when applying the English recognizer to the Ger-
man test data, without and with Articulatory Feature models

5.4.2. Porting the Multilingual Recognizer to German

For the multilingual scenario we first applied the ML-MIX
model to the German test data without the use of AF detec-
tors. This, like in the English case, serves as our baseline. As
Table 5 shows, this leads to a WER rate of 65.0% on the Ger-
man development set and 70.4% on the German evaluation set.
As to be expected from earlier work these WERs are lower than
when using only the English models, gaining from the fact that
the phoneme models have seen more diverse training data and



more of the German phonemes are covered by the models from
the ML-MIX model.

When adding English AF models to the ML-MIX phoneme
model using the heuristic, the WER drops slightly to 64.6% on
the development set and 69.7% on the evaluation set. Applying
DMC instead of the heuristic gives no improvements however.
Apparently in this case the weights found by the DMC on the
English development set do not generalize very well to German.
This might be due to the mismatch between the multilingual
phoneme model and the English only AF models.

When using the ML-MIX AF detectors instead of the En-
glish ones and adding them using the heuristic, the WER on
the development drops down to 64.4%. On the evaluation set
a WER of 69.6% is reached. The DMC, however, fails to
find suitable feature weights in this case, assigning all feature
streams a weight of 0 and thus leading to no improvement.

When adding the monolingual feature detectors from all
languages, as it was done for English, the WER drops further
down to 64.2% on the development set and 69.5% on the eval-
uation set, a relative reduction in WER of 1.3%. This time, the
DMC was performed on the joint development sets of the ML-
MIX training languages, English, Russian, and Spanish.

ML-MIX to GE dev eval
heuristic DMC heuristic DMC

Phon. 65.0% 70.4%
Phon. + EN AF 64.6% 65.0% 69.7% 70.3%
Phon. + ML AF 64.4% — 69.6% —
Phon. + all AF — 64.2% — 69.5%

Table 5: WER when applying the ML-MIX recognizer to the
German test data, with and without Articulatory Feature models

5.5. Porting the EM adapted Multilingual Recognizer to
German

Like done in [3], in order to further improve the porting perfor-
mance of the multilingual recognizer, we assume a small set of
German adaptation data of 15 minutes length as given. When
collecting such a small set of adaptation data in real life, one
can expect that it will only contain few speakers. Therefore our
German adaptation set also only contains one speaker. In order
to adapt the ML-MIX recognizer we use two iterations of EM
training on the context-independent models and one iteration of
EM training on the context-dependent models.

This adaptation without the use of the AF detectors brings
the WER of the context-independent models down to 46.0%
on the development set and 49.0% on the evaluation set. The
WER of the context-dependent models falls to 42.7% on the
development set and 44.8% on the evaluation set.

When now adding all monolingual AF detectors to the
adapted, context-dependent models using DMC the WER drops
further down to 42.1% on the development set and reaches
45.5% on the evaluation set. This is actually worse than the
baseline. For some reason the weights found by the DMC this
time do not generalize to the evaluation set.

5.6. DMC on German Dev Set

So far, when applying DMC, we have estimated the stream
weights of the AF detectors on the dev sets of the training lan-
guages of the ML-MIX model, English, Russian, and Spanish.

ML-MIX to German dev eval

Phonemes CI 46.0% 49.0%
Phonemes CD 42.7% 44.8%

Phonemes CD + all AF 42.1% 45.5%

Table 6: WER when applying the EM adapted ML-MIX rec-
ognizer to the German test data, with and without Articulatory
Feature models

We expect that the weights estimated in that way are not optimal
for German. In our last experiments we therefore estimated the
stream weights on the German development set. Table 7 shows
that this reduces the WER for the unadapted, context-dependent
phonemes to 63.6% on the development set and 69.4% on the
evaluation set. This is a relative reduction in WER of 2.2% on
the dev set and 1.4% on the evaluation sets. Both reductions are
higher than when estimating the DMC weights on the develop-
ment sets of the training languages of the AF detectors.

For the adapted phoneme models the word error rate is low-
ered to 41.4% on the development set and 44.7% on the eval-
uation set. Especially for the adapted models in combination
with all AF on the German development set the gains are much
higher than when finding the weights on the dev sets of the AF
training languages. Also the WER on the German evaluation
set are lower compared to the ones reached with the weights
determined in Section 5.5. However it still is no significant im-
provement over the baseline, but at least not worse than it, as
seen before in 5.5.

ML-MIX to German dev eval

phonemes 65.0% 70.4%
phonemes + all AF 63.6% 69.4%

adapt. phonemes 42.7% 44.8%
adapt. phonemes + all AF 41.4% 44.7%

Table 7: WER when applying the unadpated and EM adapted
ML-MIX recognizer to the German test data, with and without
Articulatory Feature models using DMC weights estimated on
the German development set

6. Conclusion
In this work we examined the use of articulatory feature de-
tectors in porting the acoustic model of a speech recognition
system to a new language. For this we combined monolingual
and multilingual phoneme models with monolingual and multi-
lingual articulatory feature detectors in a stream based setup. In
all cases the word error rate could be lowered by the use of ar-
ticulatory feature detectors. In more badly matched conditions,
such as when porting an English recognizer to German, or un-
adapted ML-MIX models to German, the gains were higher —-
up to 4.5% relativ — than in better matched conditions, such as
porting an EM adapted ML-MIX model to German.

The stream weights that are necessary for our approach
were either found with the help of a heuristic or by applying
DMC. The latter showed better generalization behavior than the
heuristic. Also, the weights that were estimated with the help of



DMC on the languages other than the final test language gener-
alized well to the new, unseen language.

Future work will be directed at improving the DMC weight
selection for the multilingual scenario with multilingual AF de-
tectors, e.g. by removing the approximation of the posterior
probability in our implementation of the discriminative model
combination.
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