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Abstract: Linguists estimate the number of currently existing languages to be
between 5,000 and 7,000. The fifteenth edition of the Ethnologue lists 7,299 lan-
guages. Only for a small fraction of these languages automatic speech recognition
(ASR) systems have been developed so far. Languages addressed are mainly those
with either a large population of speakers, with sufficient economic funding, or with
high political impact.

In order to be able to cover as many languages as possible, techniques have to be
developed in order to rapidly port speech recognition systems to new languages
in a cost efficient way. The techniques have to be able to be applied to the new
language without the need for extensive linguistic or phonetic knowledge about the
new language and without the need for large amounts of training materials. This is
especially true for the vast number of less prevalent and under resourced languages
in the world.

In the past, phoneme based, language independent acoustic models have been stud-
ied for bootstrapping an acoustic model in a new language. These acoustic models
usually have seen multiple languages during training, and work under the assump-
tion that phonemes are pronounced the same across languages. These models can
be applied to a new, unseen language and can be used as a starting base in order
to be adapted to the new language by using comparatively little training material.
In the past it has also been shown that models for acoustic features, describing the
articulator positions for the different phonemes, can also be accurately recognized
across languages and can be trained to become language independent in the same
way as phonemes can. They were combined with phoneme based models and their
behavior on the training languages of the multilingual models was examined.

In this paper we present our first experiments examining the suitability of monolin-
gual and multilingual acoustic features for porting speech recognition systems to
new languages. We combined them with monolingual and multilingual, phoneme
based models in a stream based frame work in order to bootstrap a model in a
new language. The results show that the incorporation of models for articulatory
features into the porting framework significantly improves the performance when
porting ASR systems to new languages, reducing the word error rate by up to 3.7%
relative.

1 Introduction

Linguists estimate the number of currently existing languages to be between 5,000 and 7,000.
The fifteenth edition of the Ethnologue [1] lists 7,299 languages. Only for a small fraction
of these languages automatic speech recognition (ASR) systems have been developed so far.
Languages addressed are mainly those with either a large population of speakers, with sufficient



economic funding, or with high political impact. The fact that applications using ASR only
address a small fraction of the world’s languages bears the danger of creating a digital divide
between those languages for which ASR systems exist and those without one.
Current state-of-the art speech recognition systems require among other things large amounts

of transcribed training data. Transcriptions are usually done at word level and are produced
manually. Typical amounts of training data used nowadays range between one hundred to sev-
eral thousands of hours. The costs of collecting these amounts of data are so high, that this task
impossible to perform for all languages in the world, especially for underresourced languages.
Thus, in order to be able to cover as many languages as possible, techniques have to be devel-

oped in order to rapidly port speech recognition systems to new languages in a cost efficient
way. The techniques have to be able to be applied to the new language without the need for
extensive linguistic or phonetic knowledge about the new language and without the need for
large amounts of training materials.
Past research has shown that porting phoneme based ASR models to new languages can be

achieved by using multilingual models for bootstrapping [2]. [3, 4] have further shown that the
addition of articulatory features (AF), such as place and manner of articulation, can improve the
performance of ASR systems, and that feature models can be modelled in a multilingual way
and can be reliably recognized across languages. In this work we examined whether crosslin-
gual and multilingual articulatory features can improve the performance of ASR systems when
applying them to a new, previously unseen language.

2 Multilingual Acoustic Modeling using ML-MIX

When using the term Multilingual Automatic Speech Recognition (ML-ASR) we follow [2]
which defines multilingual recognition systems as systems that are capable of simultaneously
recognizing languages which have been presented during training. [2] has demonstrated, that
by combining the phoneme sets from several languages into a single one and sharing the train-
ing data from several languages, it is possible to train multilingual, acoustic models that can be
used to boostrap the acoustic model of a new, previuosly unseen language. For the purpose of
finding a phoneme set common to all languages, phonemes are identified by their symbol in the
International Phonetics Alphabet (IPA). In the technique ML-MIX, phonemes from different
languages that share the same IPA symbol share one model. This model is then trained by pool-
ing all the training data from the different languages. Any information about which languages
a model and its training data belong to is discarded in the process.
The idea is that, if enough data from many different languages has been seen by the ML-MIX

