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Abstract

In the typical speech translation system, the first-best
speech recognizer hypothesis is segmented into sentence-like
units which are then fed to the downstream machine transla-
tion component. The need for a sufficiently large context in
this intermediate step and for the MT introduces delays which
are undesirable in many application scenarios, such as real-time
subtitling of foreign language broadcasts or simultaneous trans-
lation of speeches and lectures.

In this paper, we propose a statistical machine translation
decoder which processes a continuous input stream, such as that
produced by a run-on speech recognizer. By decoupling deci-
sions about the timing of translation output generation from any
fixed input segmentation, this design can guarantee a maximum
output lag for each input word while allowing for full word re-
ordering within this time window.

Experimental results show that this system achieves com-
petitive translation performance with a minimum of translation-
induced latency.
Index Terms: speech translation, machine translation, decod-
ing, latency, real-time

1. Introduction
In speech translation real-time processing is required. This
means, first of all, that both speech recognition and translation
work in less than real-time. A second aspect is latency, i.e.,
the delay between words being uttered by the speaker and the
translation of these words being delivered to the listener. In di-
alog systems, where utterances are typically short and speakers
constantly take turns, this is not as important as in lecture trans-
lation, or translation of broadcast news. There, the speaker will
not make pauses to allow the translation system to catch up. The
problem is even more pronounced in situations where audio-
visual material is used, like slides or video material. A long
delay between the original utterance, during which the speaker
may navigate with a light-pointer over a slide, and the genera-
tion of the translation will make it more difficult for the listener
to follow the lecture, and could severely impact the understand-
ing of the presented material.

Translating with low latency poses severe problems, as is
well-known to human interpreters. For example, when translat-
ing from German to English the verb may come as the last word
in the German sentence, while the English translation would re-
quire a sentence structure which puts the verb in the second
position. More generally speaking, long-distance reordering
and short latency do not go together. Trained interpreters have
an arsenal of strategies to cope with these problems. While a
long-term goal in speech translation should be to integrate such
strategies, our current goal is much more modest: achieving

low-latency translation without losing significantly in transla-
tion quality compared to sentence-level translation.

The standard solution to achieve low latencies, segment-
ing the ASR hypothesis into shorter segments before translating
them, suffers from several drawbacks that significantly degrade
translation quality: Choosing meaningful segment boundaries
is difficult and error-prone, each boundary destroys the avail-
able context for language modeling and finding longer phrase
translations, and no word reordering across segment boundaries
is possible.

In this paper we describe a novel decoding strategy for
continuous, low-latency speech translation and present experi-
ments showing that low-latency translation is possible with only
a small degradation in performance.

In section 3, we describe the baseline statistical machine
translation system and decoder used for our experiments. Sec-
tion 4 describes the design of the proposed stream decoder. Sec-
tions 5 and 6 present experimental results comparing the stream
decoder with segmentation strategies.

2. Related Work
[1] introduces the concept of Anytime Translation, focusing on
the interruptability and response time of speech translation sys-
tems.

[2], [3] and [4] most recently study segmentation as a means
to improve translation performance, but do not consider latency
in detail. They find that rather long segments of 10-40 words
on average are needed to yield acceptable translation quality,
which are unsuitable for real-time simultaneous translation.

[5] describe an end-to-end system for simultaneous trans-
lation of speeches and lectures. The system runs in real-time
but uses the standard approach of an intermediary segmentation
step, resulting in a combined latency of 1-2 sentences.

3. Baseline Machine Translation System
In our experiments, we use a phrase-based statistical machine
translation system which uses a log-linear combination of sev-
eral models: an n-gram target language model, phrase transla-
tion models for both directions p(f |e) and p(e|f), a distance-
based distortion model, a word penalty and a phrase penalty.
The model scaling factors for these features are optimized on
the development set by Minimum Error Rate training [6].

The Pharaoh toolkit [7] was used to extract bilingual phrase
pairs from the parallel training corpus.

