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ABSTRACT
In the context of smart environments, the ability to track
and identify persons is a key factor, determining the scope
and flexibility of analytical components or intelligent ser-
vices that can be provided. While some amount of work has
been done concerning the camera-based tracking of multi-
ple users in a variety of scenarios, technologies for acoustic
and visual identification, such as face or voice ID, are unfor-
tunately still subjected to severe limitations when distantly
placed sensors have to be used. Because of this, reliable
cues for identification can be hard to obtain without user
cooperation, especially when multiple users are involved.

In this paper, we present a novel technique for the track-
ing and identification of multiple persons in a smart envi-
ronment using distantly placed audio-visual sensors. The
technique builds on the opportunistic integration of track-
ing as well as face and voice identification cues, gained from
several cameras and microphones, whenever these cues can
be captured with a sufficient degree of confidence. A proba-
bilistic model is used to keep track of identified persons and
update the belief in their identities whenever new observa-
tions can be made. The technique has been systematically
evaluated on the CLEAR Interactive Seminar database, a
large audio-visual corpus of realistic meeting scenarios cap-
tured in a variety of smart rooms.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis

General Terms
Algorithms, Experimentation, Performance
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smart environments, sensor fusion, modality fusion, human
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1. INTRODUCTION
Smart spaces and environments that perceive their occu-

pants’ actions and offer intelligent human-centered services
have been a topic of research for quite some time. In this
context, the tracking and identification of persons (referred
to here as “identity tracking”) plays an important role, as it
provides fundamental contextual knowledge upon which fur-
ther analysis of activities or interactions can be performed
[1, 2]. The overall goal is to simultaneously keep track of
multiple identities evolving in the space using unobtrusive
sensors, such as distantly placed cameras and microphones.
Further, this is to be accomplished in everyday scenarios im-
posing little or no constraint on the behavior of users, such
as in meeting rooms, office areas, living rooms, etc.

One of the main problems facing identity tracking is that
in such realistic scenarios, reliable cues for person-specific
identification are hard to obtain with the sensors described
above. Generally observable features based on a person’s
overall appearance, such as the color of clothing, body height,
etc., can be ambiguous (e.g. when all persons wear black)
and may well vary considerably with time or environmental
conditions (e.g. taking off one’s jacket, sitting down). On
the other hand, more invariant and person-specific features
such as those gained by face or voice identification may only
seldom be observable (such as when a good view of the face
is available or when the person takes his/her turn speaking
in a conversation).

The main idea followed here to overcome this problem is
to opportunistically integrate reliable identification cues for
each person whenever they become available and to keep
track of identified persons until further observations can be
made.

The difficulties to be dealt with are twofold: Firstly, single
observations gained through face or voice identification are
inherently noisy, being influenced by lighting conditions, low
resolution, imperfect facial alignment, environmental noise,
crosstalk, etc. This implies that identification cues need to
be accumulated in time and multiple modalities should be
used to increase the accuracy of identification. Secondly, in
realistic scenarios, the tasks of automatically detecting and
tracking persons in the first place cannot be assumed solved
with perfect accuracy. Persons may be missed, tracks may
be confused or lost. This means that person identities need
to be correctly recovered when observations again become
available.

While some amount of work has been done on the fields
of tracking and identification using sensor networks with
overlapping or even non-overlapping views, none of the ap-



proaches so far tackle all the related problems efficiently.
Most integrated approaches rely on general appearance fea-
tures, such as color (or on RFID tags and other worn sen-
sors), and build on the assumption that features for identi-
fication are jointly available with features for tracking with
every observation made. While some approaches, such as [3],
use person-specific features such as provided by face identi-
fication, they still rely on the continuous availability of high
resolution face images in very restrictive setups. Approaches
that use acoustic features for identification typically assume
that the number of persons is known a priori, that speakers
take frequent turns, and do not keep track of their locations
except in very restrictive setups [4]. More importantly: Al-
most all approaches found in the literature that target mul-
tiple users are limited to applications where the detection
(and spatio-temporally local tracking) of persons can be re-
alized flawlessly and build on the results of this step for
identification [4, 6, 5, 9, 10].

In this paper, a new methodology is presented for the mul-
timodal tracking and identification of multiple persons by
fusing reliable tracking and ID cues whenever they become
available. The method:

• Opportunistically integrates person-specific identifica-
tion cues that can only sparsely be observed for each
person over time

• Keeps track of the locations of multiple identified per-
sons while ID cues are not available

• Combines the acoustic and visual modalities to in-
crease its robustness and flexibility

• Does not rely on accurate detection and tracking, but
rather considers both person locations and identities
as attributes to be estimated.

