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ABSTRACT
With the distribution of speech technology products all over the
world, the fast and efficient portability to new target languages be-
comes a practical concern. In this paper we explore the relative ef-
fectiveness of porting multilingual recognition systems to new tar-
get languages with very limited adaptation data. For this purpose we
introduce a polyphone decision tree specialization method. Several
recognition results are presented based on mono- and multilingual
recognizers developed in the framework of the project GlobalPhone
which investigates LVCSR systems in 15 languages.

1. Introduction

With the distribution of speech technology products all over
the world, the fast and efficient portability to new target lan-
guages becomes a practical concern. So far one major time
and costs limitation in developing LVCSR systems in new lan-
guages is the need of large training data. According to the
amount of data used for porting acoustic models to a new tar-
get language we differentiate three aspects of research:

Cross-language transfer (no data)
Bootstrapping (much data)
Language adaptation (very limited data)

The term cross-language transfer refers to the technique
where a system developed in one language (group) is ap-
plied to recognize another language without using any training
data of the new language. We do not distinguish whether the
transfer to the target language is done from one language or
from a group of languages. Research focuses on the questions
whether cross-language transfer from one language to another
language of the same family performs better than across fam-
ily borders [4], and second if the number of languages used
for training the transfer models influences the performance on
the target language [7], [13]. Results seems to indicate a rela-
tion between language similarity and cross-language perfor-
mance [4], [3]. Furthermore it is clearly shown that multilin-
gual transfer models outperform monolingual ones [3], [14].

The key idea in the bootstrapping approach is to initialize a
recognizer in the target language by using already developed
acoustic models from other language(s) as seed models. Af-
ter the initialization step the resulting system is completely
rebuild using large training data of the target language. This

Language Abbr Utts Spks Units Hours

Ch-Mandarin CH 8529 112 219K 26.7
Croatian CR 3374 72 89K 12.0
English (WSJ) EN 7137 83 129K 15.0
French (Bref) FR 7143 74 123K 13.9
German GE 9173 71 132K 16.7
Japanese JA 9096 108 212K 22.9
Korean KO 6335 80 301K 16.4
Spanish SP 5419 82 138K 17.6
Turkish TU 5466 79 87K 13.2
Total 68276 839 1554K 170.4

Table 1: GlobalPhone database used for experiments

idea was first proposed by Zue and evaluated by [6] and [15]
showing that crosslanguage seed models perform better than
flat starts or random models. Recently the usefulness of multi-
lingual phonemic inventories and multilingual phoneme mod-
els as seed models have been demonstrated by [9], [11].

The language adaptation technique lies between the two ex-
tremes in terms of available training data. In this approach an
existing recognizer is adapted to the new target language with
only very limited data. [15],[9], [10] focus on two issues: first
the amount of data needed to get reasonable results, second the
question of finding suitable acoustic models to start from. For
the first question they found -coincident to our expectation-
that the language adaption performance is strongly related to
the amount of data used for adaptation. [15] proved that the
number of different speakers used for training is more criti-
cal than the number of utterances. The question of suitable
models to start from was investigated by [9] and [10] compar-
ing the effectiveness of multilingual acoustic models. Again
it could be shown that multilingual models outperform mono-
lingual ones.

Previous systems which combined multilingual acoustic mod-
els have been limited to small tasks and context independent
modeling. Since for the monolingual case the use of larger
phonetic context windows has proven to increase the recog-
nition performance significantly, such improvements extend
naturally to the multilingual setting. The idea how to construct
context dependent multilingual models was first proposed by
[5] and [14]. For the language adaptation purpose we intend
to exploit the context information learned from several lan-



guages. How this information can be incorporated into the
language adaptive process is still an open issue. In this paper
we present a new approach to adapt polyphone decision trees
to the new target language.

2. Multiple Languages
For our experiments we developed monolingual LVCSR sys-
tems in nine languages which will be introduced in this sec-
tion. For training and testing we are using our multilingual
database GlobalPhone.