model, the phoneme set of a new target lanuage might have already to a large degree been seen,
and the diversitiy of the different training languages is so high, that the acoustic manifestation
of the respective phonemes in the new target language has already been learned. So, in the
ideal case, no adaptation onto the new language is necessary. In practice multilingual models
however lack in performance on their training languages as well as on languages not seen dur-
ing training when compared to monolingual ASR systems that have been trained on sufficient
amounts of monolingual data. However, in the case of insufficient amounts of training data,
ML-MIX models adapted on small amounts of available data in the target language outperform
recognizers that have been trained on this data only.

3 Articulatory Features

Past research [3] has shown, that enhancing monolingual, phoneme based recognizers with ar-
ticulatory feature models improves their performance. Current state-of-the-art ASR systems
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Figure 1 - Stream based architecture for integrating the articulatory feature models

usually model speech with Hidden Markov Models (HMMs) whose states correspond to phone-
mic or sub-phonemic units. This model ignores the fact that phonemes, as for example defined
by the IPA, are only a short-hand notation of a bundle of articulatory targets which are character-
istic for that sound. This neglects the fact that the Human articulators are in constant motion and
transitions among them are asynchronous and articulatory targets might be reached to differing
degrees, e.g. depending on the phonetic context.
In order to recognize AF, [3] introduced binary detectors that can detect whether a feature is

present or not, e.g. whether a sound is voiced or not. Continuous features, e.g. such as the
horizontal Dorsum position for vowels, are modelled by multiple binary AF detectors for dis-
crete positions, e.g for front, middle, and back. The binary detectors are modelled by Gaussian
Mixture Models (GMMs) with 128 Gaussians per model, one GMM for detecting the presence
of the feature, and one for detecting its absence.
These articulatory features are integrated into the recognition process by using a flexible stream

based approach to linearly, additively combine the scores from the AF detectors and the emis-
sion probabilities from the phonetic HMM at the state level - shown in Figure 1. E.g., if we
compare the emission probability of a state that is a voiced sound, but not a plosive, we cal-
culate the emission probability of that state as a weighted sum of the phonemic model of the
sound, the voiced GMM, and the non-plosive GMM. This makes it necessary to choose the
weights in a sensible way.

3.1 Multilingual Articulatory Features

[5, 4] have shown that articulatory features can be reliably recognized across languages, e.g.
AF detectors trained on English can be used to detect the features of German speech. It was
also shown that AF can be modelled in a multilingual way. The share factor, that measures the
overlap between different languages, was also shown to be larger for AF than for phonemes.
This indicates that AF might be very suitable for multilingual modelling and porting ASR sys-
tems to new languages. It was further demonstrated that in a monolingual scenario, in which
the phoneme models were trained on the same language as the test set, performance can be
improved by multilingual and crosslingual AF detectors.



4 Experiments

In order to test whether AF models can help when porting ASR systems to new languages, we
examined three different scenarios. First, we applied German phoneme models to English and
then enhanced the model with German AF models. Then we examined the reverse direction and
applied English phoneme models to German and enhanced them with English AF models. In
the third experiment we applied a ML-MIX model trained on English, Spanish, and Russian to
German and enhanced them with AF models, monolingual ones as well as multilingual ones.
When adding the Articulatory Features models we used the constant weights heuristic de-

scribed in [4]. That is, we started to add the articulatory features in the order of their classifica-
tion accuracy and assigned them a constant weight of 0.05. The optimal number of features to
add in this way was determined on the respective development set.

