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ABSTRACT 
In this paper, we propose a multimodal system for detecting 
human activity and interaction patterns in a nursing home. 
Activities of groups of people are firstly treated as interaction 
patterns between any pair of partners and are then further broken 
into individual activities and behavior events using a multi-level 
context hierarchy graph. The graph is implemented using a 
dynamic Bayesian network to statistically model the multi-level 
concepts. We have developed a coarse-to-fine prototype system to 
illustrate the proposed concept. Experimental results have 
demonstrated the feasibility of the proposed approaches. The 
objective of this research is to automatically create concise and 
comprehensive reports of activities and behaviors of patients to 
support physicians and caregivers in a nursing facility. 

Keywords 
Multimodal, human interaction, group activity, medical care, 
stochastic modeling  

1. INTRODUCTION 
Automatic detection of human activities is a prerequisite for many 
applications, such as surveillance, pervasive computing, and 
medical monitoring. In this research, we are interested in 
automatically detecting human activity and interaction events 
from video and audio for geriatric care applications within skilled-
care facilities. In many such institutions, physicians might visit 
their patients for only a short period of time once a week. 
Assessment of a patient’s progress is based mainly on staff 
reports. These reports may be incomplete or even biased, due to 
schedule shift and the fact that each staff person must care for 
many patients. This may result in insufficient observation for 
monitoring either progressive change or brief and infrequent 
occurrences of aberrant activity for diagnosing some diseases. For 
example, dementia is very common among residents in nursing 
facilities. An obvious characteristic of dementia is a sustained 
decline in cognitive function and memory. Studies indicate that  
elderly patients with dementia may exhibit measurable agitated 
behaviors that increase confusion, delusion, and other psychiatric 
disturbances [1][2]. Long-term observation and care become 
increasingly important for the elderly with dementia in nursing 
homes [3]. Although no widely accepted measure exists for 
dementia in care environments [4], quantitative measures of daily 
activities of these patients can be very useful for dementia 
assessments.  
The long-term goal of this research is to create a system that can 
automatically extract and classify important antecedents of 
psychosocial and health outcomes. One such indicator is the 
frequency, duration and type of interactions of the patients with 
one another and their caregivers. Care providers may then 
interpret and assess changes in these behaviors through the 
recorded visual/audio compilation of activities and interactions of 

patients’  daily lives. This paper describes an essential sub-system 
of our research which is able to automatically process surveillance 
video/audio signals recorded in a nursing home, extract salient 
features, analyze scenes, and detect important events that may 
contain elementary information to obtain concise but limited 
semantic descriptions of the signal contents. Based on these 
events and their associated temporal information, our system can 
also automatically generate summaries and comprehensive reports 
of patients’  activities and behaviors to support the diagnoses made 
by physicians and care providers in the nursing facility. 

 Human activity, especially interaction with others, is generally 
considered a positive and necessary part of our daily life. 
Naturally, the level of an interaction a person has can depend on a 
wide range of factors, such as health, personal preference, and 
aptitude for interaction. Physical disability is not necessarily 
socially disabling. As we have observed from our recorded data, 
many of the most severely disabled patients had daily group 
activities.  

Group activity is mutual or reciprocal action that involves two or 
more people and produces various characteristic visual/audio 
patterns. To simplify the problem, in this paper, we analyze a 
group activity by investigating interactions which occurred 
between all pairs of people in the group and focus on detecting 
interactions using multimodal techniques. 

   

   

 Figure 1. Examples of surveillance videos  

Two major sensors, video cameras and microphones or 
microphone arrays, are often used for detecting human activities. 
Vision is an attractive modality to use for this task, as humans 
typically consider it to be the dominant sense and are more 
comfortable identifying visual than auditory events.  Figure 1 
illustrates several examples of interaction patterns in a hallway of 
a nursing facility. However, vision has some disadvantages. Video 
images can be expensive to capture, process, and store. Vision 
systems are usually sensitive to lighting, aspect, and sensor 
motion conditions. On the other hand, interactions also consist of 
audio patterns of greeting and conversations. Audio signals are 
easier to capture, process, and store than video signals, and audio 
systems are robust to lighting, aspect, and sensor motion.  Audio 



events are, therefore, important compensation resources to video 
for distinguishing an interaction from independent activities that 
appear in the video scene by chance. In this research, we use both 
visual and auditory information for detecting human activities. 

