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Abstract

Recent work by Seltzer [1] indicates that classical approaches to
beamforming, minimizing output power while enforcing a distor-
tionless constraint, do not yield optimal results in terms of word
error rate (WER) on speech recognition task. This problem can be
traced back to the mismatch between the target criterion of clas-
sical adaptive beamformers, which is optimization of the signal to
noise ratio, and the actual target criterion, which is the reduction
of the recognizer’s WER. Following an approach by Seltzer [1] we
therefore investigate the performance of an alternative error crite-
rion, which attempts to optimize the beamformer weights, so as to
improve the likelihoods along the recognizer’s Viterbi path for each
utterance. This criterion matches the goal of lower WERs more
closely and therefore leads to better recognition results.

1. Introduction

While automatic speech recognition (ASR) systems perform well
on recordings made in a quiet environment using a close talking
microphone, distant microphone scenarios, such as meeting room
tasks, still present a considerable challenge [2]. A proven method
to enhance recognition results in such a scenario is the use of micro-
phone arrays, employing delay and sum beamformers. More com-
plicated adaptive beamforming techniques may yield improvements
in signal to noise ratio (SNR), but such techniques will usually not
improve the word error rate (WER) significantly [1]. We believe
that this is due to a mismatch between the target criterion of clas-
sical adaptive minimum variance distortionless response (MVDR)
beamformers and the target criterion in speech recognition, which
is a low WER.

Recent work by Seltzer [1] indicates that recognition results can
be improved dramatically by adapting the beamformer weights so
as to maximize the likelihood of the filtered acoustic data under
the recognizers best hypothesis and thereby approximating the ac-
tual target of minimizing WER more closely. In a procedure simi-
lar to the expectation-maximization (EM) algorithm one determines
a recognition hypothesis, that is used to optimize the beamformer
weights. These are in turn used to obtain a better hypothesis.

In Seltzer’s work, however, the weights are not optimized with
respect to the actual acoustic models. Rather, Seltzer uses auxiliary
models in the log-mel-spectral domain. As the recognizer itself uses
cepstral models, cepstral auxiliary models should approximate the
recognizer better and thus lead to better recognition results. There-
fore, the purpose of this work is to investigate the possible advan-
tages of using cepstral auxiliary models.

2. Beamforming

Beamforming exploits the fact that signals impinging on a micro-
phone array will travel different distances to each of the sensors [3].
Imposing delays on the signals received by the microphones such

that the arrival delays of signals originating from the look direction
are exactly compensated, and summing the delayed signals, signals
arriving from other directions will undergo destructive interference
and thereby be attenuated.

2.1. Narrowband and frequency domain beamforming

If the bandwidth of a signal is small we may approximate a time do-
main linear filter by multiplying the frequency domain signal with a
complex weight [4]. We can thus write the narrowband beamformer
with the frequency domain snapshot u as input vector, weight vector
w and output y as

y(t) = w'u(t) ()
where (-)¥ is the Hermitian transpose operator. Frequency domain
beamformers [3] are constructed by applying an analysis filter bank,
in this work Hamming window and Fast Fourier Transform (FFT),
to each sensor output, to obtain a discrete spectrum with sufficiently
narrow frequency bins. Given a set of frequency bins, one provides
a separate narrowband beamformer for every frequency band ¢ in
the spectrum, that takes as input the value of band ¢ from each sen-
sor. The outputs of all narrowband beamformers form a full spec-
trum, that can be transformed back into the time domain or passed
to the remaining components of an ASR frontend.
As opposed to time domain beamformers, frequency domain
implementations allow for an independent optimization of each sub-
band [4], thus exhibiting better convergence properties.

2.2. Generalized sidelobe canceller

It is often desirable that signals arriving from a specified look di-
rection are not distorted or attenuated by the beamformer, while
all other signals are attenuated as much as possible. A beam-
former attaining this goal is called MVDR beamformer [3]. Using
a simple narrowband filter and sum approach one has to perform a
constrained optimization of the weights to minimize output power
while maintaining distortionless response. The linear constraint is
given by
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In the steering vector s the angles 0; are the phase differences at
the sensors for signals arriving from the look direction.