The developed method is a non-parametric model-based
approach based on Bayesian filtering of high level track and
ID observations. It uses an EM learning algorithm to es-
timate the probability densities of a person’s presence, lo-
cation and identity based on the last k observations made.
The proposed approach has been tested on a large anno-
tated audio-visual corpus, the CLEAR Seminar Database
[24, 21], comprising a total of 200 minutes from 20 different
recorded small meetings. This database, captured in smart
rooms using distantly placed sensors, features visual streams
from several cameras on which tracking and face identifica-
tion can be performed, as well as audio streams from several
microphone arrays for speaker tracking and identification.

In the following section, a brief description is given of
the tracking and identification components that feed their
input to the probabilistic fusion module. Section 3 then
explains the developed identity tracking method. In section
4, the integrated system is thoroughly evaluated, as well as
compared to a baseline system, which builds on the results
of the tracking step to infer identities in a sequential way.
Finally, section 5 gives a summary and concludes.

2. TRACKING AND IDENTIFICATION CUES
In this section, the various components used for tracking,

speaker localization, face recognition and speaker identifica-
tion are presented. As they are not the focus of this paper,
they are only briefly described, with references to previous
work, giving more detailed explanations, made at the appro-
priate places.

Figure 1: The output of the person tracking com-
ponent. The person tracks are indicated by colored
circles at their estimated 3D positions

2.1 Multiple Person Tracking
The person tracking component is responsible for estimat-

ing the x,y,z scene coordinates of the persons in the environ-
ment (see Figure 1). It utilizes the images from five different
synchronized and calibrated views of the room, and a variety
of features to automatically detect and track multiple per-
sons. The details of the tracker can be found in [18]. The
performance of the tracker has been thoroughly evaluated on
the CLEAR 2007 test set, and reached a tracking precision
(MOTP ) of 15cm and a tracking accuracy (MOTA) of 70%.
The MOT measures are performance evaluation metrics for
multiple object trackers. The former measures spatial ac-
curacy whereas the latter measures the ability to find the
correct number of objects and to keep consistent tracks in
time (A detailed explanation of the MOT metrics can be
found in [15, 16]). As these numbers and a further review
of the overall accuracies reached in the CLEAR evaluations
(see [21]) show, for such realistic and challenging scenarios,
the flawless detection and tracking of multiple occupants is
still not a realistic prerequisite.

2.2 Face Identification
Face identification is performed in each of the four avail-

able corner camera views whenever a frontal face can be
found. Again, the difficulty lies in the fact that usually only
low resolution snapshots of faces can be obtained from such
views, resulting in poor identification confidence. Moreover,
faces may be oriented downwards, tilted, occluded by heads
or other objects, turned away from cameras, such that us-
able frontal faces can rarely be captured. Of course, these
difficulties are partly compensated by the availability of mul-
tiple views of the scene. When a face area is found in an
image, a local appearance-based identification technique is
applied, using Discrete Cosine Transform (DCT) features
and nearest neighbor classification. The details of the al-
gorithm are given in [12, 13]. The technique accumulates
identification results and confidences over several frames to
increase its accuracy. It has been evaluated on the CLEAR
2007 database, in a closed set identification task featuring
28 individuals, using pre-segmented test segments of varying



lengths. It achieved 84.6% accuracy for the hardest condi-
tion in terms of data availability (15s training segments, 1s
test segments) and 96.4% for the easiest condition (30s train,
20s test).

For the here presented evaluation, the classifiers are again
trained on the same set of 28 known individuals, but the task
is now that of open set identification, with 39 additional
unknown faces appearing in the database. Moreover, the
association of faces to persons for confidence accumulation
is no longer known a-priori and has to be derived automati-
cally. This makes the identification task considerably harder
than in the aforementioned evaluation. An additional dif-
ficulty for face identification lies in the accurate alignment
of cropped faces in low-resolution views, a problem which is
still not satisfactorily solved (see [21]). In earlier work [17],
we circumvented this problem by using active cameras to
focus in on target persons and capture high resolution facial
shots suitable for alignment and reliable identification. As
no active camera views are available in the CLEAR 2007
database, manually annotated face bounding boxes are used
here, as in the previous evaluation, instead of an automatic
detection and alignment step. Nevertheless, most of the ob-
tained faces are still badly recognizable because of the other
mentioned difficulties, such that a confidence based filtering
of face ID cues is applied, as explained later in this section.

