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Abstract. In this paper, two multimodal systems for the tracking of
multiple users in smart environments are presented. The first is a multi-
view particle filter tracker using foreground, color and special upper body
detection and person region features. The other is a wide angle overhead
view person tracker relying on foreground segmentation and model-based
blob tracking. Both systems are completed by a joint probabilistic data
association filter-based source localizer using the input from several mi-
crophone arrays. While the first system fuses audio and visual cues at
the feature level, the second one incorporates them at the decision level
using state-based heuristics.

The systems are designed to estimate the 3D scene locations of room
occupants and are evaluated based on their precision in estimating per-
son locations, their accuracy in recognizing person configurations and
their ability to consistently keep track identities over time.

The trackers are extensively tested and compared, for each separate
modality and for the combined modalities, on the CLEAR 2007 Evalua-
tion Database.

1 Introduction and Related Work

In recent years, there has been a growing interest in intelligent systems for indoor
scene analysis. Various research projects, such as the European CHIL or AMI
projects [20,21] or the VACE project in the U.S. [22], aim at developing smart
room environments, at facilitating human-machine and human-human interac-
tion, or at analyzing meeting or conference situations. To this effect, multimodal
approaches that utilize a variety of far-field sensors, video cameras and micro-
phones to obtain rich scene information gain more and more popularity. An
essential building block for complex scene analysis is the detection and tracking
of persons.

One of the major problems faced by indoor tracking systems is the lack of
reliable features that allow to keep track of persons in natural, unconstrained
scenarios. The most popular visual features in use are color features and fore-
ground segmentation or movement features [2,1,3,6,7,14], each with their ad-
vantages and drawbacks. Doing e.g. blob tracking on background subtraction
maps is error-prone, as it requires a clean background and assumes only persons
are moving. In real environments, the foreground blobs are often fragmented or
merged with others, they depict only parts of occluded persons or are produced
by shadows or displaced objects. When using color information, the problem is
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to find appropriate color models for tracking. Generic color models are usually
sensitive and environment-specific [4]. If no generic model is used, color models
for tracked person need to be initialized automatically at some point [3,7,13,14].
In many cases, this still requires the cooperation of the users and/or a clean and
relatively static background.

On the acoustic side, although actual techniques already allow for a high
accuracy in localization, they can still only be used effectively for the tracking of
one person, while this person is speaking. This naturally leads to the development
of more and more multimodal techniques.

Here, we present two multimodal systems for the tracking of multiple persons
in a smart room scenario. A joint probabilistic data association filter uses the
audio streams from a set of microphone arrays to detect speech and determine
active speaker positions. For the video modality, we compare the performance of
2 approaches: A particle filter approach using several cameras and a variety of
features, and a simple blob tracker relying on foreground segmentation features
gained from a wide angle top view. While the former system fuses the acoustic
and visual modalities at the feature level, the latter does this at the decision
level using a state-based selection and combination scheme on the single modality
tracker outputs. All systems are evaluated on the CLEAR’07 3D Person Tracking
Database.

The next sections introduce the multimodal particle filter tracker, the single-
view visual tracker, the JPDAF-based acoustic tracker, as well as the fusion
approach for the single view visual and the acoustic tracking systems. Section 6
shows the evaluation results on the CLEAR’07 database and section 7 gives a
brief summary and conclusion.

2 Multimodal Particle Filter-Based 3D Person Tracking

The multimodal 3D tracking component is a particle filter using features and
cues from the four room corners cameras and the wide angle ceiling camera,
as well as source localization hypotheses obtained using the room’s microphone
arrays. The tracker automatically detects and tracks multiple persons without
requiring any special initialization phase or area, room background images, or
a-priori knowledge about person colors or attributes, for standing, sitting or
walking users alike.

2.1 Tracking Features

The features used are adaptive foreground segmentation maps and upper body
region colors gained from all 5 camera images, resampled to 320x240 resolution,
as well as upper body detection cues from the room corner cameras, person
region hints from the top camera, and source localization estimates gained from
the T-shaped microphone arrays.