2.1. The GlobalPhone Database

GlobalPhone currently consists of the languages Arabic, Chi-
nese (Mandarin and Shanghai dialects), Croatian, German,
Japanese, Korean, Portuguese, Russian, Spanish, Swedish,
Tamil, and Turkish. In each of these languages we collected
about 15 hours of speech spoken by 100 native speakers per
language. Every speaker read several articles from a national
newspaper. The articles were chosen from the areas: national
politics, international politics, and economy. The speech data
was recorded at a sampling rate of 48kHz using a close-talking
microphone connected to a DAT-recorder. After transferring
the sound data from DAT to hard disc it was downsampled to
16kHz, 16-bit. The GlobalPhone corpus is fully transcribed,
and during validation process special markers were added for
spontaneous effects like false starts, and hesitations. Further
details about the GlobalPhone project are given in [12].

Since English and French are already available in very sim-
ilar frameworks we decided not to collect additional data in
these well covered languages but add the two databases Wall
Street Journal (WSJ0, distributed by LDC) for English and
Bref (BREF-Polyglot sub-corpus, distributed by Elsnet) for
French to our training data. The resulting database covers 9
of the 12 most widespread languages of the world.

Throughout the experiments 80% of the speakers were used
for training the acoustic models, 10% were defined as a
test set, and the remaining 10% were kept as further cross-
validation set. See table 1 for an overview of the database used
throughout the experiments.

2.2. Monolingual Baseline Recognizers

We developed equally designed monolingual LVCSR systems
in nine languages using our Janus Recognition Toolkit (JRTk).
For each language the resulting baseline recognizer consists of
fully continuous 3-state HMM systems with 3000 polyphone
models. Each HMM-state is modeled by one codebook which
contains a mixture of 32 Gaussian distributions. The prepro-
cessing is based on 13 Mel-scale cepstral coefficients with first
and second order derivatives, power and zero crossing rate.
After cepstral mean subtraction a linear discriminant analysis
reduces the input to 32 dimensions.

Word based Phoneme basedLanguage
ER Vocab PP ER Vocab PP

Ch-Mandarin 14.5 45K 207 45.2 141 12.5
Croatian 20.0 15K 280 36.7 32 9.6
English 14.0 64K 150 46.4 46 9.2
French 18.0 30K 240 36.1 38 12.1
German 11.8 61K 200 44.5 43 9.0
Japanese 10.0 22K 230 33.8 33 7.9
Korean 31.0 64K 130 36.1 43 9.9
Spanish 20.0 15K 245 43.5 42 8.2
Turkish 16.9 15K 280 44.1 31 8.5

Table 2: Word and phoneme based error rates (ER), vocabu-
lary size, and trigram perplexity (PP) for nine languages

In table 2 we arranged the error rates , vocabulary size and
trigram perplexities for the monolingual recognizer. Since the
engines are the same across the languages, differences in the
recognition performance are due either to language specific
inherent difficulties or to differences in quality and quantity
of the used knowledge sources and data. In our opinion it is
misleading to infer from the given word error rates to language
difficulties. On the one hand the concept of a word does not
hold for each language (Chinese, Japanese, and Korean). On
the other hand the word error rates are strongly affected by
available corpus data and resulting artifacts like different vo-
cabulary sizes, OOV-rates, language model perplexities, and
last but not least by the human language expertise, which in
our case is not comparable in all languages.

A reliable measure of the acoustic difficulties of the nine
languages is the phoneme based recognition rate using a
phoneme recognizer without any (phoneme) language model
constraints. The results in table 2 indicate significantly dif-
ferences in acoustic confusability between languages, ranging
from 33.8% to 46.4% phoneme error rate. English seems to be
the most hardest task in acoustical sense whereas Japanese is
the easiest.

3. Multilingual Systems
In this section we describe our approach to create a multi-
lingual recognizer engine by combining context dependent
acoustic models across languages.

3.1. Global Phonetic Inventory

We intend to share acoustic models of similar sounds across
languages for the adaptation purpose. Those similarities can
be either derived from international phonemic inventories
documented in Sampa, Worldbet, and IPA or by data-driven
methods as proposed for example by [1].

