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Abstract. This paper introduces a new technique to automatically cal-
ibrate the extrinsic parameters of a network of cameras without using
dedicated calibration objects or markers. Instead, the motion of per-
sons walking naturally through a scene is used. Simple foreground and
motion features are extracted from the individual image sequences. A
Hough transform is applied in a specially defined parameter space to es-
timate the relative geometry between camera pairs without solving the
problem of finding correct feature correspondences between views. All
possible feature correspondences are examined, and a modified gradient
descent algorithm is used to find the set of optimum calibration param-
eters within the Hough space. After calibrating each camera pair the
resulting camera network is built up using a global error minimization
technique. The approach is tested on several indoor scenarios and shows
a high degree of robustness, especially when multiple persons enter the
scene, making it difficult to resolve feature correspondences. The correct-
ness and precision of individual camera calibrations and of the resulting
camera network are thoroughly evaluated, showing that triangulation
errors as low as 5cm can be reached using very little observation data.

1 Introduction and Related Work

Camera calibration can be an invaluable tool for visual analysis and scene un-
derstanding. On the one hand, it allows to make inferences about the real-world
size of observed objects, their distance to the camera, or their 3D scene location,
on the other hand, it may be used to efficiently correlate the information from
several visual sources. One application is e.g. object tracking using a network
of cameras, a field which is gaining more and more attention with the steady
increase in availability of cheap high quality sensors. In common, the calibration
information consists of two types of parameters: The internal parameters which
describe optical properties such as the focal length, principal point, skew and
distortions coefficients that arise from the camera lens, and the external param-
eters, describing the position and orientation of the camera in the scene. In this
paper, we assume that the internal and distortion parameters are known. Due
to their static nature, they usually need to be determined only once, whereas
the external parameters are more prone to change and may in some cases be
difficult to reliably estimate, for lack of scene knowledge.
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Calibration of sensor networks has been a topic in the computer vision do-
main for quite some time. In general, the techniques can be grouped into two
categories: The traditional way to determine extrinsic parameters consists in
finding those which best map picture coordinates to corresponding known 3D
world coordinates [1-3]. The main disadvantage is that these techniques need a
well known calibration object with known world coordinates. The second cate-
gory comprises techniques which do not require a predefined calibration object,
but instead attempt to automatically extract useful features from different views
of a scene, thus building a virtual calibration object “on-the-fly” . This can be
done using marker-objects [4-7] or by trying to find corresponding features in
natural images [8-10].

The here presented approach is designed to determine the extrinsic param-
eters of a network of cameras without direct human interaction, but rather by
simply observing the movement of people in the scene. It assumes a relatively
high amount of overlap between views and basic synchronization of all cameras.
We will show that this approach is robust to errors in the feature extraction
process and can notably determine the correct extrinsic parameters without re-
solving feature correspondences between views.

The remainder of this paper is organized as follows: Section 2 describes the
feature extraction step. A detailed presentation of the developed algorithm for
calibrating camera pairs is given in Section 3, followed by a brief explanation on
the build-up of the camera network in Section 4. In Section 5 the accuracy of
the approach is evaluated. Finally, Section 6 gives a summary and a conclusion.

2 Feature Extraction

The automatic calibration technique described in this paper is designed to oper-
ate on very general and simple features that could be reliably extracted in a wide
range of natural scenarios. Likewise, the feature extraction itself is quite simple
and will only briefly be described in the following. It relies on the assumption
that motion occuring concurrently in two camera views is likely to belong to
the same object or objects. It makes some general assumptions that hold for
most visual surveillance systems. These assumptions, however, only pertain to
the feature extraction step, related to our application scenario, and in principle
do not limit the calibration procedure itself:

— Mostly persons are monitored.
— The cameras are mounted upright.
— The cameras are mounted above person height to offer a better view point.

Exploiting these assumptions, the highest detected point of each moving
person is used as calibration feature. The main benefit is that this feature is in
general less affected by occlusions. A similiar approach is used in [8].

At first, a foreground segmentation is made in each view using a background
model with a low adaption rate (o = 0.002) and a fixed threshold. The resulting
support map is morphologically filtered and only blobs with a minimum size



M2SFA2 2008: Workshop on Multi-camera and Multi-modal Sensor Fusion 3

are considered. The highest point of each detected foreground blob is then used
as initial hypothesis. Next, the objects moving in the current time frame are
determined. A support map of areas containing motion is created (in our case,
simple difference images are used), and hypotheses are rejected if there is not
sufficient motion within a 40x10 pixel window centered around them.