4.1 Corpus

The experiments in this paper were conducted on a selection of languages from the GlobalPhone
[6] corpus. GlobalPhone is an ongoing data collection effort that now provides transcribed
speech data that was collected in an uniform way in 18 languages. The corpus is well suited for
research in multilingual speech recognition and rapid deployment of speech processing systems
in new languages, because data collection in all languages has been done in an uniform way.
The corpus is modeled after the Wall Street Journal 0 (WSJ0) corpus and contains newspaper

articles collected with close talking microphones. The articles were read by native speakers of
the respective language.
For the work presented, the four languages English (EN), German (GE), Russian (RU), and

Spanish (SP) were used. Since English is not part of GlobalPhone, the WSJ0 corpus was used
instead. For every language three data sets are available: one for acoustic model training (train),
one for development work (dev) such as finding the correct language model weight, and one for
evaluation (eval). All three sets are speaker disjunct. Table 1 shows the sizes in hours, number
of utterances, and number of speakers of the different data sets.

Language EN GE RU SP
train

hours 15.0 16.0 17.0 17.6
#utt 7,137 9,259 8.170 5,426
#spkrs 83 65 84 82

dev
hours 0.4 0.4 1.3 2.1
#utt 144 199 898 680
#spkrs 10 6 6 10

eval
hours 0.4 0.4 1.6 1.7
#utt 152 250 1,029 564
#spkrs 10 6 6 8

Table 1 - Size of the data sets for the different languages in hours, number of utterances, and number of
speakers



4.2 Baseline Systems

As a baseline for our experiments serves the performance of monolingual phoneme based
speech recognition systems tested on their training language. The acoustic models of the rec-
ognizers are left-to-right continuous HMMs with three states per phoneme. All experiments in
this work were performed with the help of the Janus Recognition Toolkit (JRTk) that features
the Ibis single pass decoder [7].

4.2.1 Preprocessing

The 16kHz, 16 bit audio data was preprocessed by calculating mel scaled cepstral coefficients,
liftering, and concatenation of 6 neighboring feature vectors. The resulting 91 dimensional
vector was reduced to 32 dimensions with the use of linear discriminant analysis (LDA). The
mean of the cepstral coefficients was subtracted and their variance normalized on a per utter-
ance basis. During decoding incremental feature space constrained MLLR (cMLLR) [8] and
incremental cepstral mean subtraction and variance normalization on a per speaker basis was
performed.

4.2.2 Training

Training was done with the help of forced alignments obtained from previous systems. For
training the acoustic models, first the LDA matrix was estimated, after that random samples
for every model were extracted in order to initialize the models with the help of the k-means
algorithm. Then these models were refined by six iterations of label training along the forced
alignments and four iterations of expectation maximization (EM) training. The resulting models
were used to obtain new forced alignments and the training procedure was iterated until a min-
imal word error rate (WER) on the development set was reached. Context-independent (CI) as
well as context-dependent (CD) models were trained in this way. The polyphone decision trees
for the context-dependent models were obtained by a top-down clustering procedure that uses
entropy gain as distance measure.

4.2.3 Results

Table 2 shows the word error rates of the context-independent and context-dependent models
for every language on their respective development and evaluation sets. The trigram language
models used for English, Russian, and Spanish were unchanged from previous experiments,
e.g. in [2].

Language EN GE RU SP
CI dev 19.5% 33.4% 51.8% 40.2%

eval 20.2% 35.6% 54.8% 28.7%
CD dev 9.0% 18.7% 33.9% 25.2%

eval 10.3% 20.0% 36.2% 17.2%

Table 2 - WER of the monolingual phoneme based ASR systems on the dev and eval sets of their
respective language

We further trained a multilingual model using the technique ML-MIX on the languages En-
glish, Russian, and Spanish. Table 3 shows the word error rates of this model on the individual



training languages. As expected we can see that the word error rates go up for the multilin-
gual model in all cases. This is due to the fact that sounds with the same IPA symbol are still
pronounced slightly differently in the various languages. Therefore the models are broadened
for the different model classes and do not fit the individual languages as well as when trained
exclusively on one of them.