2.3 Speaker Identification
Speaker localization is performed using the audio streams

captured from at least four distributed microphone arrays
on the room walls, while identification is made using just
one audio channel. As compared to face identification, the
difficulty in far-field acoustic identification lies in segment-
ing speech, separating multiple speakers, and dealing with
low signal to noise ratios, reverberations, laughter, etc. Ad-
ditionally, identification can usually only be made for one
person at a time, the active speaker, while crosstalk is gen-
erally detrimental both for localization and identification.
The algorithm applied here uses a set of Gaussian Mixture
Models (GMMs) trained for each known speaker and Mel
Frequency Cepstral Coefficients (MFCCs) as features. Ad-
ditionally, a silence model was trained and used in parallel
to the speaker models in testing, such that the tasks of seg-
mentation and identification are performed jointly simply by
analyzing the GMMs’ resulting MAP probabilities. The de-
tails of the algorithm can be found in [14]. Just as for face
ID, its performance has been tested in the CLEAR 2007
evaluations on the Interactive Seminar database [21], in a
closed set identification task involving 28 individuals and
using pre-segmented intervals of clean speech. It reached
86.7% accuracy for the hardest testing condition (15s train,
1s test) and 99.1% for the easiest condition (30s train, 20s
test).

Again, for the here presented evaluation, the speaker iden-
tification task becomes an open set problem. A total of
27 speakers were trained in (of which 24 are also visually
known, i.e. three known persons can only be identified us-
ing their voice). This means that 40 additional individuals
occurring in the database are acoustically unidentifiable. An
additional difficulty lies in automatically detecting clean seg-
ments of speech, usable for identification. In this approach,
the audio stream is segmented into equal 1s segments and
identification is made on each. Reliable speaker ID results
are again recognized by analyzing the distribution of GMM

MAP probabilities, and unreliable segments are not used
in confidence accumulation. A definite disadvantage of the
acoustic modality over the visual one is that speech cues can
much more rarely be obtained for less active speakers, often
resulting in a large delay before identification is possible.

2.4 Confidence Estimation and Spatial Local-
ization

For both the frame-based results of face identification and
the 1s interval speaker identification results, confidence mea-
sures in the found identities are derived in the form of dis-
crete non-parametric probability distributions (pdfs) over
the set of known ID labels. For face ID, the k-nearest neigh-
bor classification result is a set of k distances to the train-
ing sample vectors closest to the test vector. Similarly, for
Speaker ID, the result are the n highest MAP probabilities
for the set of 28 speaker/silence GMMs. In both cases, the
identity pdf is calculated by min-max normalization of the
resulting values, followed by an additional normalization to
unit sum. Only if a definite peak in the resulting pdf can
be found (here, a threshold of 60% is used for peak detec-
tion) will it be used in the integration step to accumulate
confidences and distinguish known from unknown persons.

Finally, identification cues are spatially localized whenever
possible to allow the association to available person tracks.
For visual identification, this is done by exploiting the ex-
pected width of a frontal face and camera calibration infor-
mation. By using the detected face box center and width in
a camera image, the distance to the camera can be estimated
and a 3D scene location computed. As small variations in
pixel width can cause great variations in the estimated dis-
tance, the derived 3D location comes with a certain amount
of uncertainty, which is modeled by a 3-dimensional uncer-
tainty covariance matrix. Acoustic localization is performed
on the microphone array channels using Generalized Cross
Correlation Features (GCC-Phat) and a Joint Probabilistic
Data Association Filter framework (see [11] for details). The
result of source localization is the 3D scene position of the
current most active sound source, as well as an associated
uncertainty covariance matrix. The acoustic source localiza-
tion system was also evaluated on the CLEAR 2007 database
and reached an accuracy (MOTA) of 55% and a precision
(MOTP ) of 14cm. One should note that speech localization
inaccuracies can lead to cases where a speaker identification
is possible, but localization is not. In this case, the found
ID cue can later not be associated to a person track based
on spatial mapping, but can well serve as a hint that the
concerned person is actually present. In the next section,
we will show how the integrated tracking approach makes
use of this information.

3. AUDIO-VISUAL FUSION AND IDENTITY
TRACKING

The main idea behind the design of our ID Tracking ap-
proach is to opportunistically integrate reliable but sparsely
available cues for identification whenever they become avail-
able, and to keep tracking recognized persons in the absence
of such. Audio-visual ID cues and person tracks of varying
accuracy coming from the different system components are
expected to arrive with varying regularity.