The general sidelobe canceler (GSC) [5] turns this constrained
problem into an easier to solve unconstrained one. We define the

quiescent weight vector wy, = ~ s and give a blocking matrix B €

T~ m
C™~!X™ the columns of which span the orthogonal complement
of wq in C™. Let w, € C™ " be the active weight vector, for now

arbitrary. The beamformer output y(¢) for input w(t) is given by
y(t) = wu(t) = (wf —wi BT )u(t) 3)
where w = wf — wf B is the effective weight vector, i.e.
the weight vector that would lead to the exact same response as the



GSC yields in a standard narrowband filter and sum beamformer.
Note that the GSC always satisfies the linear constraint (2), inde-
pendent of the choice of the active weight vector w,. Thus we may
solve the constrained MVDR optimization problem by solving the
unconstrained problem of finding an active weight vector w, for the
GSC that minimizes the output power given an input u(¢). A more
detailed derivation of these results can be found in [5].

3. Seltzer’s LIMA-beam

Seltzer [1] proposes a new target criterion for the optimization of
the beamformer weights w that is designed to better match the ob-
jective of reduced WERs. He observes that the recognizer chooses
a hypothesis h according to

h = argmax P(h)P(y|h). (4)
h

The feature vector y = y(u,w) = (y(t;u,w)) is a function of
the frequency snapshots u and the beamformer weights w. Let h.
be the correct transcript for the input signal v = (u(t)). Then the
optimal set of weights w should be selected to minimize the WER
or, in approximation of that goal, to maximize the probability of the
features y under the hypothesis A.:

w = argmax P(y(u, w)|he) )

The evaluation of Eq. (5) is central to all algorithms subsequently
derived. The differences lie only in the approximations made and
the beamformer setup.

To describe Seltzer’s algorithm we need to discuss a number of
approximations. First, let s = (sc(t)) be the state sequence of
the hidden markov model (HMM) associated with the transcript h..
Then, ignoring the state transition probabilities, we have:
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Generally P(y(t)|sc(t)) will be a Gaussian mixture whose like-
lihood is difficult to maximize. So, as an approximation, Seltzer
uses auxiliary models in the logspectral domain with only a single
Gaussian component instead of the recognizer’s actual models. The
auxiliary models are trained in the same way as the recognizer mod-
els, only that they operate on logspectral instead of cepstral features.
The single Gaussian case is much easier to handle because we have
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where the logspectrum y(t) = (ym (¢;u, w)) at time ¢ with input
sequence u and weight set w is given as:

ym (1) = 10g10 (Y Mum.slvs (t)[?) ©)
f

Here M, s is the Mel matrix indexed by Mel band m and fre-
quency band f. The beamformer output v = (vy, (t),..., vy, (t))
is then given by

vp(t) = wiug(t) (10)

where vy (t) is the output of of the narrowband beamformer for
frequency band f, calculated from the input w ¢ (¢) for that band and
the appropriate weights w¢ determined by w = (wy,, ..., wy, ).
To optimize the beamformer weights we determine the deriva-
tive of the error function & by w™ [5] as shown below. Given these
derivatives, we can optimize the beamformer weights using gradient
driven procedures [6].
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For a fixed mel band k the mel matrix M = (Mj, f) gives a filter
with a triangular transfer function, that has zero entries for all but a
small number of frequency bands f. Thus a particular mel compo-
nent of the error function ¢, that is defined in the log mel domain,
depends only on a fairly small number of frequency components.
This is the main reason Seltzer chose to work in the log mel domain
[1]. Of course the mel filters overlap, so the bands are not indepen-
dent. Thus Seltzer proposes to duplicate the weights, i.e. to keep a
separate set of weights for each mel band and fequency band. Using
this approach one may optimize the weights under each mel triangle
independently. This is a solution to the complexity and convergence
problems one faces when trying to optimize all filter weights jointly.