In our work we defined a global phoneme set based on the
phonemic inventory of the monolingual systems. Sounds

Mandarin is given in character based error rate, Japanese in hiragana
based error rate, and Korean in syllable based error rate



which are represented by the same IPA symbol share one
common phoneme category. In case of five languages we
started with 171 language specific phonemes and pooled them
together into 85 phoneme categories. In case of nine lan-
guages we pooled 339 language dependent phonemes into 140
phoneme categories. Thus the phone-set compression rate of
49% in the five-lingual case increases to 41% in the nine-
lingual case.

3.2. Multilingual acoustic model Combination

Based on the above described phoneme categories we de-
signed multilingual systems by combining the language de-
pendent acoustic models of the languages Croatian, Japanese,
Korean, Spanish, and Turkish in two different ways and com-
pared their effectiveness for the language porting purpose.

In system ML-mix we share all models across these five lan-
guages without preserving any language information. We
build context dependent models by applying a decision tree
clustering procedure which uses a question set of linguistic
motivated phonetic context questions. We train the models by
sharing the data of the five languages. In the second system
ML-tag the phoneme model sharing across languages is per-
formed by attaching a language tag to each of the phoneme
categories in order to preserve the information about the lan-
guage. The above described clustering procedure is enhanced
by introducing questions about the language and language
groups to which a phoneme belongs. Therefore the decision if
phonetic context information is more important than language
information becomes data-driven (see [14] for details).

We explore the usefulness of the two different modeling ap-
proaches by running three experiments on 7 recognizers sum-
marized in table 3:

1. Monolingual baseline test: all five monolingual recog-
nizers are tested on the corresponding language

2. Multilingual test: ML-mix and ML-tag are applied to rec-
ognize one of the five languages involved in training the
multilingual models

3. Porting test: the five monolingual systems as well as ML-
mix and ML-tag are applied to recognize German utter-
ances.

The results of the multilingual test show that ML-tag outper-
forms the mixed system ML-mix by 5.3% (3.1% - 8.7%) er-
ror rate. This indicates that preserving the language informa-
tion achieves better results with respect to the ideal situation
that sufficient training data is available to build a language
specific system. This finding is coincident to other studies
[5], [9]. The porting test prove that ML-mix outperforms ML-
tag in both techniques. This is evident since sharing informa-

Language Mono ML-tag ML-mix

Croatian 26.9 31.9 35.0
Japanese 13.0 15.0 20.0
Korean 47.3 49.0
Spanish 27.6 32.4 37.0
Turkish 20.1 21.3 29.0
Technique Porting to German
Crosslanguage 49.5-65.0 50.0 41.5
Bootstrap 28.4-50.5 35.7 29.2

Table 3: Word error rates of ML-mix versus ML-tag

tion across languages augments the language robustness of the
transfer system (see [14] and [10] for details).

3.3. Dictionary Mapping

For all our experiments we presume that a pronunciation
dictionary for the target language is given in an arbitrary
phoneme set. Since we are interested in time and cost ef-
fective algorithms we created dictionaries which are not al-
ready available from scratch by grapheme-to-phoneme tools.
However we post-edit the dictionaries by human experts who
added pronunciation variants and treated special events like
acronyms.

Nevertheless for recognizing the target language with the ML-
mix or ML-tag system we need to define an appropriate map-
ping from our global phoneme set to the target phonemes. We
investigate two approaches to find this mapping: In the first
approach we apply an heuristic IPA-based mapping, meaning
that a human experts defines for each target phoneme the cor-
responding counterpart according to our IPA phoneme cate-
gories. In the second approach we perform a data-driven map-
ping by calculating a phoneme confusion matrix, and picking
the phoneme as a counterpart which leads to the highest con-
fusion with the target phoneme. For this experiment we as-
sume that an accurate phoneme recognizer in the target lan-
guage is already given. We calculated phonetic alignments of
500 utterances spoken in the target language and did a frame-
wise comparison with the viterbi decoded alignment of the
same 500 utterances using a multilingual recognizer. Our ex-
periments show that the IPA-based approach outperforms the
data-driven approach by 27.1% vs 34.3% word error rate for
the bootstrap technique and 66.7% vs 74.5% word error rate
for the cross-language transfer technique (see [13] for details).