– The foreground segmentation is made using a simple adaptive background
model, which is computed on grayscale images as the running average of the
last 1000 frames. The background is subtracted from the current frame and
a fixed threshold is applied to reveal foreground regions.
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– The color features are computed in a modified HSV space and modeled
using a specially designed histogram structure, which eliminates the usual
drawbacks of HSV histograms when it comes to modeling low saturation or
brightness colors.

The color space is a modified version of the HSV cone. First, colors for
which the brightness and saturation exceed 20% are set to maximum bright-
ness . This reduces the effect of local illumination changes or shadows. The
HSV values are subsequently discretized as follows: Let hue, sat and val be
the obtained HSV values, then the corresponding histogram bin values, h, s
and v, are computed as:

v = val (1)

s = sat ∗ val (2)

h = hue ∗ sat ∗ val (3)

The effect is that the number of bins in the hue and saturation dimensions
decreases towards the bottom of the cone. There is, e.g., only one histogram
bin to model colors with zero brightness. This is in contrast to classical
discretization techniques, where e.g. grayscale or nearly grayscale values, for
which the hue component is either undefined or ill-conditioned, are spread
over a large number of possible bins. At the large end of the cone, a maximum
of 16 bins for hue, 10 bins for saturation, and 10 for brightness are used.
Figure 1 shows a graphical representation of the resulting discretized HSV
space.

Fig. 1. The discretization of the HSV cone into histogram bins. Colors with zero satu-
ration or brightness have a unique mapping although their hue value, e.g., is undefined.

The color features for tracking are gained from the detected upper body
regions of subjects, as well as their immediatly surrounding background.
One upper body and one background histogram are kept per camera and
track. Upper body histograms for corner cameras are adapted with each
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upper body detection from pixels inside the detection region. The upper
body histograms for the top camera are obtained using colors sampled from a
60cm diameter region centered around the tracked person position. They are
continuously adapted with each frame, but only after valid color histogram
models for the corner cameras could be created. This is because the track is
only considered reliable enough for continous color model adaptation after it
has been confirmed at least once by a direct upper body detection in a corner
camera. The background histograms for all views, in turn, are continuously
adapted in every frame, with the adaptation learnrate set such as to achieve
a temporal smoothing window of approximately 3 seconds.

All upper body histograms are continuously filtered using their respective
background histograms. Let H be an upper body and Hneg a background
histogram. Then the filtered histogram Hfilt is obtained as:

Hfilt = minmax(H) ∗ (1 − minmax(Hneg)), (4)

with all operations performed bin-wise. For the minmax operator, the min
value is set to 0 and the max value is set to the maximum bin value of the
respective histogram.

The effect of histogram filtering is to decrease the bin values for upper
body colors which are equally present in the background. The motivation is
that since several views are available to track a target, only the views where
the upper body is clearly distinguishable from the immmediately surrounding
background should be used for tracking. The use of filtered histograms was
found to dramatically increase tracking accuracies.

– The upper body detections in the fixed corner camera images are obtained by
exhaustive scanning with Haar-feature classifier cascades, such as in [8,9]. Us-
ing camera calibration information, the 3D scene coordinates of the detected
upper body as well as the localization uncertainty, expressed as covariance
matrix, are computed from the detection window position and size. This in-
formation is later used to associate detections to person tracks, update color
models, and to score particles.

– Person regions are found in the top camera images through the analysis of
foreground blobs, as described in [12]. It is a simple model-based tracking
algorithm that dynamically maps groups of foreground blobs to possible per-
son tracks and hypothesizes a person detection if enough foreground is found
within a 60cm diameter region for a given time interval. The motivation for
detecting person regions in this way is that top view images present very
little overlap between persons, making a simple spatial assignment of blobs
to tracks plausible.

