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ABSTRACT

Automatic speech recognition (ASR) systems have been developed
only for a very limited number of the estimated 7,000 languages in
the world. In order to avoid the evolvement of a digital divide be-
tween languages for which ASR systems exist and those without
one, it is necessary to be able to rapidly create ASR systems for new
languages in a cost efficient way. Grapheme based systems, which
eliminate the costly need for a pronunciation dictionary, have been
shown to work for a variety of languages. They are thus destined
for porting ASR systems to new languages. This paper studies the
use of multilingual grapheme based models for rapidly bootstrapping
acoustic models in new languages. The cross language performance
of a standard, multilingual (ML) acoustic model on a new language
is improved by introducing a new, modified version of polyphone de-
cision tree specialization that improves the performance of the ML
models by up to 15.5% relative.

Index Terms— Automatic Speech Recognition, Grapheme
based acoustic models, Rapid Porting of ASR systems, Multilingual
ASR

1. INTRODUCTION

1.1. A Digital Language Divide Emerges

Linguists estimate the number of currently existing languages to be
between 5,000 and 7,000. The fifteenth edition of the Ethnologue
[1] list 7,299 languages. Only for a small fraction of these languages
automatic speech recognition (ASR) systems have been developed
so far. Languages addressed are mainly those with either a large
population of speakers, with sufficient economic funding, or with
high political impact. The fact that applications using ASR only
address a small fraction of the world’s languages bears the danger
of creating a digital divide between those languages for which ASR
systems exist and those without one.

Languages are frequently disappearing. In [2] Janson estimates
that in a few generations at least 1,000 of today’s languages will
have disappeared and that, if the trend holds, in as little as one hun-
dred years half of today’s languages will be extinct. Janson attributes
this vanishing of languages to a frequently occurring switch to more
prevalent languages. The creation of a digital divide as mentioned
above is very likely to contribute to this kind of extinction of lan-
guages, might even accelerate it. In order to be able to preserve a
high language diversity and cultural richness that comes with it, it is
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thus necessary to create methods for rapidly porting speech recog-
nition systems to new languages, with possibly few resources for
development, either in terms of money or available data and knowl-
edge.

1.2. Grapheme Based ASR

In large vocabulary ASR systems, phonemes are traditionally used
as modeling units. They require as a central component a pronun-
ciation dictionary that maps the textual representation of the words
to be recognized to their phonemic sequence. The creation of the
pronunciation dictionary can be very costly in terms of time and
money. It often requires the help of a phonetic expert in the tar-
geted language. Though automatic or semi-automatic methods for
phoneme-to-grapheme conversion exist, they still require a training
phase and training material, and sometimes manual post-processing
by an expert in order to achieve good results. Therefore, the creation
of a suitable pronunciation dictionary can easily become either too
expensive, may require too much time, or might even be impossible
due to the lack of an expert, especially for less prevalent languages.

[3], [4], [5], [6], and [7] have shown that the use of graphemes
as modeling units, instead of phonemes, can be a suitable approach
for a range of languages. Whether this approach is successful or
not depends on the grapheme to phoneme relationship of the partic-
ular language. [8] and [5] also conducted first experiments in build-
ing multilingual acoustic models based on graphemes, and [5] very
briefly reported on porting grapheme models to a new language in
a rudimentary way and under the assumption that a large amount of
training data in the new language is available.

1.3. Porting Grapheme Based Recognizers to New Languages

While previous work has focused on multilingual grapheme based
acoustic modeling, this paper examines the problem of porting
grapheme based recognition systems to new languages. In this, the
behavior of multilingual acoustic models based on graphemes is ex-
amined in more detail than in any prior work. Also, the porting
experiments unlike [5] assume only a limited amount of adaptation
material in the target language as given.

Polyphone decision tree specialization (PDTS) [9] is a technique
for porting the decision tree of a recognition system to a new lan-
guage and has been applied to phoneme based recognizers in the
past. This work applies PDTS to grapheme models and refines the
model initialization of the PDTS models. PDTS is further modified
and improved by combining it for the first time with a decision tree
pruning technique such as described in [10].



The rest of the paper is structured as follows. Section 2 intro-
duces the task and data on which the experiments were performed.
Section 3 then briefly describes the monolingual grapheme based
ASR systems which were derived from earlier work and which give
a ceiling for the porting performance, while Section 4 discusses the
baseline multilingual ASR systems used for the porting experiments.
Section 5 then describes the naive way of porting grapheme based
recognition systems to new languages, while, finally, Section 6 de-
scribes how to improve the naive approach by first using PDTS and
then improving porting performance even further by applying the
modified version of PDTS introduced in this paper.