The speech recognizer demands that the signal be stationary
during an observation window, thus constraining the window length
to about 20ms. On the other hand a filter with a finite duration
impulse response of only 20ms cannot compensate for reverbera-
tion effects, as typical room impulse responses extend over 150ms
[1]. As solution Seltzer proposes to replace the subband weights by
short tap-delay-line linear filters. Thus we obtain a longer subband
filter impulse response, while preserving the ability to directly feed
the beamformer output into the recognizer.

3.1. ML beamforming

The evaluation of Eq. (5), central to all maximum likelihood (ML)
beamformers, requires knowledge of the correct transcript h..

In semi-supervised ML beamforming [1] we use a calibration
utterance with known transcription h. to optimize the beamformer
weights. The calibration utterance is then read by the user and
recorded with the microphone array. We initialize a beamformer to
delay and sum and use it to produce features y. From the features y
and the transcription h. we then calculate error function and gradi-
ent according to Section 3 or 4. These we use to optimize the beam-
former weights, employing a gradient descent procedure. Once our
weights have converged, we use this calibrated beamformer to de-
code all subsequent utterances.

The unsupervised ML beamformer [1] requires no calibration
utterance, rather it employs the EM algorithm. Delay and sum is
used to obtain a preliminary set of features. The recognizer deter-
mines a Viterbi state sequence and transcript for the given features
(E-step). From this state sequence one calculates likelihoods and
gradients as in Section 3 or 4, that are used to minimize the nega-
tive log-likelihood under these models (M-step). This procedure is
iterated until the weights have converged.

4. CDML beamforming

To improve recognition performance, we close the gap between op-
timization criterion and actual optimization target (minimal WER)



further by following Seltzer’s approach [1], but replacing the single
gaussian log-spectral domain auxiliary models with single gaussian
cepstral domain auxiliary models. Since each cepstral coefficient
depends on all frequency bands, duplication of weights and inde-
pendent optimization as in [1] is no longer feasible. Hence, in
cepstral domain maximum likelihood (CDML) beamforming con-
vergence may become more of an issue, but the optimization target
ought to be matched more closely.

Assume a frequency domain snapshot sequence u and a match-
ing transcript h. are given. As error function for CDML beam-
forming we then use the negative log-likelihood of the beamformer
output v = v(w, u) under the speech recognizer’s model associated
with the maximum likelihood state sequence s. for the transcript
he. We have s.(t) = (u(t), 71 (¢)) where pu(t) is the mean vec-
tor for the state s.(t) at frame ¢ and £ 7" (¢) the inverse covariance
matrix. We still get (8) as error performance surface, however the
output of the recognizer frontend y(¢) = (y:(t)) now is (compare
Eq. (9)):

() =3 Dimlogyo(Y Mumslos (D) (14)
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Dj m 1s the DCT matrix, indexed by DCT band ¢ and Mel band m.

We may now calculate the derivative 6%5 of the error function &
by the weights w. Let wy denote the weights acting on frequency
bin f:
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Subsequently we give gradient equations for a number of beam-
former setups, that can be used in the algorithms of section 3.1.
4.1. Unconstrained Filter and Sum

A simple narrowband filter and sum beamformer is given by Eq.
(10). To provide for a longer finite duration impulse response, as
motivated in Section 3, we now describe a unconstrained filter and
sum beamformer with N taps per frequency band f and channel c:

)= wi,us(t—n) a7

For N = 1 this still describes the simple filter and sum beamformer
from Eq. (10). Eq. (17) yields the following gradient expression:

[or ()1 = us(t = n)or (1) (18)
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where we define

5-2—|vy|? to be a column vector of partial deriva-
wy
tives each position correspondlng to one channel. Together with Eq.
(15) and (16) this describes the gradient.

4.2. GSC-CDML Beamformer

The GSC can be used to enforce a set of linear contraints while op-
timizing the target function (8). This could be useful to incorporate
external information, such as visually obtained speaker location in-
formation. If we replace the freely adjustable beamformer with a
GSC in the system described above, we can prescribe a look direc-
tion and adapt the remaining degrees of freedom as before.

