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Abstract

This paper presents a novel local image descriptor that is
robust to general image deformations. A limitation with tra-
ditional image descriptors is that they use a single support
region for each interest point. For general image deforma-
tions, the amount of deformation for each location varies
and is unpredictable such that it is difficult to choose the
best scale of the support region. To overcome this diffi-
culty, we propose to use multiple support regions of differ-
ent sizes surrounding an interest point. A feature vector is
computed for each support region, and the concatenation of
these feature vectors forms the descriptor for this interest
point. Furthermore, we propose a new similarity measure
model, Local-to-Global Similarity (LGS) model, for point
matching that takes advantage of the multi-size support re-
gions. Each support region acts as a ’weak’ classifier and
the weights of these classifiers are learned in an unsuper-
vised manner. The proposed approach is evaluated on a
number of images with real and synthetic deformations. The
experiment results show that our method outperforms exist-
ing techniques under different deformations.

1. Introduction

Local image descriptors computed for interest regions
have been successfully applied to different areas such as
image matching, object detection/recognition, and informa-
tion retrieval, which makes researchers in computer vision
community enthuse over constructing invariant image de-
scriptors [26, 19, 16, 15, 18, 12, 5, 4]. For object recog-
nition and image matching, most existing approaches of-
ten look for image descriptors which are invariant to ro-
tation and scaling, such as SIFT (Scale-Invariant Feature
Transform) [16] and its variants (PCA-SIFT [12] and SIFT-
GC [20]), Geodesic Intensity Histogram (GIH) [15], GLOH
(Gradient Location and Orientation Histogram) [19], Spin
Images [11], shape context [3], and steerable filter [6], ge-
ometric filter [5], etc. Recently, image descriptors learned

Figure 1. Examples of image pairs with various deformations in
our experiments: The left image pair of the first row images are
with fisheye lens deformation, the right image pair of the first row
images with nonrigid deformation, the left image pair of the sec-
ond row images with affine deformation, and the right image pair
of the second row images with synthetic deformation.

from training samples have been proposed [14, 10, 26, 2].
Some comparative studies on local image descriptors can be
found in [19, 13].

The procedure of using image descriptors for point
matching usually consists of three steps. The first step is
interest point detection. The second step is to compute fea-
ture values of a support region surrounding an interest point.
The final step ranks the similarity between a query point and
candidate points. While most of the existing work on lo-
cal image descriptors has been focused on the second step,
this research attempts to improve both step 2 and 3 to better
handle general deformations, such as fisheye lens deforma-
tion caused by fisheye lens distortion, nonrigid deformation,
affine deformation, and other synthetic deformations. Fig-
ure 1 shows examples of these types of deformations.

The SIFT approach and its variations are most com-
monly used local image descriptors due to their invariance
to scaling and rotations. However, the SIFT feature is not
invariant to general deformations [12, 15]. Consequently, it
does not work very well for some detection and recognition
tasks [27, 21, 15, 23]. There are two factors that affect the
performance of SIFT features. First, its performance relies
on the optimal scale selection. Sometimes it is difficult to
find the appropriate scale for a given interest point thus re-
sulting in a false matching. Therefore, some scale selection
strategies are proposed in object recognition [24, 23]. Fig-



Figure 2. An illustration of the failure of the SIFT approach with
the optimal scales of several interest points. The radiuses of sup-
port regions represent scales of different DoG points, and the same
colors of the left and right sub-figures denote the same interest
points.

ure 2 shows an example that the SIFT approach performs
poorly because the Difference of Gaussian (DoG) points of
the query image have different scales from those of the tar-
get image. Second, even if the optimal scale is found, a
single support region may not be enough to determine the
correct matching. If a support region is too small, the in-
formation can be less discriminative thus resulting in false
matching, whereas if the region is too large, two support
regions surrounding the same point on two images (e.g., be-
fore and after deformation) may have very different image
statistics due to deformations thus resulting in two feature
vectors not close to each other. For example, in Figure 3, the
3 smaller support regions of the first interest point (Figure
3(a)) have almost the same local similarity as those of the
second (Figure 3(b)) and third (Figure 3(c)) interest points,
but the three points are different points. The same observa-
tion is made in [20], of which authors proposed to augment
the SIFT with a global context vector that adds curvilinear
shape information from a much larger neighborhood to re-
duce mismatches of similar local descriptors. However, it
is difficult to predict changes of a support region and define
the global context vector under general deformations.