– The acoustic features fed to the particle filter are the 3D source localization
estimates from the JPDAF tracker described in section 4. Currently, only
the active source with the smallest localization uncertainty at a given time
is considered. As the source is assumed to be located at the mouth region
of a speaking subject, its 3D coordinates are used to associate it to tracks,
score particles, and to deduce appropriate upper body regions in each view
for updating color models. Acoustic features can therefore lead to the ini-
tialization of person tracks with increasingly accurate color models even in
the absence of visual upper body detections.
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2.2 Intialization and Termination Criteria

For automatic detection of persons and initialization of tracks, a fixed number
of “scout” particle filter trackers are maintained. These are randomly initialized
in the room and their particles are scored using the foreground, color, and de-
tection features described above. A person track is initialized when the following
conditions are met:

– The average weight of a scout’s particle cloud exceeds a fixed activation
threshold T . This threshold is set such that initialization is not possible based
on the foreground feature alone, but requires the contribution of at least an
upper body detection, person region hint or source localization estimate.

– The spread of the particle cloud, calculated as the variance in particle posi-
tions, is below a threshold T2.

– The tracked object’s color is balanced throughout all camera images. For this,
color histograms are computed in each view by sampling the pixel values at
the scout’s particles’ projected 2D coordinates, and histogram similarity is
measured using the bhattacharyya distance.

– The target object is sufficiently dissimilar to its surrounding background in
every view. Again, the bhattacharyya distance is used to measure similarity
between the target object histograms and the corresponding background
histograms. For the latter, colors are sampled in each view from a circle of
60cm diameter, centered around the scout track’s position and projected to
the image planes. This last condition helps to avoid initializing faulty tracks
on plane surfaces, triggered e.g. by false alarm detections or shadows, or when
the target’s upper body color is not distinct enough from the surrounding
background to allow stable tracking.

Tracks are deleted when their average weight, considering only color, audio-visual
detection and person region contributions, falls below a certain threshold, or the
spread of their particle cloud exceeds a fixed limit.

2.3 Particle Filtering

The tracking scheme used here maintains a separate particle filter tracker for
each person. In contrast to conventional implementations, in this framework a
particle represents the hypothesized (x, y, z) scene coordinates of one single point
on the target object, not necessarily its center. Consequently, the foreground and
color feature scores of a particle in each camera image are not computed using a
projected kernel or person window, but rather by using only one pixel value: The
particle’s 3D position, shifted by -20cm in the z-axis, is projected to the image.
The corresponding pixel coordinates and color value are then used, together with
the foreground segmentation map and the track’s color histogram, to derive the
foreground and color scores respectively. The particle’s 3D position, on the other
hand, is used together with available upper body detection, person region hint
or acoustic source positions and uncertainties to derive a detection score. A
weighted combination of these scores using predefined fixed weights then yields
the final particle score. In this way, the computational effort for an individual
particle’s score is kept at a minimum, notably requiring no time consuming
histogram comparisons or backprojections.
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After scoring, normalization and resampling, the mean of the particles’ posi-
tions is taken as the track center. Propagation is then done by adding gaussian
noise to the resampled positions in the following way: The particles are first split
into 2 sets. The first set comprises the highest scoring particles, the “winners” of
the resampling step, and contains at most half of the particle mass. The rest of
the particles comprises the second set. The speed of propagation is then adjusted
differently for each set, such that the high scoring particles stay relatively stable
and keep good track of still targets, while the low scoring ones are heavily spread
out to scan the surrounding area and keep track of moving targets. A total of
only 75 particles is used per track.

Since the system maintains a separate particle filter for every track, some
mechanism is required to avoid initializations on already supported tracks or
accumulations of filters on the same track. This is accomplished as follows: A
“repellent” region of 60cm diameter is defined around the center of each track.
The weight of all other tracks’ particles which fall into the repellent region are
then set to 0 if their current weight does not exceed the repellent track’s av-
erage weight. Additionally, absolute priority is given to valid tracks over scout
tracks. In this way, particles from distinct tracks which share the same space are
penalized and tracks with higher confidence repel less confident ones.

The system implementation is distributed over a network of 5 machines to
achieve real-time computation speed. It was extensively tested and achieved
high accuracy rates, as shown in section 6. Figure 2 shows a graphical output of
the particle filter tracking system.

