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Abstract

With the increasing availability and deployment of
speech recognition technology in real world environ-
ments fast and affordable adaptation of speech recogni-
tion systems to new languages and/or domains becomes
more and more important. One of the most expensive
components of a recognition system is the pronunciation
dictionary that maps the orthography of the words in the
search vocabulary onto a sequence of sub-units. Often
phonemes act as such sub-units. Human expert know-
ledge is usually required for crafting the pronunciation
dictionary, thus making it an expensive and time con-
suming task. Even automatic tools for creating such dic-
tionaries often require hand labeled amounts of training
material and rely on manual revision. In order to address
the problem of creating a dictionary in a time and cost
efficient way we have examined recognition systems at
our lab that rely soly on graphemes rather than phonemes
as subunits. The mapping in the dictionary thus becomes
trivial, since now every word is simply segmented into
its letters. Therefore no expert knowledge is needed
anymore. Our experiments on different languages have
shown that the quality of the resulting recognizer signif-
icantly depends on the grapheme-to-phoneme relation of
the underlying language. Since Russian is a language
with an alphabetic script with a fairly close grapheme-
to-phoneme relation it is very well suited to be a candi-
date for this approach. In this paper we present our re-
sults on creating a grapheme based Russian recognizer
trained on the GlobalPhone corpus that covers fifteen dif-
ferent languages. We compare the performance of the
resulting system to a phoneme based recognition system
that was trained in the course of the GlobalPhone project,
and compare the performance of two grapheme based
systems whose context-dependent models were clustered
with two different procedures.

1 Introduction

The pronunciation dictionary is a central component of an
automatic speech recognition (ASR) system. Its purpose
is to map the orthography of the words in the search vo-
cabulary to the units that model the actual acoustic real-
ization of the vocabulary entries. Motivated by linguistics
and phonology, phonemes or sub-phonetic units are com-

monly used in the acoustic model of a speech recognition
system. The performance of a speech recognizer is heav-
ily influenced by the quality of the pronunciation dictio-
nary. The dictionary can introduce two kinds of errors.
First during training a false mapping between a word and
the modeling units will contaminate the acoustic models.
The models will not describe the actual acoustic that they
represent as accurately as if they were only trained with
the correct data. Second, even when the acoustic models
are correctly trained, an incorrect mapping will falsify the
scoring of a hypothesis by applying the wrong models to
the score calculation.

Usually, manually created dictionaries yield the best
results. However, their creation requires an expert in the
target language and is very time consuming, thus very
expensive. For some languages with a large economic
impact, such as English, manual creation might be an
option. But in today’s world there exist an estimated
4000-6000 languages, many of which are only spoken by
comparatively few people, and which are not of enough
economic relevance to allow for the high costs of manu-
ally created dictionaries. Also, in cases where time is of
essence, dictionary creation by human experts might not
be an option, because it is simply too slow.

So the process has to be at least in part be automa-
tized. Several different methods have been introduced in
the past. Most of the time these methods are based on
finding rules for the conversion of the written form of a
word to a phonetic transcription, either by applying rules
[1] or by statistical approaches [2]. Only some of them
have been investigated in the field of speech recognition
[3, 4].

Recently, the use of graphemes as modeling units,
instead of phonemes, has been increasingly studied.
Graphemes have the advantage over phonemes that they
make the creation of the pronunciation dictionary a triv-
ial task that does not require any linguistic knowledge.
However, because of the generally looser relation of
graphemes to pronunciation than that of phonemes, the
use of context dependent modeling techniques and the
sharing of parameters for different models are of central
importance. Also prior experiments have shown that the
quality of a grapheme based recognizer is highly depen-
dent on the nature of the grapheme-to-phoneme relation
of a specific language [5, 6].