Previous methods attempt to categorize human activities 
according to predefined criteria. Due to the evolving nature of an 
interaction, huge numbers of categories must be defined 
corresponding to variations existing in activities among multiple 
people. A practical method decomposes human activities into a 
sequence of behaviors to obtain a flexible description. In order to 
consistently describe human interactions, we break human 
activities into semantic units and use a dynamic Bayesian network 
to model the temporal and semantic relationships among these 
units. By integrating acquired content description data, we 
construct a hierarchical video/audio content structures with group 
merging and clustering. This multi-level hierarchy consists of 
different entities, features and events, based on observations from 
10 days of video records in a corridor of a nursing home. At the 
bottom level of the hierarchy, predefined entities and attributes 
(features) are detected and tracked using multimodal technologies. 
High-level events and features are further detected using a 
dynamic Bayesian network. We discuss experimental results that 
use the proposed system to detect interaction patterns from 
recorded video/audio channels. 

2. RELATED WORK 
A group activity or an interaction consists of both individual 
human activity and relations between multiple people. Therefore, 
the work presented in this paper is closely related with 
audio/visual events detection and human activity analysis, which 
have been addressed by many researchers in different areas such 
as multimodal interfaces, multimedia processing, pervasive 
computing, and computer vision.  

2.1 Audio Event or  Scene Change Detection  
Audio event detection is usually accomplished by tracking 
changes in some audio feature stream.  The simplest feature to use 
is signal power, as suggested in [28][29]. 

Auditory scene change detection, or segmentation, has usually 
been approached for the Broadcast News speech recognition task, 
using some information-theoretic criterion such as the KL2 metric 
[32] or the Bayesian Information Criterion [33].  A more general 
approach based on auditory self-similarity is given in [30][31]. 

2.2 Vision Based Location Events Detections 
A vision-based system can provide location information while 
overcoming some of the limitations of the above-mentioned 
systems. Many computer vision algorithms have been developed 
for not only recovering 3D locations of a person, but also 
providing detailed appearance information of the person and 
his/her activities.  

Koile et al [5] at MIT proposed a computer vision system to 
monitor the indoor location of a person and his/her moving 
trajectory. The living laboratory [6] was designed by Kidd, et. al. 
for monitoring the actions and activities of the elderly. Aggarwal, 
et. al. [7] has reviewed different methods for human motion 
tracking and recognition. Various schemes, single or multiple 
camera schemes, and 2D and 3D approaches have been broadly 
discussed in this review.  

2.3 Activity Event Detection and Analysis 
Previous human activity detection research focused on analyzing 
individual human behaviors and actions. Apart from the work 
introduced in the last paragraph, paper [10] proposed a system 
that combines sound and vision to track multiple people. Tan et al 
[12] fuse static and dynamic body biometrics for gait recognition. 
Clarkson and Pentland [28][29] describe a system which uses 
ambulatory audio and low-resolution video, fused into a single 
feature stream, to detect and recognize the activities of a single 
human with wearable sensors.  This system clusters the fused 
signal by building Hidden Markov Models in an unsupervised 
fashion. This system is able to identify a variety of environmental 
conditions and events.  
Badler [20] also proposed a hierarchical framework based on a set 
of motion verbs. A motion verb is actually a human behavior, 
which is modeled using state machines on the basis of rules 
predefined on static images. The system can be extended 
theoretically for resolving complex events existing in human 
activities. However, the system was only tested in an artificial 
environment. Other rule-based methods [8] have also shown their 
merits in action analysis. Rule-based systems may have 
difficulties in defining precise rules for every behavior because 
some behaviors may consist of fuzzy concepts. 

Statistical approaches, from template models, linear models, to 
graphic models, have been used in human activity analysis. 
Chomat and Crowley proposed a probabilistic method for 
recognizing activities from local spatio-temporal appearance [15]. 
Yacoob and Black [14] used linear models to track cyclic human 
motion. The model consists of the eigen vectors extracted using 
principal component analysis from the observations. So far, this 
methodology is limited to modeling different repeated patterns of 
human motion.  