Many real world images are deformed either physically
(e.g., by wide angle lens and fisheye lens) or digitally (e.g.,
by some image processing tools). To address general de-
formations, Ling proposed a deformation invariant image
descriptor GIH [15]. One drawback is that it assumes the
deformation along different directions to be isotropic. This
assumption is usually not true in practice. The second draw-
back is that the deformation invariance comes at the cost of
discriminative power. The obtained feature basically loses
all the orientation information in the support region.

The performance of feature-point based image matching
is critically dependent on similarity measure in the near-
est neighbor search [1, 17]. In paper [2], point matching
is considered as a classification problem, and a supervised
boosting algorithm is used to select features from a fea-
ture pool. In [22], the distance measure is learned from
examples for specified tasks. In visual category recogni-
tion, local distance functions that are globally consistent

are learned by a supervised learning approach [7]. Ma-
hamud and Hebert [17] proposed to derive the optimal dis-
tance measure by minimizing the nearest neighbor mis-
classification risk. However, most of the existing algorithms
use supervised distance measure, which, unfortunately, re-
quires expensive labelled training samples.

This paper presents a novel local image descriptor that is
robust against general image deformations. We make two
contributions to the existing local image descriptors in en-
hancing their ability of handling general deformations of
images. First, we propose to use multiple support regions
of different sizes surrounding an interest point. A feature
vector is computed for each support region, and the con-
catenation of these feature vectors forms the descriptor for
this interest point. Second, we propose a new similarity
measure model, Local-to-Global Similarity (LGS) model,
for point matching with the new descriptor that takes advan-
tage of the multi-size support regions. Each support region
acts as a ’weak’ classifier. These ’weak’ classifiers are then
combined with an unsupervised boosting strategy.

#37 

(a)

#21 

#81 

(b)

Figure 3. An example of point matching with a single support re-
gion: (a) A query point #37; (b) The first and second best matched
points (#21 and #81 ) with #37, when the blue circle is used as the
support region.

2. An Overview of the Proposed Approach
Instead of using a single support region as existing im-

age descriptors, we use multiple support regions of differ-
ent sizes for any given interest points. One advantage is
that we bypass the problem of choosing the optimal sup-
port region size which is particularly difficult when there
exist general deformations, and it is easy to see this point
from Figure 2 where the corresponding interest points on
two images have different support regions due to incorrect
optimal scales. The second advantage is that features com-
puted from a single support region may not contain enough
information to determine the correct matching. For exam-
ple, the query point 37 is shown in Figure 3(a). When we
used the blue circle as the support region, the top two best
matches on the right target image are the point 21 and 81



Figure 4. The framework of our deformable local image descriptor.

in Figure 3(b). Both are incorrect. In fact, we tried each of
the 10 support regions as shown in the figure, none of them
gave the correct matching. In comparison, our LGS model
was able to find the correct matching because it effectively
combines multiple support regions of different sizes.

Figure 4 is an overview of our interest point matching
framework with the proposed image descriptor. Given a
query image and a target image, we first detect interest
points on two images. Any existing interest point detectors
can be used for this step. For each interest point on two im-
ages, we extract multiple support regions of different sizes.
A feature vector is then computed for each support region.
For each pair of interest points and each pair of correspond-
ing support regions which surround the two interest points
respectively, we compute a χ2 distance. For each interest
point in the query image, we train an LGS model in an un-
supervised fashion. The LGS model is then used to evaluate
the similarities between the interest point in the query image
and all the interest points in the target image.

3. Multiple-Size Support Regions

We use a circular window to extract a support region
given a scale σ. Let (x0, y0) denote an interest point in
an image I , and s(x0, y0) a support region surrounding
(x0, y0). For each pixel (x, y) in the support region, we
compute its gradient magnitude and orientation. Then we
divide a support region s into L1 subregions. For each sub-
region, we compute the histogram of the gradient directions
where the number of orientation bins is denoted asL2. Thus
we obtain a feature vector of dimension L = L1 × L2.