Kanthak [4] was one of the first who presented results
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for speech recognition systems based on the orthography
of a word and the use of decision trees for context de-
pendent modeling. Black et al. [7] sucessfully relied
on graphemes for text-to-speech systems in minority lan-
guages. [5, 6] both investigated the use of graphemes for
languages with phoneme-grapheme relations of differing
closeness and in the context of multilingual speech recog-
nition. All these experiments have shown that for cer-
tain languages graphemes are suitable modeling units for
speech recognition. However, the use of grapheme based
pronunciation dictionaries does not yield any pronuncia-
tion variants. Therefore variations in pronunciation of the
same word have to be modeled implicitly in the parame-
ters of the units used, as it is the case with the differences
in pronunciation of the different graphemes depending on
their orthographic context.

Lately research in the field of phoneme based speech
recognition systems has also turned away from model-
ing pronunciation variants through explicit variations in
the phoneme string but rather explores the possibilities in
modeling the variations in pronunciation implicitly, e.g.
by the use of single pronunciation dictionaries [8] and
sharing of parameters across phonetic models [9]. In that
sense, a grapheme based pronunciation dictionary is a
single pronunciation dictionary in its purest form.

Traditionally, the variations in pronunciation of
phonemes in different contexts are modeled by poly-
phones, a single phoneme in a specific context. Since
the number of different polyphones even for very small
context widths is already very large, in fact too large as to
have enough training material to estimate the model pa-
rameters robustly, the context dependent models are usu-
ally clustered into classes. Often this clustering is done
by decision tree based state tying [10]. Traditionally, due
to early computational and memory constraints, one clus-
ter tree was grown for each substate of each phoneme. In
this case, parameter sharing across polyphones with dif-
ferent center phonemes is not possible. The enhanced tree
clustering from [11] lifts this constraint.

In this paper we present our work in exploring the
possibilities in building a Russian recognizer based
on graphemes. We compare the performance of the
grapheme based recognizer against the performance of a
baseline recognizer based on phonemes. In addition we
observe the effects of the enhanced tree clustering pre-
sented in [11] on the grapheme based recognition system.

2 Clustering

The representation of words in continous speech as a se-
quence of phonemes — sometimes called ’beads-on-a-
string’ [12] — is only a coarse model of reality. Due to
the inertia of the human articulators when in motion and
due to the sloppiness of speakers, phonemes in different
contexts change their attributes. This leads to different
acoustic manifestations of phonemes depending on the
phonemes surrounding them.

Often these variations in pronunciation of phonemes

depending on their contexts are modeled by polyphones,
a single phoneme in a specific context [13, 14]. Since the
number of different polyphones even for very small con-
text widths is already very large, in fact too large as to
have enough training material to estimate the model pa-
rameters robustly, the context dependent models are usu-
ally clustered into classes using a decision tree based state
tying [10].

2.1 CART in Speech Recognition
When using context-dependent models the number of dif-
ferent models already becomes very large for relative
small contexts. In general it is not possible to collect
sufficient amounts of acoustic material to robustly esti-
mate all the models’ parameters. Usually many possible
contexts are not even seen in the training material. One
solution to deal with this problem is to cluster the models
into classes, each representing one model. The clustering
scheme has to fulfill the following requirements:

• the resulting number of classes is small enough to
robustly estimate parameters for modeling them

• the phonetic contexts clustered into one class are
suited to be modeled by a shared set of parameters
(e.g. they are acoustically similar)

• phonetic contexts that have not been seen during
training can be assigned to a suitable class during
recognition.

As a representation of the classes and as means of as-
signing contexts to classes often classification and regres-
sion trees (CART) are used [15, 16]. The number of re-
sulting classes can be controlled by different parameters,
and the resulting tree allows to easily classify all possible
contexts encountered during decoding. The algorithms
for creating the CART in speech recognition can be gen-
erally distinguished by the following criteria:

• elements of the classes (e.g. sub-polyphones)

• questions used in the decision tree

• bottom-up or top-down clustering

• measure for determining the distance between
classes (e.g. entropy or likelihood based measures).