Various graphical models have been used for modeling human 
behaviors. Intille and Bobick [11] interpret actions (agents) using 
Bayesian networks among multiple agents. Bayesian networks can 
combine uncertain temporal information and compute the 
likelihood for the trajectory of a set of objects to be a multi-agent 
action. Dynamic mechanisms existing among group actions were 
omitted in this work. Jebara and Pentland [9] employed  
conditional Expectation Maximization to model and predict 
actions. Their system could synthesize a reaction based on the 
predicted action. Hidden Markov models [17], layered hidden 
Markov models [19][22], or other variation of Markov model [18] 
have been used for recognizing actions and activities, and 
illustrated their advantages in modeling temporal relationships 
between visual-audio events. However, large amounts of  training 
data are usually required to obtain good models of various actions 
in the spatiotemporal domain [16]. Ivanov [13] proposed a 
stochastic, context-free grammar to interpret an activity by 
recursively searching for a complete tree in a non-deterministic 
probabilistic expansion of context-free grammar. Similar to 
Kojima’s work, this graphical model can generate a natural 
description of activities based on the detected events. Although 
this model has great potential advantages to be extended for 
analyzing interactions, no published work has been found so far.  



3.  HIERARCHICAL REPRESENTATION 
OF ACTIVITY AND INTERACTION 
EVENTS 
In this research, we propose to use context hierarchies to 
characterize interesting events in a nursing home. Human 
activities and interactions events usually contain certain 
relationships to each other. An interaction event may consist of 
many individual activities. To represent this context, we 
developed a four level hierarchy by observing video/audio records 
of a hallway in a nursing home for 10 days. Each record was 
captured at a resolution of 640 x 480 and stored in mpeg-2 format 
(30 frames/second) and two audio channels. After viewing 80 
hours of video (8 hours for each day), we have defined a four-
level context hierarchy for representing daily activities of patients, 
staff, and visitors. From bottom to top, the four levels are 
conceptual element (CE), individual person activity event (IE), 
group activity feature (GF), and group event (GE), which are 
illustrated in Figure 2.  

Figure 2. Context hierarchy of nursing home hierarchy  

The conceptual elements consist of entities that are objects of 
interest to us, and some attributes of entities. The entities of a 
nursing home are walking or standing human beings and patients 
using wheelchairs. The attributes are features for measuring 
motions and visual appearances of an entity. We use five visual 
features: location, moving direction, speed, color, and shape, as 
explained in Table 1. We will discuss the detail implementation of 
entity detection and feature extraction in section 4.  

Table 1. Attr ibutes of entities in a nursing home 

Attr ibutes Definition 
Location (E) Describing the physical location of the entity “E” . 
Moving direction 
(E) 

Describing the moving direction of the entity “E” . 

Speed (E) Describing the moving speed of the entity “E” . 
Color (E) The entity “E”  has skin color. 
Shape (E) Shape information of the entity “E”  

An individual person activity event (IE) is defined as a 
combination of a person entity and a sequence of attributes. For 
example, the IE “Walking (A)”  indicates person A with a sequence 
of changing locations. Table 2 has listed some IEs in a hallway of 
a nursing home. Other IEs for different locations in a nursing 
home, such as dining room, can be defined using different 
knowledge sources. 

Table 2. Individual human activity events (IEs). 

Individual people activity events Definition 
Walking(person) A person is walking. 
Sitting(person) A person is sitting. 
Standing (person) A person is standing. 

Group activity features (GFs) are combinations of IEs that involve 
two individual person entities as listed in Table 3. GFs are 
features of relative motions of two IEs. These features that 
measure relative distance or walking directions between two 
people, for example, the “distance (A, B)”  measures the distance 
between person A and person B.  

 
Table 3. L ist of group activity features and events (GEs) 

Group activity features Definition  
Distance (A, B) Distance between A and B. 
Relative direction (A, B) Relative moving direction between A and 

B. 
Relative speed (A, B) A and B are walking together. 

A group interaction event (GE) is a segment of a story (a 
meaningful sequence of video/audio) of human activities 
consisting of a group of individual activity events and group 
activity features. For example, a story of a typical conversation in 
the hallway can be mainly partitioned into three segments: 

1. Person A and person B approach to each other; 
2. A and B are talking. 
3. A and B walk out of the hallway together or separately. 