This raises the need for a fusion technique that handles
incomplete and possibly very sparse information.



Figure 2: The output of the integrated identity
tracking system. The blue and yellow circles repre-
sent the person tracker hypotheses and the person
models, respectively. The identities for recognized
persons are printed on top of the respective models.
The green lines indicate face identification hits for
the current frame, in this example made by two of
the four corner cameras for one room occupant

3.1 Integrated Tracking and Identification
The probabilistic integrated identity tracking method con-

siders person identities and locations as hidden variables to
be jointly inferred in a Bayesian estimation process. Its main
goal is to recognize the set of known persons in the smart
environment, while considering their locations as additional
information which may or may not be available from tracker
outputs. As track information as well as captured identifi-
cation hints are considered inherently flawed in this frame-
work, no reliable cue is available for estimating the number
of persons in the scene. In this work, we therefore limit the
problem to the tracking and identification of a number of
known persons among a greater set of unknown individuals.
The known persons are those for which voice or face models
have been trained in a priori. They will subsequently be
referred to as “focus persons”. In other words, we attempt
to recognize the identities of a known number F of focus
persons (from a larger set of N trained identities) evolving
among a variable number M of unknown persons, and esti-
mate their positions.

The developed algorithm works as follows: A set of person
models {m1...mF } is kept, one for each of the F focus per-
sons, with mi = (idi, sti). The hidden variables idi and sti
represent the person’s identity and location respectively and
are modeled by discrete non-parametric probability density
functions. The person location, in this case, is not repre-
sented by his or her spatial x,y,z-coordinates in the scene.
Rather, abstraction is made of the concrete locations, using
available tracking information, where each track Tj repre-
sents a discrete state sj with j ≥ 1. Additionally, state
s0 represents the case where a person location does not co-
incide with any of the available tracks (in our case, when
the person is present in the room but is not tracked). Per-
son localization is therefore performed on a topological level,
with the overall topology consisting of the room itself and

all currently available tracks. Then, the location variable
sti becomes a discrete variable, just as the identity variable
idi. In addition to the models for known persons, a garbage
model mg is also kept, to which erroneous, noisy observa-
tions, or observations coming from unknown persons should
be associated.

The observation sequence {o1...ot} for our probabilistic
model consists of the localized speaker ID and face ID cues
obtained in time, with oi = (Li, si) where the identity Li
is provided as discrete probability density function over all
known identities, and the location si as a discrete state in-
dex derived in a track association step: The 3D location xµ
and covariance matrix Σ for each ID cue are used to evalu-
ate track proximity and the association is made to the track
Tj with location xj maximizing p(xj |xµ, Σ) ≈ N(xµ, Σ), re-
sulting in the discrete state index j. An overlap threshold is
however applied and observations which cannot be mapped
to any specific track are assigned the state index 0.

For every new observation oi = (Li, si), the person model
pdfs are updated using an iterative EM-algorithm. For every
model mj , the similarity d(Li, idj) between the observed
identity pdf Li and the modeled identity pdf idj is measured
and the association is made to mk with

k = argmax1..F (d(Li, idk)).

Here, the Bhattacharyya distance [23], with

d(p, q) =
∑
x

√
p(x)q(x)

is used as similarity measure for discrete pdfs. The identity
and location pfds, idk and stk, are then updated using the
last n observations for model mk. This is done by storing
the observations associated to each person model and us-
ing the last n stored observations to derive its current pdfs.
Since acoustic and visual identification cues may come at
a sensibly different rate, due to the availability of several
camera views captured at high framerates, it makes sense to
store location estimates, acoustic ID and visual ID pdfs in
separate queues, qs, qa, and qv. In the update step, separate
probability density functions for visual and acoustic ID are
first computed, by averaging the stored information for each
modality, and the combined audio-visual pdf idk, as used in
the expectation step, is then obtained as a weighted sum of
the two. Here, equal weights are assigned to the audio and
visual modalities.

Finally, the highest MAP identity label for each person
model m is derived from idm, by assuming uniform prior dis-
tribution of identities, and the output of the identity track-
ing module are the F person models with the highest MAP
probabilities. Figure 2 shows an example output of the inte-
grated identity tracking system on a CLEAR seminar with
four known participants.