In speech recognition often a CART for classes of
sub-polyphones is trained using an entropy based dis-
tance measure. The questions in the nodes of the de-
cision tree usually are about the membership of the
phonemes in the polyphone to linguistically motivated
classes, e.g. whether the phoneme left of the center
phoneme is voiced. Traditionally often several decision
trees are grown, e.g. one for every sub-state of every
phoneme (thus collecting all polyphones with the same
center phoneme in a decision tree of their own). The use
of several decision trees speeds up the tree creation and
is the result of memory and computational constraints of
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Figure 1: Separate Cluster Trees for Polyphones with dif-
ferent Center-Phonemes

the past. However, at the same time the manual partition-
ing into several trees limits the ability to model acoustic
effects that are common to polyphones with different cen-
ter phonemes. A possibly beneficial sharing of parame-
ters for such polyphones is therefore not possible. Figure
1 illustrates this approach for the begin (b), middle (m),
and end (e) states of two phonemes.

2.2 Enhanced Tree Clustering
[11] presented a new tree clustering approach that lifted
the limitations imposed by the growing of separate de-
cision trees for different phonemes. In contrast to the
traditional decision tree based state tying, the enhanced
tree clustering allows flexible parameter sharing across
phonemes. With the enhanced tree clustering one sin-
gle decision tree is constructed for all the sub-states of
all phonemes. The clustering procedure starts with all
polyphones at the root. The decision tree can ask ques-
tions regarding the identity and phonetic properties of the
center phoneme and the neighbouring phonemes plus the
sub-state identity. In every node the question to split the
polyphones for that node is chosen that gives the high-
est information gain. This process is repeated until either
the number of leaves of the tree reaches a certain size or
the amount of training material per leave node exceeds a
given threshold.

Our former experiments in [17] showed that separate
trees for the begin, middle, and end states and separate
trees for graphemes that can be either considered vowels
or consonants, can be successfully applied to grapheme
based speech recognition.

Figure 2 shows the resulting decision tree for the mid-
dle states of our sub-units just before the top-down clus-
tering starts.

2.3 Implicit Pronunciation Modeling
through Enhanced Tree Clustering

In sloppy speech people do not differentiate phonemes
as much as they do in read speech. Different phonemes
might be pronunced very similar. Therefore the enhanced
tree clustering is well suited to implicitly capture these
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Figure 2: Enhanced Tree Clustering with Vowel and Con-
sonant classes

phenomena by allowing certain polyphones that might be
pronounced in the same or a similar way to share the same
set of parameters.

Similar effects have to be dealt with in grapheme based
speech recognition. Here the dictionary does not capture
the fact that (a) the same grapheme might be pronounced
in different ways depending on the context and (b) that
different graphemes might be pronounced the same way
depending on the context. The traditional clustering pro-
cedure is able to deal with the effects of (a). But in order
to be also able to deal with the implications of effect (b)
and at the same time to make the best use of the available
training data the enhanced tree clustering is needed.

3 Grapheme Based Speech Recognition

When performing grapheme based speech recognition it
often is not sufficient to simply exchange the pronunci-
ation dictionary by one that represents words in terms
of graphemes instead of phonemes. In phoneme based
recognition systems phonetic knowledge about the mod-
eling units often is also applied when growing the CART
used for clustering the context dependent models. The
questions being asked in the nodes of the CART often
relate to the phonetic properties of the phonemes in the
context of the polyphone that the CART is supposed to
classify, e.g. whether a phoneme in the context is voiced
or not. For graphemes this kind of questions are not given
as naturally as it is the case for phonemes. One can also
view these questions as a definition of classes. Then a
phoneme belongs to a class corresponding to a question,
when the answer to the question is positive. We call the
collection of such classes a questions set. [6, 18] exam-
ined the performance of grapheme based speech recogni-
tion systems for four different kinds of questions sets:

• Phoneme-Grapheme Question Generation: Using
knowledge about the grapheme-phoneme relation of



#utterance (hours)

Training Development Evaluation

8,170 (17.0) 898 (1.3) 1029 (1.6)

Table 1: Overview over the Russian GlobalPhone corpus

a language, the phonemes in a class in the question
set are mapped to graphemes.

• Bottom-Up Entropy: Using an entropy based dis-
tance measure the context-independent models are
clustered bottom-up. The resulting classes are used
as question set.