Theoretically, if the observation time and the number of people 
involved are not limited, the number of possible interactions can 
be quite large. In this paper we only interested with five events as 
listed in [WHERE?] 

Table 4 Group interaction events 

Group interaction events 
features 

Definition  

Approaching (person A, person B) A and B  is approaching to each 
other. 

Leaving (person A, person B) A is leaving B. 
Close (person A, person B) A and B are very close to each 

other. 
Standing conversation More than one people are standing 

and talking.. 
Walking assistance People are walking together. 

 

4. IMPLEMENTATION OF THE 
INTERACTION DETECTION SYSTEM 
The system is proposed to detect interaction patterns from coarse 
to fine, which consists of two steps: coarse interaction event 
detection and fine interaction event detection as shown in Figure 
3.  

 

Figure 3. Interaction event detection system 
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4.1 Coarse Interaction Event Detection 
We detect candidate interactions among a group of people by 
fusing audio and video channels. A camera network installed in 
the nursing home records both video and audio. To speed-up the 
process, we first quickly extract video and audio shots that may 
contain interactions. 

4.1.1 Video events detection 
For the video channel, we use a background subtraction algorithm 
to detect frames that contain human activities. To speed up this 
detection process, only video from one camera in the network is 
used. The background of a frame is obtained by the adaptive 
background method [21]. We employ  a threshold to extract pixels 
that have high differences between the current frame and its 
background. To remove noise, we group extracted pixels into 
regions and only keep those regions that contain more than 15 
pixels. We consider the frame f to contain a visual interaction 
event Vf=1 if any of the following rules is satisfied; otherwise 
Vf=0  :  

1. There are two or more regions in the frame. 

2. There is region that does not touch the bottom the 
frame, whose width to height ratio is more than 0.7.  

We choose these thresholds to detect as many interactions as 
possible without inducing excess false alarms.   

The output of the detection is reported every second. For a second 
of NTSC video, we output the percentage of visual cues in its 30 
frames as: 
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4.1.2 Audio event detection 
To detect events using the audio stream, we use a very simple 
power-based method like the one proposed by Clarkson and 
Pentland in [28][29].  This method adaptively normalizes signal 
power to zero mean and unity variance using a finite-length 
window; segments where the normalized power exceeds some 
threshold are designated “events.”  [28] and [29] describe an 
ambulatory system which could be exposed to arbitrary acoustic 
environments; adaptive normalization allows such a system to 
compensate for unusually loud or quiet environments and still 
detect events reliably.  Our task differs from this one in that we 
have a stationary system where changes in power level really do 
indicate events and not just changes of venue. As such, instead of 
adaptive normalization, we use global normalization.  That is, a 
single mean and variance is calculated for each two-hour 
recording and the globally-normalized power is threshold to 
detect events af.  

In this implementation, we extracted 16kHz, 16-bit mono audio 
from the audio-video stream, and used analysis windows 200ms in 
length with a 50% overlap. This window length results in a frame 
rate of 10 frames per second, which is more than adequate to 
detect events using the power-based approach. After signal power 
is calculated and normalized, it is passed through a simple 3-
frame averaging filter for smoothing. We then apply the power 
threshold; any segment which exceeds the threshold is designated 
an event.  We also stipulate a minimum event time of 1 second in 
order to filter out isolated auditory transients. The confidence of 
audio event per second is defined as: 
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4.1.3 Fusing video and audio events detection 
We linearly combine the video event confidence and audio event 
confidence together for final event detection: 

avd CCC )1( αα −+=  

We consider a one-second frame to contain an interaction if its 
confidence Cd is higher than 0.5. 

4.2 Fine Interaction Event Detection 
The fine detection of interactions is based on the multi-level 
context hierarchy we proposed in section 3.  The hierarchy of 
interactions in a nursing home is mapped onto a dynamic 
Bayesian network (DBN), which represents not only the 
interactions and the event hierarchy by its states and arcs, but also 
the evolution of the interactions over time by temporal arcs 
defined between the interactions. To illustrate the concept, a part 
of temporal structure of the DBN is depicted in Figure 4. 
Formally, the DBN B=(S, M) is a directed acyclic graph that 
consists of a state set },...,{ 1 nssIEGFGES =∪∪= , which 

represents events and interactions, a set of directed arches that 
specifies parents of each state s: Parents(s), and a parameter set 
M, which includes the probabilities for any input video sequence 