As describen in section 2.2, the GSC makes use of a quiescent
weight vector w, and an active weight vector w, = Waq,n, f,z. Once

more we provide for a longer finite duration impulse response by re-
placing a simple weight by a tap-delay line. The GSC Beamformer
is then given as:
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The gradient equations with respect to the active weight vector are:
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Subtituting into Eq. (15) and (16) we obtain the full gradient ex-
pression.

Note that the GSC enforces a distortionless contraint on signals
arriving from the look direction. This may lead to degraded perfor-
mance, if the speech signal is distorted in some fashion or if there
are multipath components arriving from near the look direction. The
GSC is also sensitive to erroneous steering vectors, whereas the un-
constrained adaptive algorithm finds its direction automatically.

4.3. Modified GSC-CDML Beamformer

We use multiple taps in order to compensate for effects a beam-
former with short impulse response can not address, in particular
reverberation. To do so, we need to cancel part of the signal with
time delayed samples. It may therefore be sensible not to subject
the time delayed frequency samples to the linear constraints (i.e the
blocking matrix), since it suppresses all signal components incident
from the look direction, preventing them from cancelling the signal.
Hence we construct the following modified tap delay line GSC:
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For the active weight vector w, we find:
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For the extended weight vector w. we obtain:
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Again we subtitute into Eq. (15) and (16) to obtain the full gradient
expression.

5. Experiments and results

The experiments in this section were conducted with the Janus
Recognition Toolkit (JRTk) developed jointly at the Universitit
Karlsruhe (TH), Germany, and the Carnegie Mellon University
Pittsburgh, USA. The recognizer and the auxiliary models used for
beamforming were trained on the English Spontaneous Schedul-
ing Task (ESST) corpus, which is comprised of approximately 35
hours of dialog contributed by 242 speakers. The data was collected
recording the planning of an overseas business trip with Sennheiser
head-mounted close-talking microphones.

The ESST test set, on which all results quoted here were ob-
tained, consists of 1,825 utterances by 16 unique speakers, 210
minutes total, 22,889 words. For our beamforming experiments we
used an 8 element linear array with 41 mm inter-element spacing.
The data was replayed over a stationary speaker positioned 2 me-
ters from one end of the array, measured perpendicularly to the ar-
ray. Recording took place in our reasonably quiet, but by no means
soundproofed or damped seminar room. All data was sampled at a
rate of 16kHz.



| [ Interference [[ Spec. | Ceps. | WER |

Sinel none 61.37%
Chas® | music 12.72dB SRR 65.94%
talking 9.03dB SNR 64.36%

Delay none 59.47 | 33.81 | 51.34%

& Sum music 12.72dB SNR 56.33 | 35.20 | 59.95%
talking 9.03dB SNR 58.35 | 34.83 | 59.39%

LIMA none 53.31 | 40.16 | 58.76%
BEAM music 12.72dB SNR 55.26 | 40.20 | 63.62%

talking 9.03dB SNR || 54.53 | 40.26 | 62.24%

none 60.87 | 33.46 | 51.00%
CDML music 12.72dB SNR || 59.15 | 33.67 | 58.05%
talking 9.03dB SNR || 60.04 | 33.97 | 57.10%

GSC- none 58.26 | 33.07 | 54.65%
CDML music 12.72dB SNR || 55.54 | 33.62 | 58.93%
talking 9.03dB SNR || 56.81 | 33.30 | 58.04%

Table 1: WERs and per frame negative log-likelihoods under cep-
stral and log-spectral auxiliary models

For the experiments with interference, the interfering source
was recorded separately but in the same room with the array in the
same position, but the interference source positioned 3m (measured
parallel to the array) from where the speech source was placed. We
used speech from another talker and music from a chamber orches-
tra as interfering signals. For the experiments, the interference was
added to the “interference free” signal before processing.