• Hybrid-Entropy: A hybrid between a bottom-up
cluster procedure and an exhaustive search of all
possible questions sets proposed by [19]

• Singleton: Only questions regarding the identity
of the graphemes in the polygrapheme are allowed
(e.g.: “Is the left neighbour an A?”)

Our experiments in [6] showed that overall the Single-
ton question set gave the best performance. We therefore
focus our experiments in this work on using the Singleton
question set.

4 Experiments

For our experiments we made use of the Janus Recog-
nition Toolkit (JRTk) v5.0 featuring the IBIS single pass
decoder [20]. IBIS allows to incorporate full linguistic
knowledge at an early stage reducing the amount of nec-
essary search passes from three in our old decoder to only
one.

4.1 Database

We trained and tested our recognizers on the Russian por-
tion of the GlobalPhone (GP) corpus [21]. GlobalPhone
consists of read newspaper articles with national, interna-
tional political, and economic topics in fifteen languages.
The data were collected under clean acoustic conditions,
in 16kHz, 16 bit audio quality. Since the corpus provides
uniform conditions across all languages it is possible to
concentrate on studying the differences among languages
from the view of speech recognition without having to
deal with mismatched conditions.

The corpus was divided into three parts, one acoustic
training data part (train), one for development, e.g. tuning
language model parameters (dev), and one for doing the
final evaluation (eval). Table 1 gives an overview of the
amount data in the three portions of the corpus.

4.2 Preprocessing
The audio data was preprocessed by calculating mel
scaled cepstral coefficients, liftering, and concatenation
of 6 neighbouring feature vectors. The resulting 91 di-
mensional vector was reduced to 42 dimensions with the
use of a linear discriminant analysis (LDA). The mean
of the cepstral coefficients was subtracted and their vari-
ance normalized on a per speaker basis. During decoding
the mean and variance of the cepstral features were incre-
mentally estimated for each speaker. Also during decod-
ing an incremental feature space adaptation (FSA) was
performed.

4.3 Dictionary
Both the phoneme based and the grapheme based dictio-
nary cover a vocabulary of 25,623 words. The phoneme
based dictionary was constructed during the course of
the GlobalPhone project in rule based manner. The used
phoneme set contains 49 phonemes. After its creation
the dictionary was manually postprocessed by a native-
speaker, correcting errors in the automatic pronunciation
generation and introducing pronunciation variants.

The grapheme based dictionary was constructed by
simply segmenting all words into their letters. The Rus-
sian alphabet consists of 33 letters, two of which do not
have any acoustic manifestation, but influence the pro-
nunciation of the bordering letters. We therefore decided
to keep these two letters so that their existence can be
used for the context dependent models. Keeping them
also coheres with our intention to apply as little phonetic
knowledge about the language of our grapheme based
recognizers as possible. Table 2 shows the phoneme
and grapheme inventory of the two dictionaries. The or-
der in the table gives a rough correspondence between
phonemes and graphemes. Phonemes followed by a # re-
fer to the palatalized variants of the phoneme.

4.4 Language Model
For language modeling a statistical trigram language
model was trained on 19 million words of newspaper
texts collected from the online editions of six newspa-
pers. The articles are from the period of 1997 to 2004. No
cut-offs for n-grams were used; the trigram perplexity of
the language model on the development set is 1833. The
high perplexity of the language model is due to the highly
inflective morphology of the Russian language. So far,
special techniques for handling this problem have been
implemented in our system.