Our descriptor for a given support region is similar to
the SIFT descriptor with two exceptions. First, the SIFT ap-
proach use a Gaussian smoothed image to compute gradient
magnitude and orientation with the assumption that an op-
timal scale is already obtained, while we directly compute
gradient magnitude and orientation in the original image.
Secondly, we use Harris matrix [9] to compute the prin-
cipal orientation of the support region instead of gradient
histogram. The reason why we use regional Harris matrix
instead of the point Harris matrix is because the average
orientation of pixels within a support region is more stable
than pixel principal orientation.

Given a support region s, its Harris matrix is given by

Hs =

[ ∑

wD
2
x

∑

wDxDy
∑

wDxDy

∑

wD
2
y

]

, (1)

where w ranges over the pixels in s, and Dx and Dy are
obtained by the convolution between Ix, Iy and a Gaussian
function Gσ0

with variance σ0.
We take the eigenvector V1 that corresponds to the

largest eigenvalue, λ1, of the Harris matrix Hs as the prin-
cipal orientation

θ(s) = atan(V1(1)/V1(2)). (2)

Given an interest point, we extract multiple support re-
gions of different sizes and compute the oriented gradient
histogram for each support region. The sizes of the multi-
ple support regions are given by

σ(s) = s · σ0, s = 0, · · · , 2N. (3)

where σ0 is a base level of sizes. The nested support regions
centered at an interest point are denoted as

S = {s}, s = 0, · · · , 2N. (4)

For each support region, we compute a feature vector as
described in the beginning of this section. Therefore, for
any given interest points, we obtain a set of feature vectors
corresponding to its multiple support regions. The feature
vectors in smaller support regions contain more local infor-
mation around the interest point while those in the larger
support regions contain more global information.

4. Point Matching Using an LGS Model
4.1. Support Region Alignment

Let q denote a query point, let p1 ,..., pM denote the set
of candidate points. Let h0, ..., h2N denote the histograms
computed at the multi-size support regions centered at q.
For each candidate point pc, c = 1, ...,M , let gc,0, ..., gc,2N
denote the histograms computed at the multi-size support
regions centered at pc. When there is a scaling transforma-
tion between the query image and the target image, a sup-
port region hs, s = 0, ..., 2N , of the query point may not
correspond to a support region of the same size gc,s. In-
stead, hs may correspond to gc,s−k∗ , where k∗ is constant



Figure 5. An illustration of the Local-to-Global Similarity model.

(could be negative) for all s which depends on the scaling
factor. Since the scaling factor is not known a prior, we
estimate the shift k∗ as follows.

Given any shift k, where −N ≤ k ≤ N , we define the
alignment error between q and pc to be

E(q, pc, k) =

max(0,k)+N
∑

s=max(0,k)

d(hs, gc,s−k), (5)

where

d(hs, gc,s−k) =
1

2

L
∑

l=1

[hs(l)− gc,s−k(l)]
2

hs(l) + gc,s−k(l)
(6)

is the χ2 distance between the two histograms.
We choose k∗ to minimize the alignment errors between

q and all the candidate points pc. That is,

k∗ = arg min
−N≤k≤N

{

min
1≤c≤M

E(q, pc, k)

}

. (7)

Denote k0 = max(0, k∗). For subsequent point match-
ing, we choose the histograms of the N support regions for
query point q: hk0

, ..., hk0+N−1. For each candidate point
pc, its histograms of the corresponding support regions are
gc,k0−k∗ , ... , gc,k0+N−1−k∗ . To simplify descriptions, we
will omit the shift k∗ in the rest of the paper, and assume
there are N support regions for a query point q and also N
support regions for each candidate point pc.

4.2. A Local-to-Global Similarity Model

Let h1, ..., hN denote the histograms computed at the
N multi-size support regions centered at a query point q.
Let gc,1, ..., gc,N denote the histograms computed at the
multi-size support regions centered at candidate points pc,
c = 1, ...,M . To take advantage of multi-size support re-
gions, we have developed an LGS model to find the match-
ing point of q among candidate points pc, c = 1, ...,M .
As shown in Figure 5, an LGS model contains a cascaded
list of classifiers where each support region acts as a ’weak’
classifier. The classifiers are divided into two modules: a fil-
tering module and a refining module. The filtering module

rejects those candidate points which are unlikely to match
the query point. The refining module refines the ranking of
the remaining candidate points.