2. CORPUS AND TASK

The experiments in this paper were conducted on a selection of lan-
guages from the GlobalPhone [9] corpus. GlobalPhone is an ongoing
data collection effort that now provides transcribed speech data that
was collected in an uniform way in 18 languages. The corpus con-
tains newspaper articles read by native speakers and is modeled after
the Wall Street Journal 0 (WSJ0) corpus.

For the work presented, the four languages English (EN), Ger-
man (GE), Russian (RU), and Spanish (SP) were used. Since En-
glish is not part of GlobalPhone, the WSJ0 corpus was used. For
every language three data sets are available: one for acoustic model
training (train), one for development work (dev) such as finding the
correct language model weight, and one for evaluation (eval). All
three sets are speaker disjunct. When it comes to the porting experi-
ments German receives the role of the new target language to which
to port, while for the other languages good models are assumed to
be already available. For German it was assumed that only a limited
set of 2h of adaptation data (adapt) is available.

EN GE RU SP
train hours 15.0 16.0 17.0 17.6
dev hours 0.4 0.4 1.3 2.1
eval hours 0.4 0.4 1.6 1.7
adapt hours – 2 – –

Table 1. Size of the data sets in hours

3. MONOLINGUAL GRAPHEME BASED SPEECH
RECOGNITION

The performance of the multilingual systems and rapidly ported
systems in this paper is best compared against the performance of
monolingual grapheme based recognition systems that were trained
on their respective language only. From the experience with phone-
mic recognition systems it can be expected that their performance
serves as an upper bound of the performance of the multilingual and
ported systems. The monolingual recognizers in this paper are sim-
ilar to the ones described in [5], [11], and [6]. The preprocessing
and training procedures were only slightly modified and harmonized
over all languages involved. All acoustic models are left to right Hid-
den Markov Models (HMM) with three sub-states per grapheme. All
experiments in this work were performed with the help of the Janus
Recognition Toolkit (JRTk) that features the Ibis single pass decoder
[12].

The preprocessing is the same as in [6] and is based on mel
scaled cepstral coefficients that are transformed with the help of a
linear discriminant analysis (LDA). Training was done with the help
of forced alignments obtained with the systems trained in [5], [11],

and [6]. First the LDA matrix is estimated, after that random sam-
ples for every model were extracted in order to initialize the models
with the help of the k-means algorithm. Then these models were re-
fined by eight iterations of label training along the forced alignments.
Context-independent (CI) as well as context-dependent (CD) mod-
els were trained in this way. The polyphone decision trees for the
context-dependent models were taken from the systems from which
the forced alignments were obtained, and contained 3000 models
each. The decision trees only ask so called ’singleton’ questions [5],
that is, which graphemes are to the left or the right of the center
grapheme of a polygrapheme.

Table 2 shows the word error rates of the context-dependent and
context-independent models for every language on their respective
development and evaluation sets. The trigram language models used
for decoding were unchanged from the previous experiments in [5]
and [6]. The differences among the different languages reflect their
suitability for the grapheme based approach as well as inherent dif-
ferences in the respective languages.

EN RU SP GE
CI dev 61.2% 52.9% 49.5% 46.0%

eval 60.2% 56.5% 36.3% 47.1%
CD dev 17.0% 36.4% 27.0% 14.7%

eval 18.5% 39.0% 18.3% 15.4%

Table 2. WER of the monolingual grapheme based ASR systems

4. MULTILINGUAL GRAPHEME BASED SPEECH
RECOGNITION USING ML-MIX

For training the multilingual grapheme based ASR system the tech-
nique ML-Mix [13] was applied. When using ML-Mix, graphemes
that are common to one language share the same model and are
treated as identical in the rest of the system, e.g. in the polyphone
decision tree. All information about which language a grapheme be-
longs to, is discarded in the system and the data from all languages
for this grapheme is used for training it. Since Russian uses a Cyril-
lic script instead of a Latin based one, as the other three languages
involved do, the Cyrillic graphemes were mapped to a romanized
representation [6].

First, a context-independent ML-Mix recognizer (ML3-Mix-CI)
on the languages that we assume as given — English, Russian, and
Spanish — was trained. Then a polygrapheme decision tree with
three thousand models was clustered and trained on these languages
(ML3-Mix-CD). Table 3 gives the word error rates of the resulting
models on the dev and eval sets of the individual languages that were
used for training. One can see from the results that for the languages
English and Russian there is a clearly visible performance degrada-
tion compared to the monolingual recognizers. The degradation for
English is larger than for Russian which is to be expected, since En-
glish has a more complex grapheme-to-phoneme relation than Rus-
sian. Also, Russian contains many graphemes that are not common
to the other two languages, so that their models are not broadened by
the training material coming from the other languages. For Spanish
a high degradation is only visible for the context-independent mod-
els. The context-dependent models show only a small degradation
on the development data and no degradation on the evaluation data.
This is due to the fact, that the, in comparison simple, grapheme-
to-phoneme relation for Spanish can be captured by the polyphone
decision tree, and no significant tainting of the shared models seems
to take place by the sharing of training material.