4.5 Training
For the phoneme based as well as for the grapheme based
recognizers the models were divided into three sub-states,
a begin, middle, and end state, with a left-to-right topol-
ogy. The emission probabilities of these HMM-states
were modeled by a Gaussian mixture model (GMM) with



Graphemes Phonemes Graphemes Phonemes
a a u u
b b f f
v w h h
g g c ts
d d q tscH
e ye x sch
ë yo w schTsch
� jscH � Q
z z y i2
i i ~
$i j � e
k k � yu
l l � ya
m m b#
n n d#
o o jscH#
p p m#
r r n#
s s p#
t t r#

s#
sch#

tscH#
w#
z#

Table 2: The grapheme and phoneme inventories of the
recognizers

64 Gaussians, one for every state. These 64 Gaussians
per HMM-state are stored in a so-called codebook. First
context independent models were initialized by equally
dividing the samples of every utterance in the training
data over the corresponding models and then running
the k-means algorithm (flat-start). After that initial la-
bels (forced alignments) were calculated using a viterbi
alignment. Then eight iterations of label training were
performed followed by four iterations of viterbi train-
ing. This procedure of writing labels and training was
repeated three times. With the codebooks from the result-
ing context independent recognizers 3000 triphone mod-
els were clustered using our conventional clustering pro-
cedure that grows a CART using entropy gain as opti-
mization criterium. For the phoneme based recognizers
we use a question set based on the articulatory properties
of the phonemes. For the grapheme based recognizers
we use the Singleton question set described above. Us-
ing the labels from the context-independent recognizers
again eight iterations of label training followed by four
iterations of viterbi training were performed. New labels
with the context-dependent systems were written and the
label and viterbi training repeated.

4.6 Phoneme Baseline
The first row in Table 3 shows the word error rate (WER)
of the context-independent recognizers based on the pho-
netic dictionary on the development and evaluation set.
Table 4 shows the respective numbers for the context-
dependent system. Since the grapheme-based systems
differ from this phoneme based system only by the dictio-
nary, the acoustic model units, and the questions set used
in clustering, the word error rates of the grapheme based
systems are directly comparable to these numbers.

Since GlobalPhone is a read speech task under clean
acoustic condition, we would have expected a higher per-
formance, comparable to those we achieved for various
other languages [21]. We hypothesized that the rich mor-
phology of the Russian language is one major source of
errors. We verified this by performing a number of cheat-
ing experiments in which we artificially improved the lan-
guage model by adding test material to the training ma-
terial. Our results indicate that the reason for the lack in
performance is indeed the high language model perplex-
ity. A manual review of the errors made by the recognizer
revealed that many substitution errors result from errors
made in the endings of the words. These inflections are
often acoustically confusable.

4.7 Grapheme Based Recognizers
The first grapheme based speech recognizers use the
same preprocessing and training procedure as the
phoneme based and have the same vocabulary. They
only differ in the pronunciation dictionary, the acoustic
model, and the question set used for clustering. The
second row in Table 3 gives the word error rates of the
context-independent recognizers on the development and
evaluation set. The second row in Table 4 gives the same
numbers for the context-dependent system.

4.8 Enhanced Tree Clustering
In order to observe the effects of the enhanced tree clus-
tering on our recognition system we trained a second
grapheme based recognizer that is identical to the first
one, only this time using the enhanced clustering proce-
dure.

For our experiments we chose not to grow just one
cluster tree, but separate ones for the begin, middle, and
end states of the polygraphemes used. Also our experi-
ments in [17] showed that it is beneficial to grow sepa-
rate trees for graphemes that can be considered vowels,
and such that can be considered consonants. Intuitively
this make sense, because of the very different nature of
consonants with respect to their articulation and therefore
their acoustic manifestation. In principal the enhanced
tree clustering should be able to find this separation be-
tween consonants and vowels by itself. But since the tree
clustering algorithm is a greedy algorithm and since the
entropy gain criterium might not be an optimal criterium
this seems not to happen.



Approach dev eval
phoneme 54.3 48.8
grapheme 55.1 51.4

Table 3: Word error rate in % of the context-independent
recognizers on the development and evaluation set

Approach dev eval
triphones 33.0 33.5
trigraphemes 36.4 37.3
trigraphemes with enh. tree clustering 32.8 35.7

Table 4: Word error rate in % of the context dependent
recognizers on the development and evaluation set

In order to be able to grow a cluster tree we need a
semi-continuous recognition system in which all poly-
graphemes that are supposed to belong to the same cluster
tree share the same codebook. For our conventional clus-
tering scheme it is possible to use the codebooks from
the context-independent system. But for the enhanced
clustering it is necessary to train such a semi-continuous
system. Since now the number of models that share the
same codebook drastically increases, it is necessary to
increase the number of Gaussians per codebook. From
our experience in [17] we chose to use 1500 Gaussians
per codebook for the semi-continuous system. The semi-
continuous system was trained by eight iterations of la-
bel training along labels written with the best context-
independent system.