Fig. 2. A graphical output of the particle filter based tracking system. The white
rectangles show upper body detection hits and the areas used for sampling foreground
and background colors. The histogram backprojection values are shown for each track,
superimposed on the image as grayscale values, with brighter colors indicating higher
probabilities of belonging to the person track.
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3 Single-View Model-Based Person Tracking on
Panoramic Images

In contrast to the above presented system, the panoramic camera tracker relies
solely on the wide angle images captured from the top of the room. The advan-
tage of such images is that they reduce the chance of occlusion by objects or
overlap between persons. The drawback is that detailed analysis of the tracked
persons is difficult as person-specific features are hard to observe. This system
has already been tested in the CLEAR 2006 evaluation, and is described in de-
tail in [12]. No modifications to the system or its parameters, and no tuning on
the 2007 data was done, to provide an accurate baseline for comparisons. The
following gives only a brief system overview.

The tracking algorithm is essentially composed of a simple but fast foreground
blob segmentation followed by a more complex EM algorithm for association of
blobs to person models.

At first, foreground patches are extracted from the images by using a dynamic
background model. The background model is created on a few initial images
of the room and is constantly adapted with each new image using an fixed
adaptation factor α. Background subtraction, thresholding and morphological
filtering provide the foreground blobs for tracking.

The subsequent EM algorithm tries to find an optimal assignment of the
detected blobs to a set of active person models. Person models are composed
of an image position (x, y), velocity (vx, vy), radius r and a track ID, and are
instantiated or deleted based on the foreground blob support observed over a
certain time window.

The approach results in a simple but fast tracking algorithm that is able to
maintain several person tracks, even in the event of moderate overlap. By as-
suming an average height of 1m for a person’s body center, and using calibration
information for the top camera, the positions in the world coordinate frame of
all tracked persons are calculated and output.

The system makes no assumptions about the environment, e.g. no special
creation or deletion zones, about the consistency of a person’s appearance or
about the recording room. It runs at a realtime factor of 0.91, at 15fps, on a
Pentium 3GHz machine.

4 JPDAF-Based Acoustic Source Localization

The acoustic source localization system is based on a joint probabilistic data
association filter (JPDAF) [15,19]. This is an extension to the IEKF used in pre-
vious approaches [18], that makes it possible to track multiple targets at once
and updates each of the internally maintained IEKFs probabilistically. It also
introduces a “clutter model” that models random events, such as door slams,
footfalls, etc., that are not associated with any speaker, but can cause spurious
peaks in the GCC of a microphone pair, and thus lead to poor tracking perfor-
mance. Observations assigned with high probability to the clutter model do not
affect the estimated positions of the active targets.

First of all the timedelays and corresponding correlation values are calculated
for all possible microphone pairs within each of the T-arrays and 14 pairs of
the available MarkIIIs by calculating the GCC-Phat [16,17] of the frequencies
below 8000 Hz. The timedelays are estimated 25 times per second resulting in
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a hamming window size of 0.08 ms with a shift size of 0.04ms. For the GCC, a
FFT size of 4096 points is used. The maximum search in the resulting correlation
function is restricted to be in the valid range of values as conditioned on the room
size and the microphone positions.

Then, for each of the seminars and each of the used microphone pairs, a
correlation threshold is estimated separately by calculating the histogram of all
correlation values of that pair and seminar and using the value that is at 85%
of it, i.e. the smallest value that is greater than 85% of the correlation values.

The JPDAF is then fed with one measurement vector for each time instant
and microphone array that is made up of the TDOAs of those microphone pairs
of that array with a correlation higher than the previously estimated one. As
observation noise we used 0.02ms. The measurement vector is only used for
position estimation if it has at least 2 elements.

The first step in the JPDAF algorithm is the evaluation of the conditional
probabilities of the joint association events

θ(t) =
mt⋂

i=1

θiki , t = 0, . . . , T (5)

where the atomic events are defined as

θik = {observation i originated from target k} (6)

Here, ki denotes the index of the target to which the i-th observation is associated
in the event currently under consideration. In our case we chose the maximum
number of targets to be T ≤ 3 and the maximum number of measurements per
step to be mt ≤ 1. From all the theoretically possible events only feasible events
are further processed. A feasible event is defined as an event wherein

1. An observation has exactly one source, which can be the clutter model;
2. No more than one observation can originate from any target.