The classifier at each stage is selected based on its prox-
imity structure which measures the similarity of the classi-
fier to the rest of the classifiers. Intuitively speaking, the
first classifier has the best overall similarity to all the clas-
sifiers so that it is relatively safe to reject those candidate
points whose histograms in the corresponding support re-
gion are not close to that of the query point. Similarly, the
second classifier has the best overall similarity to the rest
of the classifiers, etc. The proximity structure is learned by
an unsupervised learning strategy as described in the next
section.

Like the Adaboost algorithm in object detection [25],
based on the ‘weak’ classifier assumption of multiple sup-
port regions, an LGS model can boost point matching per-
formance by combining multi-size support regions as long
as the performance of each support region is slightly better
than random.

4.3. Proximity Structure Learning

For each support region, s = 1, ..., N , and candidate
point pc, c = 1, ...,M , let ds(q, pc) denote the χ2 distance
between hs and gc,s, that is

ds(q, pc) =
1

2

L
∑

l=1

[hs(l)− gc,s(l)]
2

hs(l) + gc,s(l)
. (8)

For any two candidate points pc1 and pc2 , we use
Ps(q, pc1 , pc2) to denote the proximity order of the two can-
didate points relative to q:

Ps(q, pc1 , pc2) =







1, ds(q, pc1) < ds(q, pc2)
0, ds(q, pc1) = ds(q, pc2)
−1, ds(q, pc1) > ds(q, pc2)

, (9)

where s = 1, · · · , N .
Now we define a proximity matrix between two different

support regions s and l as

Dsl(q)c1×c2 = 1− |Ps(q, pc1 , pc2)− Pl(q, pc1 , pc2)|/2,
(10)

where s, l ∈ {1, · · · , N}.
Given a query point q, we compute its proximity prop-

erty of the support region s with respect to the rest of sup-
port regions by

Fs(q) =

N
∑

l=1,l 6=s

‖Dsl(q)‖F, (11)

where ‖ · ‖F denotes the Frobenius matrix norm.
By abuse of notation, we still use s1, · · · , sN to denote

support regions obtained from proximity structure learning.



From Equ. (11), we can use the following rule to obtain the
classifier s1 in the cascaded structure by

s1(q) = arg max
s∈{1,··· ,N}

Fs(q). (12)

Similarly, we can obtain the subsequent classifiers by

sk(q) = arg max
s∈{1,··· ,N},s6=s1,...,sk−1

Fs(q). (13)

After obtaining the cascaded list of support regions, we
use the first support region s1 to reject µM candidate points
based on ds1(q, pc), where µ is an user-specified parameter
within the range (0, 1). Subsequently, we use the second
support region s2 to reject µ(1 − µ)M points, etc. The
number of candidates that remain after going through the
filtering module is then kmax = (1− µ)nM .

After the filtering step, the refining module determines
the ranking of the kmax candidate points by making use
of the rest of the support regions: {sn+1, · · · , sN}. The
ranking score of candidate point pc is defined as

rq(pc) = −

N
∑

s=1

αsds(q, pc), (14)

where αs, s = 1, · · · , N , is the weight of support region s
and is proportional to its proximity property obtained from
Equ. (11):

αs = Fs/

N
∑

i=1

Fi, s = 1, · · · , N. (15)

Note that our distance similarity ranking algorithm is
different from BoostMap algorithm [1] in that BoostMap
uses a supervised learner to boost 1D embeddings while our
method uses an online unsupervised learner which does not
require labelled samples.

5. Experimental Results and Analysis
In this section, we present six sets of experiments. Sec-

tion 5.2 validates the effectiveness of boosting matching
performance. In Section 5.3, we investigate the influence
of the number of support regions on the matching perfor-
mance. Section 5.4 compares performances of the LGS and
GIH approaches on rotation invariance. In section 5.5, we
evaluate the performance of three approaches, LGS, SIFT,
and GIH, on fisheye lens deformation images. Section
5.6 validates the robustness of the LGS approach to affine
deformation. Finally, we evaluate point matching perfor-
mance on synthetic images in section 5.7.