The reason the hypothesis points are determined on the foreground support
and not directly on the difference images is that they provide much smoother
contours, whereas local motion is only reliably detectable in image areas with
a strong gradient in the direction of movement. On the other hand, foreground
support alone is not sufficient, as it provides no information on which objects are
actually moving at one point in time. The combination of techniques alleviates
their respective drawbacks. In a final step, hypotheses for which the support blob
lies beneath another support blob are discarded. This is to eliminate most of the
false positives that arise, e.g., when a person blob is fragmented due to faulty
segmentation. Of course, this also means some hypotheses may be wrongfully
rejected in case of overlap or when blobs from different persons appear above
each other. In our case, however, it is not necessary to correctly extract features
for every person in every frame, as the subsequent calibration algorithm is robust
to such preprocessing failures.

(b)

Fig. 1. Feature extraction. (a) Extracted foreground blobs (green) with bounding boxes
(white) and feature hypotheses (red/white points). Motion areas are overlayed onto the
image (red/yellow). (b) Result of the feature extraction step.

Figure 1(a) shows an example frame taken from a test scenario with three per-
sons. The foreground is colored green and the hypothesized features are marked
with red/white dots. As can be seen, blob fragmentation leads to the initial
extraction of seven hypotheses. Verifying for motion (red/yellow overlay) and
vertical misalignment discards most false positives (see Figure 1(b)). The (x,y)
coordinates of the remaining hypotheses are taken as features.
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In our test scenarios, the videos are captured with 15fps. Since the motion of
a person between two consecutive frames is too small to yield a meaningful gain
in information, only the features from every fifth frame are used for calibration.
This reduces the processing time for a sequence without much affecting the
results.

3 Pairwise Calibration using a Hough Transform

The calibration of the camera network is achieved by first estimating the relative
position and orientation of each camera pair, and then combining the pairwise
results in a second step. One should note that as the extracted features allow no
inference about the size of the observed scene (the algorithm cannot tell if it is
observing life-size humans in a room or just miniature puppets in a cardboard
set), the network geometry can only be estimated up to an overall scale factor.
The following describes the algorithm for pairwise calibration.

The basic idea underlying our approach is the fact that when a same object
is observed in two cameras views, the LOVs (Lines of View) from both cameras
intersect in one point, the object position, as long as the extrinsic parameters
have been correctly estimated. In practice they may not intersect exactly due
to imprecisions in the cameras and the feature extraction, and instead we only
require the triangulation error, the distance between LOVs, to be small. In other
words, we are searching for the extrinsic camera parameters which minimize the
total triangulation error for all hypothesized feature correspondences. A priori,
this seems to imply a search in a six dimensional search space (three parameters
for translation and three parameters for rotation). We will, however, show how
the search complexity can be reduced.

Consider a pair of cameras C and Cy. We wish to obtain the position and
orientation of C5 in C4’s coordinate frame. First, let us consider the translation
vector T = (z,y, z)T from C; to Co. Without loss of generality we can transform
7 into spherical coordinates 7' = (r,0, <p)T. As no real-world size information
can be gained from the extracted point features, we can only estimate the di-
rection of translation, not its scale [11] . Therefore, we define 7" to be of unit
length: |7] = 1 and 7’ = (1,6, )", leaving only two free parameters for the
translation.

The rotation is specified by three angles: the pan («), tilt (8) and roll (v)
of Cy relative to C7. The computational cost for estimating all 5 parameters
jointly would be extremely high, which is why we decompose the problem into
two parts: First, we show how the pan and tilt angles can be computed from
hypothesized feature correspondences if the translation vector 7’ and the roll
angle v are known. Then we define a search in the 3-dimensional (6, ¢,7) space
to find the optimum parameter combination.

As stated above, when observing one same object at point X from two dif-
ferent views, the LOVs from the cameras to the object should intersect. Let C’s
coordinate frame be the reference frame, and let Cy be positioned at 7’ and
rotated around its Z-Axis by the angle . Let lov; and lovy be the LOVs from
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(1 and Cy, with ¢; and ¢y the respective focal points. If the distance from c¢; to
X were known, we could directly compute the o and § values for C5. But in our
case this information is not available, and X could lie anywhere on lovq, result-
ing in a 1-dimensional solution space. The set of all solutions can be obtained
by sampling every point on lov; and calculating the corresponding angular val-
ues for lovy. The computation is made efficiently by exploiting two geometric
constraints: First, every line connecting co to a point on [ov; is contained in
the epipolar plane 7, which is spanned by the two camera focal points and lov; .
Second, the point X can only lie between ¢; and infinity. For both extremes,
lovy’s orientation is known (in the latter case it is parallel to lovy). Figure 2(b)
shows the two extreme solutions for lovs. All other solutions lie in between.
We now construct a line segment Lji, in the following way:

Ljoin:S-(ll-FT),VSERZOSSS1 (].)

with [; the normalized direction vector for lov;. The set of lines connecting
co to all points on Lijoiy is the same as the set connecting co to all points on
lovy that lie between c¢; and infinity. Thus, we can efficiently sample the solution
space by sampling points on Ljen and calculating the corresponding o and
angles for lovs.

(2) (b)

Fig. 2. Pairwise extrinsic calibration. (a) The angles # and ¢ corresponding to trans-
lation 7”. (b) The solution space for lovs (red overlay) in Camera 1’s reference frame,
given an observation X and fixed translation and roll values for Camera 2. Ljoin is
represented by the red line segment on the epipolar plane 7.

Let us now consider the case that two objects are viewed from two cameras.
As the correct feature mapping between views is not known, there are 4 possible
correspondences: 2 correct and 2 false, which will all be used in the parameter
estimation. Figure 3 (a) shows the solution set for one correct correspondence.
Calculating the pan and tilt angles for the second correct correspondence re-
sults in another solution set. The correct overall solution can be easily identified
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as the intersection of both sets, as shown in Figure 3 (b). Next, we calculate
the solution sets for the false correspondences. Figure 3 (c) shows the solution
sets for the two correct and the two false correspondences. In the present case,
the solution sets for the false correspondences have no pan-tilt-combination in
common. When computing the hough transform for an entire sequence of obser-
vations, the solution sets for all feature correspondences are accumulated for all
time frames. In general, it can be expected that the correct pan-tilt-combination
will be included in the solution set for every correct correspondence, leading to
a high peak, whereas the solutions for false correspondences will be more or less
spread over the hough space. This is shown in Figure 3 (d) where 800 correct
and 800 false feature correspondences are used as input to the hough transform.
The correct pan-tilt-combination is found as the maximum accumulated value
(noted by the red circle). This shows how the « and  parameters can be esti-
mated, using the observed image features, if the 6 € [—7 : 7[,¢ € [—%7‘( : %7‘(]
(translation) and v € [— : [ (roll) parameters are known, thus reducing the
dimensions of our search space to three.

Fig. 3. Example solutions spaces using hough transforms: The X- and Y-axes repre-
sent the pan and tilt angles, respectively. (a) one correct feature correspondence (b)
two correct correspondences (c) two correct and two false correspondences (d) 1600
correspondences (800 correct, 800 false).

The search for the optimal 6, ¢ and -y values is made using a gradient descent
algorithm. The idea is that if the translation and roll values are not correctly
chosen, the LOVs for all correct feature correspondences can not be brought to
intersect for any pan/tilt combination. This means that the maximum accumu-
lated value in the corresponding Hough transform will be lower than with correct
parameters. This maximal value can therefore be used as quality measure for a
given state in the (6, ¢, ) search space. Figures 4(a) and 4(b) show a visualiza-
tion of the whole search space. As can be seen, there are several local maxima
that complicate the search for the global maximum. To find it, a hierarchic gra-
dient descent algorithm with variable step width is applied. To obtain initial
starting points for the search, the entire search space is sampled in 10 degree
steps and all sample points with values above 90% of the overall maximum are
taken. From these initial points, a gradient descent search is started with a step
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width of 5 degrees. After termination of the algorithm, the search is restarted
from the end points with half the step width, and the procedure is repeated until
a precision of 0.05 degrees is reached.

When selecting the starting points for the search, it proved crucial to pro-
vide enough margin for error: Taking only the maximum scoring sample points
(instead of all points with values above 90% of the maximum), increases the risk
of missing the global optimum. This is illustrated in Figure 4(a) which shows
an example search space sampled in 20 degree steps. Choosing only the points
with maximum value, we would be searching only in the right half of the space,
ignoring the high but not maximal values on the left. However, sampling the
entire search space in 5 degree steps as shown in Figure 4(b) reveals that the
very narrow global maximum is in fact lying on the left.

After the optimum 6, ¢ and ~ values are determined, the already computed
Hough transform for these parameters is analyzed to obtain the o and 3 values
and thus the relative orientation. By converting 7’ back to 7, the translation
vector is also obtained.