3.1. Baseline Decoder

The baseline decoder operates on the sentence level, i.e., the
best translation is output after the source sentence has been



completely translated. The decoding process can be described
in the following way:

• Construction of a translation lattice, or word graph, from
the source sentence, containing all available word and
phrase translations.

• Finding the best combination of these partial transla-
tions, such that every word in the source sentence is cov-
ered exactly once. This amounts to doing a best path
search through the translation lattice, which is extended
to allow for word reordering.

To restrict the search space, only limited word reordering
within a local window is performed.

3.2. Input Segmentation for Low-Latency Decoding

One possibility to achieve low-latency translation with such a
decoder is to segment the input into shorter segments and run
the standard decoding algorithm. Such an approach has been
used in [2], [3] and [4]. Segmentation can be done based on
pauses in the speech signal, by using a hidden-event language
model to detect meaningful boundaries, or simply by cutting
the input word stream into fixed-length segments. However, all
these segmentation approaches suffer from the following prob-
lems:

• Phrases which would match across the segment bound-
aries can no longer be used.

• Language model context is lost across the segment
boundaries.

• If the language model is trained on sentence segmented
data there will often be a mismatch for the begin-of-
sentence and end-of-sentence LM events.

• Finally, making the decision, which of the many alterna-
tive translations is the best one, at intermediate positions
rather than at the sentence end only may result in making
wrong decisions more often.

All this will lead to a drop in performance, and experiments
reported by different authors have shown that the drop in trans-
lation quality is quite severe as soon as a short latency is en-
forced.

4. Stream Decoder Design
4.1. Continuous Translation Lattice

In the baseline stack decoder, one translation lattice is created
from each input utterance or sentence with translation alterna-
tives attached as edges. After the utterance has been decoded,
the translation lattice is discarded for the next input utterance.

In contrast, the stream decoder maintains a continuous
translation lattice to be able to process an ”infinite” input stream
from the speech recognizer in real-time. New incoming source
words are added to the end of the translation lattice, and the lat-
tice is truncated at the start to remove the part for which trans-
lation output has been committed. When a new source word is
added to the end, the lattice is immediately expanded with all
newly matching word and phrase translation alternatives.

Because the translation lattice has the property of a confu-
sion network, the decoder can also handle real-time lattice input
from the speech recognizer instead of a first-best ASR hypothe-
sis if it has the form of a confusion network as well. In that case,
the decoder expects each confusion network tuple, representing

a time window of alternative ”confusable” source words, to ar-
rive at the same time, and adds them to the translation lattice at
the same newly created node.

4.2. Asynchronous Input and Output

Each new incoming source word or confusion network tuple
triggers a search for the best path through the current trans-
lation lattice. However, this best translation hypothesis is not
necessarily output immediately as translation; the output can be
partially or completely delayed, until either a certain time span
has passed or new input has arrived, which leads to lattice ex-
pansion and a new search.

Thus a sliding time window is created during which the
translation output lags the corresponding incoming source
stream, with the current translation lattice spanning the still un-
translated input.

Once the decision has been made to output a part of the best
current translation hypothesis, the translation lattice is truncated
at the start to reflect this and the initial decoder hypothesis for
the next search is set to the state at the end of the committed
output. The remaining part of the translation hypothesis can
optionally be displayed as ”unfixed” live output, in the style that
computer-assisted translation systems use to suggest possible
continuations.

4.3. Output segmentation

To decide which part of the current best translation hypothesis
to output, if any at all, the decoder uses two parameters:

• Minimum Latency Lmin. The translation covering the
last Lmin untranslated source words received from the
speech recognizer at any point is never output, except at
the very end. This allows the decoder to postpone trans-
lating the current end of the input stream until more con-
text becomes available.

• Maximum Latency Lmax. When the latency reaches
Lmax source words, translation output covering the
source words exceeding this value is forced.

To find the output boundary, the currently best translation
hypothesis is unrolled backwards until the last Lmin source
words have been passed. If the hypothesis reached has no re-
ordering gap the translation up to this point is generated. Com-
mitting to a partial translation means that the lattice up to this
point will be deleted. Therefore, if the hypothesis has some
open reordering gaps some source words would remain untrans-
lated.