Features were calculated every 10ms, using a 20ms sliding
Hamming window. The windowed data was padded with zeros
and passed through a 512 point FFT, acting as filter bank. The fre-
quency samples were then passed to the array processor or, for the
single microphone experiments, transformed into 13 cepstral coef-
ficients in the usual fashion. Recognition was performed with static
and dynamic features, without power features, using cepstral do-
main mixture models and cepstral mean subtraction. Also listed are
the average per frame negative log-likelihoods (i.e. lower is bet-
ter) of the beamformer outputs, both under the single Gaussian log-
spectral domain auxiliary models we used in our implementation of
Seltzer’s LIMA BEAM [1] and under the single Gaussian cepstral
domain auxiliary models used in our CDML beamformers.

Comparing the recognition results on a single channel of the
beamformer (see Table 1) to a 31.94% WER on clean close talking
data we see the heavy degradation switching from close talk to dis-
tant microphone. Furthermore Table 1 shows the baseline delay and
sum results and the results for the CDML Beamformer and Seltzer’s
LIMA BEAM operating in a semi-supervised fashion. All exper-
iments were conducted without multiple frequency domain taps.
One utterance per speaker of at least 10s length was used for calibra-
tion. The remaining utterances for the speaker were then processed
using the weights estimated during calibration. Optimization was
performed using the gradient expressions derived above and em-
ploying a Pollak-Ribiere conjugate gradient minimizer [6].

We find that improvements and degredations in cepstral domain
likelihood correllate well with improvements and degredations in
WER. Actually there is only a single deviation from this pattern,
for the no interference case on the GSC-CDML beamformer. There
the optimization appears to get caught in a local optimum, leading
to anomalous behavior. We were unfortunately unable to establish
a reliable connection between log-spectral domain likelihoods and
WER in our experiments. In particular we failed to get any impov-
ements from Seltzer’s LIMA BEAM on our system and data, al-
though the log-spectral domain likelihood numbers clearly indicate
that the optimization is converging.

6. Discussion and further work

We find that CDML beamforming yields decent improvements (up
to 2.29% absolute) in presence of interference. Since the GSC-
CDML beamformer, which does not act as a postfilter, is only .94%
absolute worse, we believe that at most .94% absolute of the 2.29%
are due to the postfilter effect of the CDML algorithm.

Note that the central problem in distant microphone speech
recognition is usually reverberation. The reverberation lies in the
same frequency range as the target signal and is generally prone
to “confuse” the recognizer. Unfortunately typical room impulse
responses are about 150ms long, about 10 times as long as the fil-
ters employed in our single tap algorithms. Seltzer [1] was able to
demonstrate considerable improvements on reverberated data using
a tap-delay line approach in the frequency domain. We reformu-
lated that approach for the cepstral domain in section 4. Further
experiments on this approach appear promising.

Seltzer [1] quotes improvements using single tap beamformers
in the log-spectral domain. We were unfortunately unable to repro-
duce these, probably due to the different data and recognizer.

We employed an FFT filter bank in our experiments, because it
is simple, fast and already part of the recognizer frontend. However,
there is a comparatively large overlap between the FFT bins [4].
Therefore the assumption of independence of different frequency
bins may be violated with observable impact on performance. We
expect that employing a perfect reconstruction filterbank with better
separation properties could boost performace.

Finally it would be desireable to have a beamformer with track-
ing capability. The semi-supervised beamformers are calibrated
only once and do not support tracking. The unsupervised approach
allows for crude adaptation, by optimizing for each new utterance
separately, using the weights obtained for the last utterance as ini-
tialization. This is however only viable if environmental conditions
change slowly. To cope with more rapidly changes, one has to use
an adaptation algorithm like LMS, RMS or a Kalman filter. We con-
ducted some preliminary experiments with LMS beamformers, but
convergence appeared to be too slow to yield sufficient improve-
ments. Experiments described in [7] using RLS and Kalman Filters
gave more promising results, but further work is still necessary.
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