),...,( 1 kooO = : the event data likelihoods )|( i
t

M soP  and the 

hierarchy of relationships ))(|( iiM sParentsP . The joint 

distribution of the DBN is defined as: 
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The graph is built by defining the parents of each state according 
to the relationships defined in the hierarchy. The temporal arcs are 
also added into the graph using daily knowledge. In the rest of 
this section, we will discuss the implementation of the parameter 
M in detail. This template graph can be pre-trained offline. For 
analyzing a video/audio record, we dynamically build a graph the 
same as the template graph for each pair of entities that extracted 
from the scene. After obtaining the data likelihoods for  the GEs 
in all the graphs, we consider the GE that has the highest 
likelihood to be the current analysis result. 

 
Figure 4. A par t of a DBN with temporal arcs 

4.2.1 Entity Detection and Attributes Extraction 
We manually labeled the position of all the doors and entrances of 
the hallway. An entity that appears close to one of these doors and 
entrances for the first time is initialized and tracked in the 
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hallway. We consider a region extracted in the pre-segmentation 
step as an entity if it contains skin color pixels in the top 30% of 
the whole region. The skin color is modeled as a Gaussian mixture 
[23]. The location and moving direction features can be extracted 
directly from the tracking results. The appearance features, color 
and shape, are extracted from key-frames. 

4.2.1.1 3D tracking 
Since occlusions happen very often in the narrow hallway, we use 
a particle filtering base multiple camera framework to track 
human movement. This framework uses one or more cameras to 
cover the target area. The location of a person in 3D space is 
obtained by integrating tracking confidence in the images from the 
cameras. Instead of using a traditional stereo algorithm, this 3D 
location recovery task uses a new tracking algorithm, which can 
robustly compensate tracking cues from different numbers of 
cameras.  

 

Figure 5 3D tracking with a camera network 

A camera network consists multiple cameras covering the 
interesting areas in the nursing home as illustrated in Figure 5. A 
simple pin-hole model is used for all the cameras. We can 
calibrate the cameras off-line because we don’ t move them once 
they are calibrated. After calibrating the intrinsic and extrinsic 
parameters, we can map a spatial point L(X,Y,Z) in 3D world 
coordinates to its corresponding point l i(x,y) in the image plane of 
each camera i which can be defined by the following equation: 
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where fi is the focus length of the camera i. 

The spatial points can be silhouettes. We use both the head 
(highest point) and feet (lowest point) in this research. Using 
particle filters, we are able to track a silhouette in 3D world 
coordinates using the tracked features from all the cameras. 

The idea of particle filters was first developed in the statistical 
literature, and recently this methodology, namely sequential 
Monte Carlo filtering [21][25] or CONDENSATION, has shown 
to be a successful approach in several applications of computer 
vision [26][27]. A particle filter is a particle approximation of a 
Bayes filter, which addresses the problem of estimating the 

posterior probability )( :1 tt OLp  of a dynamic state given a 

sequence of observations, where Lt denotes the state L (3D 
position in the world coordination) at time t and O1:t denote the 
observed images sequence from all the cameras from time 1 to 
time t. Assuming independence of observations conditioned on 
the states and a first order Markov model for the sequence of 
states, we obtain the following recursive equation for the 
posterior: 
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where α is a normalization constant and the transition probability 
)|( 1−tt LLp is assumed to be a Gaussian distribution. The data 

likelihood is obtained by first mapping the 3D position L(X, Y, Z) 
of a silhouette to the current images from cameras and then 
computing the average tracking confidences C(l i) at these 2D 
positions l i: 
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Here, iL  is the distance from the optical center of the camera i to 

the point L. The threshold C is a constant for removing tracking 
errors. If a mapped 2D point is out of the image, the 
corresponding tracking confidence is set to 0. N is the number of 
cameras that contain tracking results with high enough 
confidences. 

In practice, a head silhouette has less chance to be occluded than a 
foot silhouette. However, the 3D location of a head silhouette can 
only be recovered if it is tracked in the frames from at least two 
cameras. Therefore, for tracking a head silhouette, N must be 
greater than 1. One the other hand, although a foot silhouette is 
often occluded, it can indicate the 3D location of a person using 
only one camera. This is very important in the case that a person 
is only visible in only one camera. 