If the hypothesis contains open gaps we follow further back
until a state is reached where all word reorderings are closed. If
no such state is found, a new restricted search through the lattice
is performed that only expands hypotheses which have no open
reorderings at the node where the maximum latency would be
exceeded, i.e. that have translated all source words up to that
point.

It is instructive to take a closer look at the effect of the
minimum and maximum latency parameters. At each point we
have a translation lattice which has at most Lmax source words.
Lmin words are kept as context information. Using a n-gram
LM means that we need a context of about n words to decide
which alternative translation is the best one. Therefore, we can
expect that making the minimum latency too small will impact
translation quality.

Lmax−Lmin is the number of source words for which the
partial translation can be committed. If this difference is very



small then many of the hypotheses will still have open reorder-
ing gaps. In other words, decoding degenerates more and more
to monotone decoding the smaller the difference between max-
imum and minimum latency is.

The phrases which can be used by the decoder are also
directly affected by these parameters. Essentially, no phrases
will be used in any translation for which the number of source
words is larger than Lmax − Lmin. As has been shown, trans-
lation quality improves significantly with longer phrases up to
3 source words. So we can expect to see a drop in translation
quality if Lmax − Lmin is less than 3.

5. Experimental Setup
5.1. Task and Corpus Statistics

The experiments were performed on the English-to-Spanish Eu-
ropean Parliament Plenary Sessions (EPPS) task, i.e., parlia-
mentary speech data from native speakers in the European Par-
liament. Development and testset correspond to the ASR con-
dition of the 2007 TC-STAR evalation [8]. The word error rate
of the English ASR input used was 6.9%.

The models were trained on the parallel Final Text Edition
data from the European Parliament’s website, with a verbaliza-
tion of number and date expressions applied as preprocessing.
The statistics of the training and test corpora are shown in Table
1.

English Spanish
Train Sentences 1.24M

Words 34.8M 36.4M
Test Sentences 849

Words 26,812 -

Table 1: Statistics for training and test corpus.

We used 4-gram language models in all experiments, esti-
mated with modified Kneser-Ney smoothing as implemented in
the SRILM toolkit [9].

5.2. Evaluation Criteria

We report translation results using the well-established objec-
tive error measure BLEU [10]. To calculate scores on auto-
matically produced segments, the translation output must be re-
segmented to match the number of reference segments. This is
done using the method described in [11], which determines the
best alignment with the multiple reference translations based
on the word error rate. Scores were calculated on two reference
translations, including casing and punctuation marks.

To measure latency in a platform- and implementation-
independent manner, we use the delay in number of source
words until the translation of a particular source word appears
in the output. The rationale is that the actual real-time perfor-
mance of an integrated system is usually limited by the ASR
component, while we are interested in algorithmically induced
latencies here which cannot be eliminated by faster hardware.

6. Results and Discussion
6.1. Baseline

A manual sentence segmentation produced by humans serves as
a baseline to evaluate a segmentation optimized towards trans-

lation quality. For our testset, the BLEU score is 37.28, and
the segments had an average length of 24.4 words. Some seg-
ments were considerably longer, however, and a system using
only manual sentence boundaries would only start translating
after the speaker has finished a sentence, leading to long delays.

In an integrated system, reliable sentence boundaries can-
not be assumed to be available, and for the following experi-
ments, the manual sentence segmentation was discarded.

6.2. Fixed Segment Lengths

Getting a lower translation latency is easy: simply use shorter
segments. Figure 1 shows the results of using a fixed segment
length, for segments of 1-10 words and a selection of longer
segment lengths.

The case of segment length 1 has the shortest possible la-
tency (zero words delay) but degenerates into single word to
single word translation. At the other end, the segment length of
10000 lets the decoder translate the entire document as a single
utterance.

Not surprisingly, translation performance suffers heavily if
the input segments are very short, as at each segment bound-
ary the context is destroyed completely and no word reordering
across boundaries is possible.