4. Polyphone Decision Tree Specialization
When creating the ML-mix system we uses a divisive clus-
tering algorithm that builds context querying decision trees
[8]. As selection measure for dividing a cluster into two sub-
clusters we used the maximum entropy gain on the mixture
weight distributions. This clustering approach gave signifi-
cant improvements across different tasks and languages [8].
Figure 1 shows for 10 languages the number of different mod-
els we can get when using different context sizes. As can



be seen these numbers differs very much between the lan-
guages. These differences are due to the perplexity of the lan-
guage, to the number of words in the training corpus, and to
the length of the modeled word units. The latter is according
to a contraint imposed by the decoder which limits the maxi-
mum context width to all phonemes within a word and up to
one phoneme into the neighboring words. For example the ex-
tremely shortness of Korean units used in our recognizer re-
sults in zero polyphones of context larger than 2. While for
Chinese, Japanese and Spanish the most frequent word length
in the training data is 2 phonemes, it is 5 for Turkish and 6
for Russian. The most frequent numbers of phonemes in the
dictionary various from 2 for Spanish to 9 for Turkish.
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Figure 1: Different Sub-polyphones in training corpus

The concept of the IPA-based phoneme categories allows us
to share context models across languages. To estimate the
percentage of polyphone overlap between languages we de-
fine the non symmetric polyphone coverage measure as the
number of polyphone occurrences in one language covered by
polyphones in another language. In table 4 we give the tri-
phone coverage for 10 languages. Here we distinguish be-
tween the coverage of polyphone types (upper row) and the
coverage of polyphone occurrences (lower row), where the
first one focus on the aspect whether common polyphones ex-
ists across languages, and the latter one focus on the aspect
that frequent polyphones are more important to cover than
rare ones. For example 33.6% of Japanese triphone occur-
rences are covered by German triphones, whereby 22.3% of
the polyphone types are responsible for this coverage rate. On
the other hand only 19.5% of German triphone occurrences
are covered by Japanese polyphones. This effect is due to
the Japanese phonotactic which only allows consonant vowel
combinations.

From table 4 it is obvious that we should be aware of a large
mismatch between represented polyphones in the multilingual

B/C CH DE EN FR JA KO KR PO SP TU

0.1 0.3 0.1 0.1 0.0 0.1 0.1 0.1 0.2CH 100
5.3 6.8 5.8 4.2 5.3 4.2 5.4 5.3 4.9

0.1 5.5 19.8 9.3 7.2 18.6 13.6 12.9 12.9DE
3.9

100
19.6 41.6 19.5 18.2 34.9 28.0 28.3 26.1

0.6 5.4 6.5 1.8 3.4 1.5 0.9 1.3 3.8EN
5.2 18.1

100
18.6 8.9 11.6 7.7 6.6 6.6 9.2

0.1 29.0 9.7 10.2 11.2 25.8 18.4 17.4 23.1FR
3.9 53.3 16.4

100
22.7 28.7 45.5 36.4 41.3 35.6

0.2 22.3 4.5 16.8 9.8 16.0 11.0 13.6 25.9JA
2.5 33.6 9.9 37.4

100
25.6 29.2 27.6 31.2 52.5

0.1 10.3 4.9 10.9 5.8 10.2 8.0 9.3 9.1KO
4.1 36.3 16.1 35.0 24.9

100
38.6 30.8 38.4 26.1

0.2 39.0 3.2 37.0 14.0 15.0 31.0 34.3 31.5KR
1.8 68.8 5.0 64.7 28.2 34.5

100
63.0 61.8 50.4

0.4 30.2 2.0 28.0 10.2 12.5 32.9 33.5 19.8PO
2.3 57.9 4.6 49.5 26.7 37.5 62.5

100
57.5 39.9

0.2 25.4 2.7 23.5 11.2 12.9 32.2 29.7 17.5SP
2.5 60.2 5.6 60.1 34.0 40.1 64.2 58.2

100
41.0

0.8 29.6 8.9 36.3 24.8 14.6 34.4 20.4 20.3TU
5.4 46.0 18.3 52.0 46.1 33.0 50.1 38.6 39.6

100

Table 4: Triphone Coverage for 10 languages

decision tree and the observed polyphones in a new target lan-
guage. We therefor specialize the already existing multilin-
gual polyphone decision tree to the new language by continu-
ing growing the decision tree. The limited amount of adapta-
tion data is used to train separate mixture weight distribution
for the resulting leaf nodes.