4.1. Influence of the Multilingual LDA Transformation

[14] has shown for phoneme based models that an LDA matrix that
has been trained on many languages performs either equally well
or only slightly worse than a monolingual LDA matrix. In order to
verify this result for grapheme based models the monolingual ASR
systems for English, Russian, and Spanish were retrained, this time
using the LDA matrix from the ML3-Mix models. The results in Ta-
ble 4 show the same behavior for the grapheme based systems as for
the phoneme based systems in [14], that is no or only a slight degra-
dation. Furthermore, when using the LDA matrix trained on English,
Russian, and Spanish for the German ASR system, the recognition
performance improves slightly. Thus, the multilingual LDA matrix
is suited for porting ASR systems to new languages.

EN RU SP
ML3-Mix-CI dev 77.5% 65.5% 62.5%

eval 74.7% 69.2% 48.2%
ML3-Mix-CD dev 24.3% 40.7% 28.9%

eval 26.7% 43.2% 18.3%

Table 3. WER of the ML3-MIX models on the training languages

EN RU SP GE
CI dev 62.0% 52.9% 49.9% 44.8%

eval 59.9% 56.5% 36.5% 45.8%
CD dev 16.8% 35.8% 27.4% 14.5%

eval 18.8% 39.4% 18.1% 15.0%

Table 4. WER of the monolingual models using the ML3-MIX LDA

5. NAIVE PORTING OF ML-MIX TO GERMAN

A first, naive approach for creating a new ASR system for German,
is to apply the ML3-Mix models directly to German. This has the
advantage that no training material in German is needed. But as
known from earlier work one can expect a very low performance.
Indeed, as can be seen from the results in Table 5, the performance
on German is rather poor. For the context-independent models we
can see a relative increase in WER of 96% in comparison to the
German, monolingual recognizer. For the context-dependent models
the WER rises by 448% relative on the dev set and 435% on the eval
set. The, in comparison to the context-independent models, four
times higher loss in performance for the context-dependent models,
suggests that one of the major sources for the WER increase is the
multilingual polyphone decision tree.

dev ∆ eval ∆
ML3-Mix-CI 90.8% 97% 92.2% 96%
ML3-Mix-CD 80.6% 448% 82.4% 435%

Table 5. WER of ML3-Mix on German and increase in WER over
the German ASR

5.1. Naive Adaptation

The easiest way to exploit the 2h of German adaptation data for im-
proving the performance of the ML3-Mix model on German is to
use it for adapting the model’s parameters. To do so, 4 iterations of

label training on the German data were performed with ML3-Mix.
This reduces the WER of the models to 38.6% on the German dev
and 38.6% on the eval data (see also Table 7).

5.2. Influence of the Polyphone Decision Tree on Porting Perfor-
mance

In order to determine the influence of the polyphone decision tree on
the porting performance, the monolingual, context-dependent ASR
systems were retrained, this time using the multilingual LDA ma-
trix and the multilingual polyphone decision tree from the ML3-Mix
system. The word error rates of the resulting systems, as well as
the relative increases in WER, compared to the purely monolingual
recognizers are listed in Table 6. For English, Russian, and Span-
ish there is only a moderate increase in WER that is always well
below 10% relative. However, for German the increase is massive.
This enormous increase is soley due to the multilingual polyphone
decision tree which only poorly fits the German data. Therefore,
the issue of better fitting the polyphone decision tree to the target
language needs to be addressed.

EN RU SP GE
dev 18.6% 38.6% 27.5% 25.4%
∆ 9.4% 6.0% 1.9% 72.8%
eval 21.0% 41.9% 17.6% 24.6%
∆ 13.5% 5.1% 4.0% 59.7%

Table 6. WER of the monolingual models using the ML3-MIX LDA
and decision tree as well as increase in WER

6. ADAPTING THE POLYPHONE DECISION TREE

6.1. PDTS

In order to improve the porting performance and address the issue
of the poorly fit multilingual polyphone decision tree, the tree is
adapted using the 2h of German data. [9] introduced polyphone de-
cision tree specialization (PDTS) as an approach for adapting a mul-
tilingual polyphone tree to new languages. PDTS uses the fact that
some of the leaves in the multilingual decision tree are not special-
ized enough for the new language. Thus, the tree clustering proce-
dure is restarted on the adaptation material in the new language and,
depending on the available adaptation material, new, finer grained
models are being clustered that fit the target language better. [9] does
not describe the way, the new found models are being trained. [15]
mentions using MAP to train the models without giving sufficient
details, especially on the model initialization which is necessary be-
fore applying MAP.