3.2 Baseline Sequential System
As a baseline to evaluate the advantages of the integrated

ID tracking approach, a sequential algorithm was imple-
mented which relies on an accurate detection and tracking
step to estimate person identities. The baseline fusion sys-
tem initializes a person model for each track delivered by
the multiple camera tracker and uses these person models
as the basis for spatial association of ID cues. Here again,
a person model comprises acoustic, visual and audio-visual
pdfs for the iterative learning of identities. In contrast to



Figure 3: The process of mapping localized ID cues
to person tracks. T1 to T3 represent the person
tracker output. The blue and red arrows represent
sporadically captured face and speaker ID cues, re-
spectively. A spatio-temporal mapping is made for
both types of cues, confidences are accumulated in
time and a global assignment of IDs to tracks is made
that optimizes the overall confidence level

the integrated system, though, the person location, here, is
not a variable to be estimated, but is directly given by the
3D coordinates of the corresponding track. The association
of visual and acoustic ID cues to person models is then made
in the following way: The observed cues, derived from sin-
gle frames for face ID and from 1s intervals for speaker ID,
and tagged with their 3D location estimates, are compared
to model locations and mapped to the closest overlapping
model (with the overlap threshold set to 50cm). Cues which
can not be associated to any of the available models (such
as non-localized speech) are ignored.

After accumulation, the final identification hypothesis is
not determined for each track independently, e.g. based on
the highest MAP label, but rather by globally optimizing the
hypothesis outputs jointly for all tracks. For each model m,
the identification confidence P (l|m) for each label l in con-
sideration is derived from the model’s audio-visual ID pdf.
Finding the assignment of distinct identities to person mod-
els that maximizes the overall confidence is a combinatorial
problem (a maximum weight assignment problem), which is
solved here using Munkres’ algorithm [22]. The optimal as-
signment is recomputed every time a new identification hit is
received. The advantage of joint assignment is that mapping
of the same ID to several persons is excluded, as the system
will change the hypothesized ID for one track based on new
information for another track. Figure 3 shows the process of
spatio-temporal association and ID assignment. The output
of the baseline system, just as for the probabilistic integra-
tion system, are the F tracks with the highest MAP identity
confidence.

One obvious drawback of the baseline method is that only
tracked persons can be identified and a learned identity is
lost when the corresponding person track is lost. It then
has to be relearned from subsequent observations as soon as
tracking information is again available.

4. EXPERIMENTAL EVALUATION
This section describes the data and metrics used to eval-

uate combined tracking and identification performance, and
presents comparative results for the baseline system and the
integrated probabilistic fusion approach.

4.1 Evaluation Database
The developed method for integrated identity tracking

has been extensively evaluated on the Interactive Seminar
database used in the CLEAR 2007 evaluation [19, 20]. This
database features recordings of multiple users in realistic
small meeting scenarios, captured in a variety of smart rooms
equipped with a multitude of audio-visual sensors (see Fig-
ure 4). It offers five calibrated and synchronized visual
streams from corner and ceiling cameras, as well as synchro-
nized audio streams from a minimum of four microphone ar-
rays on the room walls. The dataset comprises 20 seminars
from five recording rooms with varying audio-visual charac-
teristics, with two annotated five minute segments per semi-
nar, for a total of 200 minutes of recordings. In this dataset,
a total of 67 individuals take part in small meetings, with
typical meeting sizes of three to five persons. Of these 67
identities, 24 are trained in audio-visually, three are trained
in using only the acoustic modality and four using only the
visual one. The ratio of known to unknown persons varies
with each meeting, with a slightly greater number, on aver-
age, of unknown persons.

4.2 Evaluation Goals and Metrics
The goal of evaluation is to measure the performance of

the presented identity tracking technique at recognizing and
tracking a subset of known focus persons interacting with
several unknown ones in a smart environment. The evalu-
ation procedure is defined in accordance: We define a cu-
mulative identification score (ia), measuring the accuracy of
the tracker at estimating focus person identities, and a lo-
calization score (la), measuring the tracker’s ability to find
the correct person positions within a certain tolerance level.

Let L = {l1 . . . ln} be the set of labeled focus persons
and H = {h1 . . . hm} the hypothesis output by the identity
tracker for one time frame.

Let also ia and la be initially set to 0. For every evaluated
time frame t,

1. Let gt be the number of labeled identities in Lt.

2. For every identity li in Lt, verify if a corresponding
identity is included in the set Ht. If yes, increase the
identification score ia by one. If additionally the la-
beled and hypothesized person positions overlap (with
the overlap threshold set to 50cm), increase also the
localization score la.

3. For all identities in Lt for which no match has been
found, verify if at least a not yet mapped identity in
Ht spatially overlaps with it. In this case, increase the
la score by one. All remaining identities are considered
missed.