5. Language Adaptation to Portuguese
In the previous sections we report on the usefulness of mul-
tilingual acoustic model combination with respect to porting
these acoustic models to the German language with the cross-
language transfer and bootstrap technique. Now we investi-
gate the benefit of these multilingual models in combination
with the polyphone decision tree specialization (PDTS) for
language adaption. We intend to adapt the different described
multilingual systems to Portuguese. For adaptation we pre-
sume that a Portuguese dictionary as well as the recordings
and transcriptions of 200 spoken utterances are given. Al-
though [15] found that the number of speakers for adaptation
is more critical than the number of utterances we decide to use
200 utterances spoken by only 7 different Portuguese speaker
since at least in our dictation task it is more expensive to get
single utterances of many different speakers than to get many
utterances spoken by one speaker. The 200 utterances result
in 25 minutes speech with 3370 spoken word units for adapt-
ing the acoustic models. The dictionary mapping was done
according to our heuristic IPA-based mapping approach.

A subset of 96 uniformally selected utterances from 3 test
speakers was used to carry out our experiments. The test dic-
tionary has 7300 entries, the OOV-rate is set to 0.5% by in-
cluding the most common words of the test set into the dic-
tionary. A trigram language model with Kneser/Ney backoff



scheme was calculated on 10 million word text corpus from
Agency France Press interpolated with the GlobalPhone data
leading to a trigram perplexity of 297.

5.1. Polyphone Coverage

Before applying our polyphone decision tree specializing ap-
proach we want to examine how well the 49 Portuguese mono-
phones and resulting polyphones are covered by the nine- and
five-language pool. Therefore we calculated the coverage of
Portuguese polyphones according to our IPA phoneme cat-
egories. This measure indicates how well a not specialized
polyphone decision tree fits to the target language. The cover-
age is shown in figure 2 for context width 0 (monophones) and
1 (triphones). The calculation of plotted coverage proceeds
as follows: first we select that language among all pool lan-
guages which achieves the highest coverage for Portuguese.
We then remove this language from the pool and calculate the
coverage between Portuguese and each language pair result-
ing from the combination of removed language plus remain-
ing pool language. The procedure is repeated for triples and
so forth. Thus in each step we find the language which maxi-
mally complements the polyphone set.
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Figure 2: Portuguese polyphone coverage by nine languages

From the figure 2 we observed that as expected the cover-
age dramatically decrease for larger context (for quintphones
a maximal coverage of 46% could be attained). After incor-
porating three languages the coverage of Portuguese mono-
phones can not increased any further, limited to 91% with the
nine language pool and dropping to 85% when the most im-
portant language for monophone coverage (SP) is removed
from the language pool. The contribution of the Spanish
phoneme set to the monophone coverage can not be compen-
sate by other languages remaining in the pool. Second we
found that when increasing the context width to 1 the cover-
age saturate after four languages. When increasing to con-

System Data Labels Technique Ptree

Cross-language transfer
S1 0 - - ML
S2 0 - - CI

Language adaptation
S4 100 initial MLAdapt CI
S5 100 initial Viterbi ML
S6 100 initial MLAdapt ML
S7 100 good MLAdapt ML
S8 200 good MLAdapt ML
S9 200 good PDTS ML-PO