Therefore, for the experiments in this paper a new procedure
was developed. The first step in this procedure is to train the models
of the newly clustered tree on English, Russian, and Spanish. The
LDA matrix was not reestimated, instead the matrix from ML3-Mix
was used. For training, random samples using the existing forced
alignments were extracted and the models initialized using k-means.
Then eight iterations of label training were applied.

As a second step the sample extraction and k-means calculation
was also performed on the German adaptation data in parallel to step
1. For the sake of speed the forced alignments used for training the
monolingual German system were used, in order to reach the same
goal with fewer training iterations. It can now happen that a model
in the specialized decision tree, that has been trained in step 1 on
the English, Russian, and Spanish data, has not seen enough training



Method Threshold dev eval
Naive — 38.6% 38.6%
PDTS — 36.0% 35.2%
mod. PDTS 50 32.8% 32.6%

Table 7. WER of naive adaptation, PDTS, and modified PDTS on
German dev and eval data

data because its context was not observed often enough. Because of
this, these models can only be poorly adapted to German, no matter
whether using MAP as in [15] or applying label training as in this
work. To avoid this problem, all models that saw fewer training
material on English, Russian, and Spanish in step 1 than on German
in step 2, were substituted with the models from step 2. Now it is
better possible to adapt these models, in this work by four iterations
of label training on the German data.

After applying this procedure the word error rate on the German
data improved to 36.0% on the dev set and 35.2% on the eval set
(Table 7).

6.2. Modified PDTS

PDTS addresses the problem of model contexts that are not special-
ized enough for the target language of porting an ASR system, but
neglects the inverse problem, that in the ported model contexts ex-
ist that are too specialized for the target language. Here, for certain
contexts, more general models would be beneficial. In order to ad-
dress this problem while at the same time keeping the advantages
of PDTS, PDTS was combined with a pruning scheme that removes
leaves in the decision tree that are underrepresented in the German
adaptation data prior to applying PDTS. The scheme used here was
described in [10] but has never been used on graphemes and never
in combination with PDTS. In order to apply the pruning scheme,
the occurrences of polygraphemes in the adaptation material were
counted and the leaf in the decision tree determined to which each
polygrapheme belongs. In that way one gets a rough estimate on
how much training data a model in the decision tree receives. This
way of estimating the counts of the models on the German data has
the advantage that it does not need any acoustic data and can be ap-
plied on text only. Therefore, the polyphone tree can also be pruned
if no acoustic adaptation material is available. The pruning was done
in an iterative way. The leaf with the lowest count was first removed
and its counts were distributed over the remaining leaves according
to the pruned distribution tree. Then the next leaf with new lowest
count was removed and so on, until no more leaves had counts be-
low a given threshold. The optimal count threshold was determined
empirically by trying out a series of thresholds on the development
data.

After pruning the ML3-Mix tree, PDTS was applied to it, as
described above, and the new tree and its models were trained as
before. Table 7 shows the performance of the resulting ASR systems
compared to the naive adaptation approach without PDTS, and the
traditional PDTS. It can be seen that in the optimal case the WER
compared to the standard PDTS models is reduced by 8.9% rel. on
the development set, when using a threshold of 50 for pruning the
tree, and by 7.4% on the evaluation set.

7. CONCLUSION

The experiments presented in this paper examine the use of multi-
lingual acoustic models for porting grapheme based ASR systems to
new languages and describe the aspects of multilingual ASR systems

in more detail than in previous work. Different techniques for port-
ing a multilingual, grapheme based model to German, when only 2h
of adaptation material are available, were compared. The naive ap-
proach of training the multilingual model on the German adaptation
data yields a WER of 38.6%, which is 23.2% absolute worse than
the performance of the German monolingual recognizer. Applying
the known technique of PDTS reduces the WER by 8.8% relative
down to 35.2%. However, the new modified PDTS procedure intro-
duced in this paper reduces the WER even further down to 32.6%,
thus outperforming conventional PDTS by 7.4% rel.

8. REFERENCES

[1] R. G. Gordon Jr., Ed., Ethnologue, Languages of the World,
SIL International, fifteenth edition, 2005.

[2] T. Janson, Speak – A Short History of Languages, Oxford
University Press, 2002.

[3] C. Schillo, G. A. Fink, and F. Kummert, “Grapheme Based
Speech Recognition for Large Vocabularies,” in ICSLP, Bei-
jing, China, 2000.

[4] S. Kanthak and H. Ney, “Context-dependent Acoustic Mod-
eling using Graphemes for Large Vocabulary Speech Recogni-
tion,” in ICASSP, Orlando, Florida, 2002.
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