An observation is possibly originating from a target when it falls inside the
target’s validation region given by the innovation covariance matrix and a gating
threhold of 4.0.

Applying Bayes’ rule, the conditional probability of θ(t) can be expressed as

P{θ(t)|Yt} =
P{Y(t)|θ(t), Y t−1}P (θ(t)

P{Y(t)|Yt−1}
(7)

where the marginal probability P{Y(t)|Yt−1} is computed by summing the joint
probability in the numerator of (7) over all possible θ(t). The conditional prob-
ability of Y(t) required in (7) can be calculated from

P{Y(t)|θ(t), Y t−1} =
mt∏

i=1

p(yi(t)|θiki (t), Y t−1) (8)

The individual probabilities on the right side of (8) can be easily evaluated given
the fundamental assumption of the JPDAF, namely,

yi(t) ∼ N (ŷki
(t|Yt−1),Rki(t)) (9)
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where ŷki
and Rki(t) are, respectively, the predicted observation and innovation

covariance matrix for target ki. The prior probability P{θ(t)} in (7) can be
readily evaluated through combinatorial arguments [15, §9.3] using a detection
probability of 85%. Once the posterior probabilities of the joint events {θ(t)}
have been evaluated for all targets together, the state update for each target can
be made separately according to the update rule of the PDAF [15, §6.4].

As the JPDAF can track multiple targets, it was necessary to formulate rules
for deciding when a new track should be created, when two targets should be
merged and when a target should be deleted. The JPDAF is initially started with
no target at all. A new target is created every time a measurement can not be
assigned to any previously existing target. A new target is always initialized with
a start position in the middle of the room and a height of 163.9cm and a diagonal
state error covariance matrix with a standard deviation that is essentially the
size of the room for x and y and 1m for z. This initialization is allowed to take
only 0.1s otherwise the target is immediately deleted. The initialization is said
to be finished when the target is detected as active. This is when the volume of
the error ellipsoid given by the state error covariance matrix is smaller than a
given threshold. If a target didn’t receive any new estimates for 5s, it is labeled
as inactive and deleted. If two targets are less than 25cm apart from each other
for at least 0.5s the target with the larger error volume is deleted.

To allow speaker movement, the process noise covariance matrix is dynami-
cally set to a multiple of the squared time since the last update. For stability
reasons, the process noise as well as the error state covariance matrix are upper
bounded.

Since the filter used for each of the targets is built on top of the IEKF, there
are at most 5 local iterations for each update.

The selection of the active speaker out of the maintained targets is done by
choosing the target with the smallest error volume that has a height between 1m
and 1.8m. Additionally, an estimate is only output when it is a valid estimate
inside the physical borders of the room.

The JPDAF algorithm used here is a fully automatic two-pass batch algo-
rithm, since the correlation thresholds are first estimated on the whole data and
then the position is estimated using the precalculated time delays. If those cor-
relation thresholds would be used from previous experiments, it would be a fully
automatic one-pass online algorithm. The algorithm runs at realtime factor 1.98
on a Pentium 4, 2.66GHz machine.

5 State-Based Decision-Level Fusion

For the panoramic camera system, the fusion of the audio and video modalities
is done at the decision level. Track estimates coming from the top camera visual
tracker and the JPDAF-based acoustic tracker are combined using a finite state
machine, which considers their relative strengths and weaknesses. Although the
visual tracker is able to keep several simultaneous tracks, in scenarios requir-
ing automatic initialization it can fail to detect persons completely for lack of
observable features, poor discernability from the background, or overlap with
other persons. The acoustic tracker, on the other hand, can precisely determine
a speaker’s position only in the presence of speech, and does not produce accu-
rate estimates for several simulaneous speakers or during silence intervals.



Multi-level Particle Filter Fusion of Features and Cues 79

Based on this, the fusion of the acoustic and visual tracks is made using a finite
state machine weighing the availability and reliability of the single modalities:

– State 1: An acoustic estimate is available, for which no overlapping visual
estimate exists. Here, estimates are considered overlapping if their distance
is below 500mm. In this case, it is assumed the visual tracker has missed
the speaking person and the acoustic hypothesis is output. The last received
acoustic estimate is stored and continuously output until an overlapping
visual estimate is found.