It can also be seen that in this simple approach, rather
long segments are needed to get near optimal performance.
Translation quality still improves when going to higher segment
lengths, indicating that introducing a wrong segment boundary
at an arbitrary place hurts more than translating across bound-
aries.

Note that a constant segment length of N words corresponds
to an average latency of roughly N/2 words.

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 15 20 50 100 10K

[%
]B

L
E

U

Segment Length

Fixed Segment Length
+

+

+

+ + + + + + + + + + + +

+
Keeping LM State

×

×

×
× × × × × × × × × × × ×

×
Variable Segment Length

∗

∗

∗
∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗
Stream Decoding

�

� �
� � � � � � � � � � � �

�

Figure 1: Translation performance of the different approaches
on the English-Spanish EPPS task.

6.3. Keeping Target Language Model State

So far, each input segment was translated in isolation with no
information crossing the segment boundaries, even though the
output segments are concatenated afterwards to form the trans-
lation output presented to the user. Since the translated seg-
ments will be viewed as a longer contiguous unit, we can as
well keep the language model state across segment boundaries
rather than discard it - i.e., the decoding of each new segment
is started with a language model history of the words of the
preceding segment(s). The improvement from this approach is
shown in Figure 1.



6.4. Variable Length Segments

Various approaches using variable-length segmentation have
been found to improve translation quality at longer segment
lengths. In the 2007 TC-STAR evaluation [8], an automatic
segmentation was produced for our testset based on pause in-
formation from the original audio signal and a source language
model, yielding an average segment length of 32 words.

Since we require relatively short segments for real-time
translation and would like to be able to specify a guaranteed
maximum delay, we further segment the provided fragments
into shorter fixed-length segments if the maximum latency is
exceeded. As can be seen in Figure 1, this gave no significant
improvement over keeping the language model state across seg-
ments.

6.5. Stream Decoding

The stream decoder organization described in section 4 allows
translating without an explicit segmentation.

In the experiment included in Figure 1, the maximum seg-
ment length that the other approaches respect was enforced
by setting the maximum latency parameter Lmax to the corre-
sponding length value. The minimum latency parameter Lmin

was chosen between 0 and Lmax such that the translation qual-
ity was optimized.

It can be seen that the proposed stream decoder signifi-
cantly outperforms all other approaches, and across all segment
lengths. It is able to produce nearly optimal translation qual-
ity with a maximum latency of just six words, and still has
good translation performance when using a maximum latency
of three or even only two words delay.

Only at the very shortest latency values does the streaming
approach suffer from adverse effects occurring at hard segment
boundaries: loss of the immediate context, reduced possibilities
for word reordering, and a loss of longer matching phrase-to-
phrase translations.

Figure 2: Translation performance of the stream decoder for
different minimum and maximum latencies.

What is the optimal value of Lmin for a given maximum
latency Lmax? Figure 2 shows the BLEU scores for all com-
binations of Lmin and Lmax up to a maximum of 10 words.
Across all segment lengths, a minimum latency of about one
half of the maximum latency is optimal. As can be seen from
the description in section 4.3, the point where the minimum la-
tency is passed is also where most decisions to commit trans-
lation output are taken. Placing this spot in the middle of the
sliding window keeps the output decisions as far away as pos-
sible from the fringes where the decoder’s choices are either

more restricted by the already committed translation output, or
where it may have to commit prematurely to a translation which
restricts the search space for the following downstream input.

7. Conclusion
In this paper, we have studied the issue of reducing latencies in
speech translation systems for simultaneous translation in real-
time.

We have presented a novel decoder structure and algorithm
capable of processing continuous input streams in real-time
which not only outperforms alternative strategies based on seg-
menting the ASR input prior to translation, but is also able to
produce nearly optimal translation quality at very low laten-
cies. Moreover, by decoupling the decisions of when to gen-
erate translation output from any fixed input segmentation, the
proposed stream decoder can be configured to guarantee a max-
imum delay between input and translation, while allowing for
full word reordering within a sliding window. Thus, this ap-
proach is especially suited for building integrated real-time si-
multaneous translation systems.
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