Language EN RU SP
CI dev 24.4% 56.5% 45.7%

eval 25.8% 59.6% 32.8%
CD dev 12.4% 38.8% 27.8%

eval 14.1% 40.7% 20.2%

Table 3 - WER of the ML-MIX ASR system on the dev and eval sets of its training languages

4.3 Articulatory Feature Detectors

Using forced alignments obtained from the phoneme based ASR systems we trained models for
the articulatory features as described in Section 3. The GMMs for the feature detectors consisted
of 128 Gaussians per model. Since we assume that an articulatory feature is most stable in the
middle of a phoneme, we trained the models only on the middle states of the phonemes using 4
iterations of label training. The preprocessing for the feature detectors was the same as for the
phoneme based recognizers. We also trained multilingual detectors, as described above and in
[5], on the languages English, German, and Spanish, just as for the phoneme based ML-MIX
recognizer.

4.4 Porting Across Languages

For our first experiment in porting we applied the German phoneme based models to English.
For this, English phonemes in the English pronunciation dictionary that were not covered by the
German model, were manually mapped to their closest, English phoneme. As shown in Table
4, this leads to a WER of 72.8% on the German development, as well as the evaluation set.
When adding the AF models to the phoneme based recognizer using the heuristic described

above, the best number of features lead to a reduction of the WER to 71.0% on the English
development set. On the evaluation set adding these features reduced the WER to 70.8%, a
reduction of 2.7% relative.

German to English dev eval
Phonemes 72.8% 72.8%
Phonemes +AF 71.0% 70.8%

Table 4 - WER when applying the German recognizer to the English test data, without and with Artic-
ulatory Features models

When performing the reverse experiment, that is applying the English phoneme model to the
German test data and then enhancing the models with AF detectors, we can again observe
an improvement. As Table 5 shows, applying AF models reduces the WER on the German



English to German dev eval
Phonemes 76.8% 79.0%
Phonemes +AF 73.1% 76.1%

Table 5 - WER when applying the English recognizer to the German test data, without and with Artic-
ulatory Features models

development set from 76.8% to 73.1%. With the AF weights determined on the development
set, the WER on the evaluation set drops from 79.0% to 76.1%, a reduction of 3.7% relative.
In our last experiment we did not just use a monolingual acoustic model, but rather the ML-

MIX phoneme model from above, which is trained on English, Russian, and Spanish, and ap-
plied it to the German test data. As Table 6 shows, this leads to a WER rate of 71.9% on the
German development set and 74.6% on the German evaluation set. When adding English AF
models to the ML-MIX phoneme model the WER drops to 69.7% on the development set and
74.1% on the evaluation set. When using the ML-MIX AF models the WER on the develop-
ment set drops even further down to 69.3%. However, on the evaluation set no improvement
over the phoneme baseline is seen.
The reason for this might be that the weights for AF detectors found by using the heuristic are

know to sometimes generalize badly. More advanced methods for selecting the stream weights,
such as Discriminative Model Combination (DMC) [9], are known to generalize better.

ML-MIX to German dev eval
Phonemes 71.9% 74.6%
Phonemes + EN AF 69.7% 74.1%
Phonemes + ML-MIX AF 69.3% 74.6%

Table 6 - WER when applying the ML-MIX recognizer to the German test data, without, and with
English and multilingual Articulatory Features models

5 Conclusion

In this work we have presented our first experiments in examining the usability of models for ar-
ticulatory features when porting speech recognition systems to new languages. We have demon-
strated that combining phoneme models and articulatory feature models significantly improves
the porting performance of monolingual phoneme models by up to 3.7% relative. In the case
of multilingual phoneme models significant reductions could be shown on the development set
when adding AF models. On the evaluation set a moderate improvement was shown when
combining multilingual phoneme models with monolingual, articulatory feature models. When
using multilingual AF models, improvements only were seen on the development set. The rea-
son for that is assumed to be the suboptimal heuristic for selceting the weights of the AF models
in our set-up. Futuere work will thus focus on examining additional methods for selecting suit-
able stream weights in a porting set-up.
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