Now let G =
∑
t gt, be the total number of ground truth

identity labels in the sequence.
We then define the following metrics for tracking and iden-

tification performance: The Identification Accuracy IA =
ia/G, representing the ability to correctly recognize iden-
tities independent of tracking performance, averaged over



(a) AIT (b) UKA (c) FBK-IRST (d) IBM (e) UPC

Figure 4: Scenes from the CLEAR 2007 Interactive Seminar database

Figure 5: Evolution of the frame-based Identity
Tracking Accuracy (ITA) in time, averaged over all
seminars and segments, for audio, visual, and audio-
visual identification

all labeled identities and time frames, and the Localization
Accuracy LA = la/G, measuring the quality of position es-
timation. The overall Identity Tracking Accuracy over the
entire sequence (ITA) is then defined as: ITA = LA+IA

2
.

4.3 Evaluation Results
Figure 5 shows the evolution of frame-level ITA scores for

the integrated probabilistic approach when using voice ID,
face ID, or both cues for person identification. As input
tracks to the system, the hypotheses of the multiple person
tracker described in section 2.1 were used. As can be clearly
seen, a noticeable advantage is to be gained from the fusion
of modalities, both in the speed with which identification
confidences rise, as well as in the overall accuracy reached.
Figure 6 shows the average accuracies reached over all se-
quences and segments (HypoTrHypoID group in Figure 6).

To further investigate the effects of tracking or identi-
fication quality on overall accuracies, separate evaluations
were also conducted using manually labeled person tracks
together with automatically captured face and voice ID cues
(GrounTrHypoID group in Figure 6), and using manually la-
beled face and voice recognition cues (derived from manual
annotations of frontal faces in the images and of speaker
activity in the far-field audio channels) in combination with
automatic track hypotheses (HypoTrGroundID group in Fig-
ure 6).

One should notice here that although the measured accu-
racy of the person tracking component lies around 70%, this
concerns the tracking of all the persons in a sequence, in-
cluding unknown ones. On average, the accuracy concering
only focus persons is much higher though (more than 90%),
as these are usually the main speakers or presenters in the
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Figure 6: Comparative ITA results using ground
truth or system hypothesis tracking and identifica-
tion cues
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Figure 7: Results of the integrated identity track-
ing approach (ITA), compared to the baseline algo-
rithm, with decreasing tracking accuracy

meeting, and can therefore more easily be tracked. This ex-
plains why accuracies do not drop significantly when going
from manual tracks to hypothesis tracks.

Finally, the performance of the integrated approach is
compared to the baseline system. This is shown in Fig-
ures 7 and 8. As the drop in accuracy when passing from
labeled to hypothesis tracks (Tracker1) was not significant
enough to illustrate the effects of tracker failure, additional
tracking system hypotheses were simulated by manually re-
moving the tracks for one (Tracker2) or two (Tracker3) focus
persons from the tracker hypothesis, and finally by using no
tracker output at all. As can be expected, the LA and IA
scores drop considerably for the baseline system while for the
integrated approach, at least the IA score stays relatively
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constant through degrading tracker performance. This il-
lustrates the advantage of considering tracking information
only as an additional, possibly incorrect, source of infor-
mation. The probabilistic integrated approach is capable
of providing basic information about the room occupants,
as long as some of the underlying tasks of person tracking,
source localization, face recognition, or speaker identifica-
tion, can be accomplished with a sufficient degree of accu-
racy.

5. CONCLUSION
In this paper, we have presented a novel technique for the

tracking and identification of multiple persons in a smart en-
vironment using distantly placed audio-visual sensors. The
technique builds on the opportunistic integration of track-
ing as well as face and voice identification cues, gained from
several cameras and microphones, whenever these cues can
be captured with a sufficient degree of confidence. A prob-
abilistic model was introduced that jointly estimates per-
son locations and identities based on audio-visual observa-
tions. The technique has been systematically evaluated on
the CLEAR Interactive Seminar database, and compared
to a baseline technique, performing tracking and identifica-
tion in a sequential way. As results show, the integrated
approach is much more robust to tracking failures and de-
grades gracefully with decreasing tracking accuracy. The
results also show that the fusion of audio and visual modal-
ities can help achieve higher identification accuracies, even
in relatively uncontrolled situations with multiple persons,
occlusions, cross-talk, etc. For an open set identification
task, even under the challenging conditions posed by the
CLEAR Seminar database, noticeable identity tracking ac-
curacies could be reached using available state-of the art
tracking, face and voice identification components.
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