5.1. Experiment Setup

Data set: We collected four categories of image pairs
(examples shown in Figure 1): fisheye lens deformation,

nonrigid deformation, affine deformation, and synthetic de-
formation, and evaluated the performance of our approach
using both our image data set and the data set from [15]. Im-
ages with fisheye lens deformation are captured by a camera
with a fisheye lens. For each image, we perform fisheye lens
deformation correction using Fisheye-Hemi 1. Nonrigid de-
formation images are produced by moving nonrigid objects,
for example, flags, clothes, etc. The image pairs with an
affine transformation are produced by taking pictures of the
same scene at the different viewpoints. Synthetic deforma-
tion images are produced by applying pre-defined image
warping to the original images that are obtained from the
Caltech-256 object category data set [8].

Interest Points: Our approach does not require a spe-
cific interest point detector. In our experiments, we chose to
use two categories of interest points, Harris interest points
and DoG interest points.

Evaluation Criterion: Both Receiver Operating Char-
acteristic (ROC) and Recall-Precision are popular in per-
formance evaluation criterions of classifiers and detectors;
however, ROC is better for evaluating classifiers while
Recall-Precision is better for detectors [12]. Therefore,
similar to [12, 19, 15], we use recall-precision to evalu-
ate the performance of interest point matching. The recall-
precision is defined as

recall =
# correct matches

# possible candidate matches
. (16)

In the following experiments, we choose n = N/2,
kmax = 20, and the angle resolution of 10◦. For compari-
son purpose, similar to the experiments in [15], we remove
the points of the query image which do not have matches.

5.2. LGS Model vs. Single Support Regions

This experiment is to show the effectiveness of boost-
ing matching performance. We compare our LGS model
to point matching using only one single support region of
different sizes. For each interest point of the query image
Figure 6(a) and the target image Figure 6(b), we obtain N
support regions of different sizes, and thus each support re-
gion has a feature vector. We then perform point matches
only using one support region s each time, and obtain detec-
tion rate and accumulated detection rate in the same way. In
Figure 7, the left sub-figure shows the correct matching rate
of each support region and the LGS approach that combines
all of the multi-size support regions when the rank R = 1,
and the right sub-figure shows accumulated detection rate
which is the detection rate among the top R matches as R
varies on the nonrigid image pair. Here, s1, · · · , s10 de-
note the corresponding accumulated detection rates of the
support regions s = 1, · · · , 10. From the Figure 7, we can

1http://imagetrendsinc.com/gallery/gallery hemi.asp



see that the correct detection rate of the LGS model outper-
forms the best detection rate of each single support region
about 5%, and the LGS model is significantly better than
most of the single support regions. That is, we can’t ob-
tain the better performance than the LGS approach even if
we are lucky to find the best size of a support region given
an interest point. The horizontal axis indicates ranks of the
distance measure.
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(b) Target Image 1 with-
out Rotation
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(c) Target Image 2
with Rotation

Figure 6. The Nonrigid Image Pairs and its rotated images from
the Data Set from [15]. The interest points are generated by Harris
corner detectors.
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Figure 7. A performance comparison between each single support
region and the LGS approach.

5.3. Performances vs. Support Regions

In this section, we study the LGS approach performance
for different number of support regions. We should be
able to have more than 10 different sizes of support regions
but it would require more computational power. We use
N = 2, 4, 6, 8, 10 for the flag images in the data set from
[15] to evaluate the performance of the LGS approach. Fig-
ure 8 shows the performance of point matching varies with
the number of support regions. The accumulated detection
rate of different number of support regions, 2,4,6,8, and 10,
are shown in Figure 8. It is obvious that the detection rate

improves as support regions increase, and eventually 90%
query points find the correct matching points from the first
most similarity candidate point when all 10 support regions
are utilized.
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Figure 8. The influence of the number of support regions on the
detection rate.

5.4. Rotation Invariance

In this experiment we evaluate rotation invariance prop-
erty of the LGS and the GIH approaches. We implemented
the GIH approach using the online code provided by [15].
The parameters are set to: α = 0.98, K = 13, M = 8. Fig-
ure 6(a) is a query image and Figure 6(b) and Figure 6(c)
are used as target images. Note that Figure 6(c) is obtained
just by rotating Figure 6(b).