Bootstrap
S3 100 initial Rebuild PO
S10 6600 good Rebuild PO

Table 5: Description of systems adapted to Portuguese

text width to 2 we observed that at least five languages con-
tribute to the quintphone coverage rate. Therefor we infer that
increasing the context width requires more languages. For
the context width 1 the main contribution comes from the
Croatian language. Removing this language from the pool
is nearly completely compensate by German and Spanish tri-
phones. This indicate that Croatian, German, and Spanish
polyphones covers a similar portion of the Portuguese tri-
phones set. Whereas the curve (KR-SP-JA-TU-KO) indicates
that the French language contribute unique polyphones which
can not be recruited from other languages. In this case the
lacking phonemes belong to the categories of nasal vowels.
We conclude from this observation that when designing a lan-
guage pool for adaptation purposes it is more critical to find
a complement set of languages than to cover a large number
of languages. Our method of calculating the polyphone cov-
erage across languages can help to find such a complemen-
tary language set. From analyzing the polyphone coverage we
draw the conclusion that using a polyphone tree even based on
several languages can not be applied successful to Portuguese
without adapting to the new contexts.

5.2. Results

Table 5 describes the systems used for our adaptation experi-
ments, their performance on Portuguese is compared in figure
3. The column Data in table 5 refers to the number of record-
ings used as adaptation data. Applying no data results in a
cross-language transfer approach as performed in the systems
S1 and S2. Whereas the training based on 6600 utterances
(S10) represents the bootstrap technique. For the systems S3
to S9 we used very limited data of 100 and 200 utterances.

Labels explains whether the phonetic transcription of the
recordings are created based on the multilingual recognition
engine ML-mix (Labels = initial) or based on good phonetic
alignments which we presume to be already given (Labels =
good). The latter was used to accelerate our adaptation pro-
cess. In future work we will examine if we can get close to
this label quality by iterating our adaptation approach.



The term Technique is related to the training approach ap-
plied to the systems. Viterbi refers to one iteration of viterbi
training along the given labels. MLAdapt means Maximum
Likelihood Adaptation technique, Rebuild refers to the itera-
tive procedure of writing labels, viterbi training, model clus-
tering, training, and writing improved labels. PDTS is the de-
scribed Polyphone Decision Tree Specialization.

The Ptree item describes the origin of the polyphone deci-
sion trees. CI refers to context independent modeling, mean-
ing that no polyphone tree is used, ML is the 3000 polyphone
tree of system ML-mix and PO is a polyphone tree build ex-
clusively on Portuguese polyphones. ML-PO refers to the re-
grown ML-mix polyphone tree applying PDTS.

Figure 3: Language adaptation to Portuguese
As expected the recognition of Portuguese speech by running
the five-lingual recognizer ML-mix without any training data
results in extremely high word error rates of 73.1% for the
context dependent system (S1) and slightly better error rates
of 70% for the context independent system (S2). Therefor the
initial labels are written with the multilingual context indepen-
dent system S2. Using 100 of these initial labels for adapting
the context independent multilingual system (S4) and the con-
text dependent system by MLA (S6) or viterbi training (S5)
shows a significant gain. In S3 the initial labels are used to
completely rebuild a Portuguese system after bootstrapping
from multilingual seed models. The comparison of S6 and S3
indicate that the adaptation of non matching polyphone trees
is outperformed by the bootstrap technique (S3) even if data
are very limited. Nevertheless the word error rate of the win-
ning system S3 achieving 50.9% is still unsatisfying.

We obtain the next performance boost from using improved
labels (S7) and double amount of adaptation data (S8). Finally
we applied our PDTS approach (S9) which leads to signifi-
cant improvements achieving 33% word error rate. This per-
formance compares to 19.7% word error rate (S10) resulting
from bootstrapping and rebuilding a Portuguese LVCSR sys-
tem using 16 hours of speech spoken by 78 speakers. To sum-
marize we get the highest performance gain in language adap-
tation from the PDTS technique, enlarging adaptation data,
and improved labels, in this order.

6. Conclusion
In our language adaptive approach we explore the relative ef-
fectiveness of multilingual context dependent acoustic models
in combination with a polyphone decision tree specialization
(PDTS). We examine the profit when porting a multilingual
engine to new target languages with very limited training data.
The results are very promising achieving 33% word error rate
for an Portuguese LVSCR system when using only 200 spo-
ken utterances for adaptation.
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