– State 2: An acoustic estimate is available, and a corresponding visual esti-
mate exists. In this case, the average of the acoustic and visual estimates is
output.

– State 3: After an overlapping visual estimate had been found, an acoustic
estimate is no longer available. In this case, it is assumed the visual tracker
has recovered the previously undetected speaker and the position of the last
overlapping visual track is continuously output.

6 Evaluation on the CLEAR’07 3D Person Tracking
Database

The above presented systems for visual, acoustic and multimodal tracking were
evaluated on the CLEAR’07 3D Person Tacking Database. This database com-
prises recordings from 5 different CHIL smartrooms, involving 3 to 7 persons in
a small meeting scenario, with a total length of 200 minutes.

Table 1 shows the results for the Single- and Multi-view visual systems (Parti-
cle Filter, Top Tracker), for the acoustic tracker (JPDAF), as well as for the cor-
responding mutimodal systems (Particle Filter Fusion, Decision Level Fusion).
For details on the Multiple Object Tracking Precision (MOTP) and Multiple
Object Tracking Accuracy (MOTA) metrics, the reader is referred to [11].

Table 1. Evaluation results for the 3D person tracking systems

System MOTP miss falsePos mism. (A−)MOTA
Particle Filter 155mm 15.09% 14.50% 378 69.58%
Top Tracker 222mm 23.74% 20.24% 490 54.94%
JPDAF 140mm 20.60% 24.78% - 54.63%
Particle Filter Fusion 151mm 20.17% 20.02% 121 58.49%
Decision Level Fusion 159mm 21.80% 23.38% 370 50.78%

As can be seen in Table 1, the particle filter tracker clearly outperforms the
baseline top view system, while still remaining competitive in terms of compu-
tational speed.

Factors that still affect tracking accuracies can be summed up in 2 categories:

– Detection errors: In some cases, participants showed no significant motion
during the length of the sequence, rarely spoke, were only hardly distinguish-
able from the background using color information, or could not be detected
by the upper body detectors, due to low resolution, difficult viewing an-
gles or body poses. This accounts for the rather high percentage of misses.
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The adaptation of the used detectors on CLEAR recording conditions or
the inclusion of more varied features for detection should help alleviate this
problem.

– False tracks: The scarce availability of detection hits for some targets lead
to a system design that aggressively initializes person tracks whenever a
detection becomes available and keeps tracks alive for extended periods of
time even in the absence of such. This unfortunately can lead to a fair amount
of false tracks which can not be distinguished from valid tracks and effectively
eliminated based on color or foreground features alone. Again, the design of
more reliable person detectors should help reduce the number of false tracks.

The MOTP numbers range from 222mm for the top camera visual system
to 140mm for the acoustic tracker. The acoustic tracker reached an accuracy
of 55%, with the main source of errors being localization uncertainty. On the
visual and the multimodal side, the particle filter based feature level fusion ap-
proach (70%, 58%) clearly outperformed the baseline approach (55%, 51%). In
the particle filter approach, the fusion of both modalities could improve tracking
accuracy, compared to acoustic only tracking results, even though in the mul-
timodal subtask the speaker additionally had to be tracked through periods of
silence.

7 Summary

In this work, two systems for the multimodal tracking of multiple users were
presented. A joint probabilistic data association filter for source localization is
used in conjunction with two distinct systems for visual tracking: The first is a
particle filter using foreground, color, upper body detection and person region
cues from multiple camera images. The other is a blob tracker using only a
wide angle overhead view, and performing model based tracking on foreground
segmentation features. Two fusion scheme were presented, one at feature level,
inherent in the particle filter approach, and one at decision level, using a 3-state
finite-state machine to combine the output of the audio and visual trackers.
The systems were extensively tested on the CLEAR 2007 3D Person Tracking
Database. High tracking accuracies of up to 70% and position errors below 15cm
could be reached.
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