In the experiment, we take the flag image pairs from
the date set [15], a query image (Figure 6(a)) and a tar-
get image 6(b), and rotate the target image with 900 as the
second target image(Figure 6(c)). For these three images,
we use the proposed LGS and GIH approaches to match
Harris interest points between the query image and target
images. Consequently, four recall-precision curves are ob-
tained, shown in Figre 9. In the figure, ‘LGS’ and ‘LGS-R’
curves indicate performances of the LGS approach on the
point matching of the original query image to the target and
rotated target images, respectively, while ‘GIH’ and ‘GIH-
R’ curves represent performances of the GIH approach in
the same way. The Figure 9 shows a comparison of detec-
tion rate and accumulated detection rate between the LGS
and GIH approaches on two different target images. The
left figure illustrates the detection rate of the top rank and
the right one shows accumulated detection rate over the top
ten ranks. We can see that (1) the LGS approach detects
about 90% points as the first choice; (2) the LGS approach
outperforms the GIH approach on both query images; and
(3) image rotation has little effect on the performance of the
LGS approach, while the GIH approach has a significant
performance drop on the rotated image.
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Figure 9. A performance comparison between the LGS and GIH
on the image pairs before and after rotation shown in Figure 6.

5.5. Fisheye Deformation

Fisheye lens deformation is a type of unique and com-
mon deformation in practice, where a wide-angle lens
causes distorted appearance of regular objects. We down-
loaded 6 pairs of images with fisheye lens deformations
from Internet to evaluate our approach. We studied perfor-
mance of three different approaches, SIFT, GIH, and LGS,
on fisheye deformation. In this and the following experi-
ments, we choose the SIFT approach for comparison be-
cause it is widely used, and it is an excellent representative
of generic local image descriptors. In this experiment, simi-
lar to the previous rotation invariant experiment, we first de-
tect Harris interest points, and then implement point match-
ing with the three approaches.

Note that in this experiment, we fixed the scale of the
SIFT descriptor for both the query image and the target im-
age to a given scale because it is hard to obtain correct scales
which are consistent with the two images for a customized
interest point (indicated in Figure 2). We used s = 4 in Equ.
(3), which gives the SIFT approach the best point matching
performance among single support regions. A comparison
of the accumulated detection rates for three approaches is
shown in Figure 10. The horizontal axis indicates ranks of
the distance measure. From the figure, we can see that the
LGS approach outperforms both the SIFT approach and the
GIH approach.

5.6. Affine Deformation

In the real world, taking pictures of the same scene at
different viewpoints often causes affine deformation, which
makes most of existing local descriptors fail because this
kind of deformation brings occlusion, variation of intensity
layout, etc. The proposed LGS approach is robust to affine
deformation because it uses multi-size support regions to
compute distance measure between a query point and can-
didate points.
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Figure 10. A comparison among three approaches, LGS, SIFT, and
GIH, on fisheye deformation images.

We first tried the full SIFT approach, but its outputs only
less 1% interest point matching. Furthermore, only a half
of the reported point matching are correct. Therefore, we
choose the SIFT descriptor with user-supplied scales in Fig-
ure 11. In this experiment, we randomly select DoG point
of the SIFT approach as interest points. The test image pairs
with affine deformation and some occlusion are really hard
to point matching, and even so our LGS approach still re-
markably outperforms the SIFT approach. Figure 11 shows
a comparison between the SIFT and LGS approaches on test
images with affine deformations.
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Figure 11. A comparison between two approaches, LGS and SIFT,
on our data set with affine deformation.

5.7. Synthetic Deformation

In this section, we evaluate the three approaches, LGS,
SIFT, and GIH, on images with synthetic deformations us-
ing our general deformation database as shown in Figure
1. Ten image pairs are used to evaluate our approach, and
most of which are produced by applying pre-defined image
warping function to the original images from [8]. Figure 12
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Figure 12. Experimental results on images with synthetic defor-
mations.

shows the accumulated detection rate of the LGS, SIFT, and
GIH approaches on images with synthetic deformations.

6. Conclusions
In this paper, we have proposed a novel local region de-

scriptor using multi-size support regions centered at an in-
terest point. We have developed an LGS model for simi-
larity measure that takes advantage of the multiple support
regions. The approach has been evaluated on images with
variety of deformations including fisheye lens deformation,
nonrigid deformation, affine deformation, and other vari-
ous synthetic deformations. The experiments show that our
deformable local image descriptor is robust to general im-
age deformations, and it outperforms existing techniques
for point matching.
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