Fig. 4. Visualization of the search space. Low values are dark blue, high values are
bright red. (a) Results for 20° step size. (b) Results for 5° step size.

4 Building the Camera Network

Using the above determined relative orientation and translation for each camera
pair, the camera network is built up. Similar to work described in [4] and [6], an
iterative approach is taken: Starting from an initial camera pair (with relative
distance normalized to 1), additional cameras are successively added by trian-
gulation. As there are several possibilities for the starting camera and the order
of inclusion, all possible resulting networks are built up and evaluated using a
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global optimization criterion: For each camera pair, the angular difference be-
tween the initially hypothesized translation vector (derived from 6 and ¢) and
the actual vector obtained after completion of the network is measured. From
all network candidates, the one that minimizes the total angular error for all
camera pairs is then chosen.

5 Experimental Evaluation

The presented calibration technique was evaluated on three example scenarios
recorded in a room equiped with four static cameras. The evaluation consists
of three parts. First, the automatically estimated pairwise calibrations are com-
pared against manually gained ground truth. Second, the quality of the overall
network calibration is measured. For this, eight colored markers were placed in
the room and their exact world coordinates measured. The markers were then
used to measure the average projection errors for each camera and the average
triangulation error for the network. To obtain the calibration ground truth for
all four cameras, the Camera Calibration Toolbox [12] was used, together with
a large checkerboard reference object. Each camera is connected by firewire to
a Pentium4 3GHz machine and delivers 640x480 pixel images at 15fps.

5.1 Scenarios

The first scenario consists of a video sequence with 2604 frames (2:54 min) from
all four cameras. It figures one person walking continuously through the room in
order to generate enough data variability for calibration. In this scenario there
are, save for feature extraction errors, no ambiguous correspondences between
features from two different views. The second scenario is similar to the first,
except that two persons are walking simultaneously. It has a length of 2829
frames (3:09 min). The last scenario figures three persons evolving freely in the
scene without specific constraints. They are free to move, stop or sit down as
they please. It has a total length of 4051 frames (4:30 min). The main purpose
of this scenario is to show that observations of naturally interacting persons are
enough to calibrate a camera network, and further that this can be done without
finding feature correspondences between views.

5.2 Pairwise Calibration Results

Figures 5(a) to 5(c) show the absolute difference between the calculated pair-
wise calibrations and the ground truth in degrees. Interestingly, Scenario 3 (the
most complex scenario, Figure 5(c)) shows the lowest calibration error although
Scenario 1 (Figure 5(a)), showing the highest errors, was no doubt the simplest
scenario, with only one moving person. An investigation showed that this can
be attributed to the limited amount of observation data in Scenario 1, which
was insufficient for precise calibration. Results improve with Scenario 2 (Fig-
ure 5(b)), which has almost the same length, but double the amount of features,



M2SFA2 2008: Workshop on Multi-camera and Multi-modal Sensor Fusion 9

due to the fact that two persons are moving. The results demonstrate that our
approach can cope with multiple moving objects, though we do not attempt to
find feature correspondences. They also show that by applying the hough trans-
form, accuracies increase with the amount of available data (through lengthier
observation sequences or more moving persons). For Scenario 3 (Figure 5(c)),
most of the errors are below two degrees, and around half are even below one
degree.
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20 20
1 18
16 16
g 1 "
8 g
§ e B u o
v " T 'y
5 ° v g ° v
& . | i 5 s = .
4 B g ™ 4
. } || == s | ? . . H E "
== il b XLk 3= 2 (=== | o il 5 Ul i 5 5SS RIS 1
SV IV I OF VR P L g ELEN OV SV P VP L Y4
4 V' 4 V' ;- V' 1 ' 3 3 X' 3 N " N 2 o3 3 Y 2 %1 il N i
(ORI AV AR ARV AN AR AR A S [ A R AR A A A S

(a) (b)

Scenario 3

20

18
15

14
12
10

i

Error in degrees

3 1 1 I

X do] | —F .

o e alltn i R S Ll wr alEl
VSN e S ¢ N o SV I o A A v

5 F S O/"L & 0;4

(©)

Fig. 5. Pairwise calibration error in degrees. (a) Results for scenario 1. (b) Results for
scenario 2. (c¢) Results for scenario 3.

5.3 Projection and Triangulation Errors

Whereas the previous section analyzes the quality of the pairwise calibration
process alone, the projection and triangulation errors measured here show the
overall quality of our approach. To evaluate them, the camera network is built up
using the pairwise calibrations and transformed to scene coordinates and scale.