The third row in Table 4 shows the word error rate of
the resulting recognizer.

5 Discussion

When using our traditional clustering procedure the
grapheme based systems achieves a word error rate of
37.3% on the evaluation set which is a performance loss
of 11.9% relative compared to 33.5% of the phoneme
based baseline recognizer. This is a considerable loss
in performance indicating that phoneme based dictionar-
ies are superior to grapheme based ones when using the
traditional clustering scheme. However, when we apply
the enhanced tree clustering procedure to the grapheme
based recognizers the word error rate achieves 35.7%, a
relative improvement of 4.3%. Thus, the gap between
the grapheme based recognizer and the phoneme baseline
is closed to 6.6% relative. On the development set the
grapheme based recognizer with the enhaced tree cluster-
ing even outperforms the phoneme based baseline recog-
nizer. Therefore one can draw the conclusion that Rus-
sian is well suited for grapheme based speech recogni-
tion and also for implicit pronunciation modeling by shar-
ing training material across polygraphemes with different
center-graphemes.

The fact that in the context-independent case the

Model Set of Center Graphemes
VOWEL(|)-b (765) a ë � y
VOWEL(|)-m (477) ë �
VOWEL(|)-e (808) ë e � y

CONSONANT(|)-b (348) j w �
CONSONANT(|)-m (214) � ~
CONSONANT(|)-e (444) p f q w �

Table 5: Examples of models for polygraphemes with dif-
ferent centergraphemes

grapheme based speech recognizers are considerably
worse than the phoneme based ones emphasizes the im-
portance of the context-dependent modeling when using
graphemes, in order to capture the context-dependent na-
ture of graphemes to phonemes that can be found in many
languages.

The relatively low overall performance of the systems
for a read speech task, can be attributed to the high lan-
guage model perplexity, which is due to the highly inflec-
tive nature of the Russian language in combination with
its relatively flexible word order.

An examination of the cluster tree of the grapheme
based recognizer that was trained with the enhanced clus-
tering procedure reveals that 61 models allow the shar-
ing of parameters for polygraphemes with different center
graphemes. Table 5 gives examples of center-graphemes
for a model from the begin, middle, and end states of
models from the VOWEL and CONSONANT classes.

The average depth of a questions node in the cluster
tree is 15.1. The average depth of a question node ask-
ing for the identity of the center-grapheme is 13.5. This
indicates that the identity of the center-grapheme is still
an important criterium for partitioning the models. But at
the same time the questions for the center-grpapheme are
not the first questions asked.

6 Conclusion

In this paper we presented a grapheme based recognition
system for read Russian newspaper articles. We com-
pared the performance of a phoneme based baseline sys-
tem with two different grapheme based systems. The sys-
tems only differ in the acoustic model units, the ques-
tion set and the pronunciation dictionary. One of the
grapheme based systems also made use of an enhanced
clustering procedure for finding context dependent mod-
els. The almost equal performance of the first grapheme
based system and the phoneme based baseline proofs that
Russian is suited to be acoustically modeled by the use
of graphemes. The increase in performance for the sec-
ond grapheme based system making use of the enhanced
tree clustering, shows that it is also possible to implicitly
model the grapheme-to-phoneme relation of the Russian
language.

The overall results are very encouraging and give



great hope for other languages with a close grapheme-
to-phoneme relationship, such as Croatian, Polish, Span-
ish, Finnish, and Turkish, to name only a few. We also
hope to successfully apply this approach to minority lan-
guages, for which the writing systems had been devel-
oped at later stages according to the pronunciation. Es-
pecially in those languages where only limited resources
are available, rapid dictionary generation is a major con-
cern and grapheme based dictionaries are a time and cost
efficient alternative.
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