Following the idea of a particle filter, the posterior )( :1 tt OLp  is 

approximated by a set of weighted samples of locations L. The 
weight of a location is defined as its data likelihood. The initial 
weighted sample set contains only one state L0, which is obtained 
by performing a full search around the 3D position near the 
entrance where the person is initialized. Then, for each frame 100 
new samples are generated and their confidences are computed. 
To keep the size of the weighted sample set, among these 100 new 
samples, the first 50 samples with the highest confidences are then 
treated as the new weighted sample set for the next frame. The 
final current tracked position is set to be the value of the sample 
(3D location) with the highest confidence. 

One advantage of this tracking framework is that it can reduce 
tracking errors with multiple cameras. Figure 6 illustrates the 
compensation of tracking results of two persons using this 
multiple cameras framework in simulation sequences. The results 
of tracking using individual cameras and the proposed multiple 
cameras framework is shown on a time axis. A vertical bar at time 
t indicates that the person is tracked at time t, otherwise the 
person is not tracked. We can see that the proposed method 
obtained no blank (loss of tracking) here. Tracking results from 
the 10 minute long sequences are shown in Figure 7. The 
proposed tracking framework reduces tracking errors by 58% on 
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average, which can significantly prevent tracking errors from 
occlusions.  

 
Figure 6. An illustration of tracking results using the 

proposed framework. A color  mark at time t indicates that 
the person is tracked at time t by the corresponding camera 
or  combination of cameras, otherwise the person is lost to 

tracking. 

 
Figure 7. Tracking errors in 10 minute simulation video 

 

4.2.1.2 Color and shape features 
Color features are mostly used to distinguish different entities in 
the tracking process. We use 8-bin histograms in RGB color space 
as features for each entity. 
Shape information is represented by partitions with Manhattan 
distances. In this method, each extracted region that contains 
people or facilities is divided into 9 sub-regions, as shown in the 
figure 8. The density of each sub-region is calculated and 
thresholded to equal  ‘1’  if it is greater than 50% and ‘0’  
otherwise. Finally, a shape feature vector of a region is a 10 
dimensional vector: 9 city block features and the width/height 
ratio of the region. 
 
All the attributes (features) are extracted every second. The 
“ location”  is represented by (X, Y) of the tracked 3D spatial point 
L(X, Y, Z) at the beginning of each second. Speed and moving 
direction are computed every second. Color and shape features are 
also extracted from the first frame of each second. Therefore, the 

input of the event detection level is uniform attribute (feature) 
vectors per second.  
 

 
Figure 8 Shape feature. 

 

4.2.2 IE Detection 
Each IE is modeled individually using Gaussian mixture models 
(GMMs). We train each IE separately using the standard EM 
algorithm [24]. In order to train good models using limited 

training data, we perform feature selection using 2χ  for each 

event for reducing the feature space. The parameters of GMMs are 
optimized using 2-fold cross validation. 

4.2.2.1 GF extraction and GE detection 
After detecting IEs, we can build graphs for each pair of the IEs. 
Group activity features are also extracted for each pair of entities 
based on the extracted features. The data likelihood of GEs in 
each graph can then be computed using equation (1). For every 
second, we output the GE which has the highest likelihood as the 
result. 

5. EXPERIMENTAL RESULTS 
To evaluate the coarse event detection, we labeled 10 hours of 
video/audio records. Using only video detection, we extract 
33.3% of the whole video as candidate interaction shots, which is 
listed in Table 5. In order to not miss any interactions, we only 
filter out the one-second-long video segments with zero 
confidence. 

Table 5 Total event time from video 

 Total Event Time 
(second) 

Event Time as % 
of Total Signal 

No activity 13711 38.1% 
Individual 6700  18.6% 
Interaction events 15589 33.3% 
 

Using only audio detection with varying thresholds, we obtain the 
results listed in Table 6.  The table shows the total event time and 
percentage of the recordings for three thresholds.  

Table 6 Total event time from audio per  threshold. 