The triangulation error is obtained by manually annotating each marker
in each view and triangulating the scene coordinates of the markers using the
automatically estimated calibration data. The error is defined as the mean error
between the ground truth (measured real world coordinates) and the calculated
coordinates of all markers.
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mean error|standard deviation
Triangulation 176,71 mm 13,81 mm
Projection Camera 1/10,12 Pixel 3,31 Pixel
Projection Camera 2| 1,84 Pixel 0,58 Pixel
Projection Camera 3|81,66 Pixel 18,10 Pixel
Projection Camera 4| 5,08 Pixel 1,66 Pixel

Table 1. Triangulation and projection errors for scenario 1.

The projection error is calculated by projecting the known scene coordinates
of the markers into each camera view, using the estimated calibrations, and
measuring the displacement between the projection and the annotated marker
position.

Tables 1 to 3 show the triangulation and projection errors resulting from the
built camera networks. In Scenario 1, the triangulation error and Camera 3’s
projection error are quite high. The schematic view of the resulting camera net-
work (Figure 6(a)) shows a relatively high displacement of Camera 3 compared
to its real position. It should be noted that when triangulating the marker po-
sitions without using Camera 3, the mean triangulation error decreases to 32,81
mm . It should also be noted that although the pairwise calibrations were rela-
tively inaccurate, the final estimates for cameras 1, 2 and 4 are quite close to the
real configurations, resulting in low projection errors. The results for Scenarios
2 and 3 (Tables 2 and 3) show that our approach reaches very low triangulation
errors (below 5 cm) and projection errors mostly below 10 pixels, which reflects
the good quality of calibration for the whole network (Figure 6(b)). The residual
errors stem from the imprecise feature extraction, since the used features in each
view (the highest point of a moving person blob) do not necessarily match to
precisely the same point in the scene.

mean error|standard deviation
Triangulation 44,47 mm 3,16 mm
Projection Camera 1| 1,22 Pixel 0,60 Pixel
Projection Camera 2| 7,78 Pixel 0,59 Pixel
Projection Camera 3| 9,71 Pixel 2,37 Pixel
Projection Camera 4| 6,32 Pixel 1,10 Pixel

Table 2. Triangulation and projection errors for scenario 2.

The results also show how the intelligent integration of pairwise calibrations
into a network with overlapping views reduces the effects of calibration errors.
Although the pairwise results for Scenario 2 are noticeably worse than those for
Scenario 3, the triangulation error (= 5 cm) and the average projection error
(= 6 pixels) in both cases are similar.
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mean error|standard deviation
Triangulation 49,98 mm 16,37 mm
Projection Camera 1{11,51 Pixel 1,32 Pixel
Projection Camera 2| 6,06 Pixel 0,57 Pixel
Projection Camera 3| 2,70 Pixel 0,55 Pixel
Projection Camera 4| 5,85 Pixel 4,52 Pixel

Table 3. Triangulation and projection errors for scenario 3.

Camera 4 Camera 4

(a) (b)

Fig. 6. Schematic view of the resulting camera network. Green represents the ground
truth and blue the system hypothesis. (a): Results for scenario 1. (b): Results for
scenario 3.

6 Summary and Conclusion

In this paper, we have presented a statistical technique for the automatic cali-
bration of camera networks using localized motion features. In contrast to other
approaches, this technique does not rely on dedicated calibration objects or
markers, and does not require manual intervention or a specific calibration pro-
cedure. Instead, the motion of persons evolving naturally in the scene is used.
Simple foreground and motion features extracted from each view serve as ob-
servations for the statistical estimation of extrinsic camera parameters. Using a
Hough transform in combination with a hierarchical gradient descent search, the
parameters of the pairwise camera geometries are estimated even in the presence
of multiple moving objects, without the need to resolve feature correspondences
between camera views. The resulting camera network is then built up using
a global error minimization technique. Evaluation of the technique in a series
of scenarios of increasing complexity revealed its ability to recover the correct
network geometry using very little data, even with imprecise, faulty and often
ambiguous features. The tests show that average projection errors of 6 pixels are
attainable with less than 5 minutes of recordings, and that precision increases
with the amount and richness of available data.
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Future work could include incorporating direction of motion or size informa-

tion extracted from image features. Another direction could be to extend the
technique to allow for the automatic and fast integration of additional cameras
into an already calibrated network.
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