Threshold Total Event 
Time (second) 

Event Time as % of Total 
Signal 

1.1 6705 18.6% 
1.6 5582 15.5% 
2.1 4327 12.0% 
 

By fusing the audio (threshold 1.6) and video results, we extracted 
in sum 9435 seconds from the whole 10 hour record. In this way,  
85 our of 91 interactions in the ground truth are covered by the 
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candidate shots, which obtain reasonable recall and precision in 
terms of event time as listed in Table 7. The audio has a lower 
recall due to the presence of silent interactions such as walking  
assistance of a wheelchair-bound patient. The audio precision is 
actually higher in general than is reported here. The hallway 
environment is a poor representative of audio precision, as many 
events that are audible in the hallway are off-camera and not in 
the ground-truth labels; thus audio event detection generates many 
false alarms.  Even so, our results show that by fusing audio and 
video results, we can achieve more than 90% recall and 20% 
precision.  We project even better precision when we test our 
fused system over the entire set of nursing home environments.   

Table 7 Coarse detection results 

 Recall Precision Process speed 
Video 98% 13% real time 
Audio 71% 28% 10%  real time 
Multimodal 92% 21.0%  
More interaction sequences are needed to train and evaluate the 
fine interaction event detection. We have selected 160 short video 
sequences of interactions from 80 hours of hallway video at a 
nursing home (8 hours each day for 10 days). The average length 
of these video sequences consists of 400 frames. To avoid 
interpreting very complex activities, most of the sequences 
contain interactions only involving two persons. We manually 
labeled the ground truth of these video sequences. 

Figures 9-10 illustrate speed features and “distance”  of four 
typical video sequences in our database. Each of the four videos 
contains an interaction of two persons. Video (1) shows person A 
meeting person B coming from the entrance located at another 
side of the hallway. They hug each other and then stand and talk 
to each other for a while. Finally, person B accompanies person A, 
walking towards the entrance. Using the concepts defined in our 
hierarchy, video (1) can be simply interpreted as: “approaching, 
standing conversation and walking assistance” . Concisely, we can 
interpret the video (2-4) as: (2) standing conversation and walking 
assistance; (3) approaching, standing conversation and leaving; 
(4) approaching, close, and leaving. In Figure 9 and 10, different 
scales are used for the Y axis in order to show the results in as 
much detail as possible. We can observe there are some errors in 
the figures in that the “speed” and “distance”  of video (2) are 
shifted to a different scale. The errors are caused by precision of 
the tracking algorithm and the calibration of the camera network. 
Fortunately, the errors can be controlled within a small range.  

We use 80 videos in the database as the training set and use the 
remaining 80 videos as the test set. Table 8 lists the number of 
interactions in the training set and test set. Only 2 interactions are 
listed here because approaching, close and leaving are events that 
related with interactions. 
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Figure 9. Speed features of some video samples: (1) approaching, stand 
conversation, walking assistance; (see or iginal key frames in the 1st row 

of Fig. 1) (2) stand conversation, walking assistance; (see Fig. 1, 2nd 
row, left) (3) approaching, stand conversation, leaving; (see Fig. 1, 2nd 
row, middle) (4) approaching and leaving (see Fig. 1, 2nd row, r ight). 

0

2

4

6

8

10

12

14

16

1 5 9 13 17 21 25 29 33

0

0.05

0.1

0.15

1 2 3 4 5 6 7 8 9
 

 (1) (2) 

0

1
2

3

4

5
6

7

8

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9
 

 (3) (4) 

Figure 10. “ distance”  extracted from the four  video sequences descr ibed 
in Figure 9. 

 

Table 8. Activity detection results 

Interactions Training 
set 

Test 
set 

Recall False 
alarms 

No interaction 21 15 93% 4 
Stand conversation 32 34 88% 9 
Walking assistance 40 44 86% 6 

 

6. CONCLUSIONS 
This paper described a system for detecting human interaction 
events in a nursing home using multimodal technology. Human 
interaction is one of the most complex human activities in a 
nursing home and can provide potentially important information 
regarding long-term care patients. We have demonstrated that the 
proposed hierarchical system can automatically detect interaction 
events of groups of people in the hallway of a nursing home. The 
experiments show that fusing video and audio signals can improve 
the coarse events detection compared to using only video or audio 



channels. Future efforts will involve video/audio fusion in fine 
detection and identification of human interactions as well as 
coarse event detection. 
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