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Abstract—In this paper we present our ongoing work in  bring certain objects or to obtain suggested recipes from
building technologies for natural multimodal human-robot  the robot.

interaction. We present our systems for spontaneous speech  The current components of our system include
recognition, multimodal dialogue processing and visual per-

ception of a user, which includes the recognition of pointing - a speech recognizer, _
gestures as well as the recognition of a person’s head orienta- « 3D face- and hand-tracking,
tion. Each of the components are described in the paper and « pointing gesture recognition,
experimental results are presented. In order to demonstrate « recognition of head pose
and measure the usefulness of such technologies for human- : '
robot interaction, all components have been integrated on « a dialogue component,
a mobile robot platform and have been used for real-time . Speech synthesis,
human-robot interaction in a kitchen scenario. « a mobile platfom,
o a stereo camera system, including pan-tilt, unit
mounted on the platform.
In the upcoming field of humanoid and human-friendlyFigure 1.a) shows a picture of our system and a person
robots, the ability of the robot for simple, unconstrainednteracting with it. Part of the visual tracking components
and natural interaction with its users is of central imporhaye already been integrated in ARMAR [3], a humanoid

tance [1], [2]. The basis for appropriate action of the robotopot with two arms and 23 degrees of freedom. This robot
must be a comprehensive model of the current surrounding gepicted in Figure 1b).

and in particular of the humans involved in interaction.

To facilitate natural interaction, robots should be able
to perceive and understand all the modalities used by
humans during face-to-face interaction. Besides speech, as
the probably most prominent modality used by humans,
these modalities also include pointing gestures, facial ex-
pressions, head pose, gaze, eye-contact and body language
for example.

In our research labs at the Unive&itkarlsruhe (TH)
and at Carnegie Mellon University, we are developing tech-
nologies for the understanding of these human interaction
modalities. In particular in the framework of a German
research project on humanoid robots (Sonderforschungs-
bereich Humanoide Roboter, SFB 588) we have been Fig. 1
working using and improving such technologies to provide 5 1 a) |NTERACTION WITH OUR DEVELOPMENT SYSTEN
for natural interaCtion between a hUmanOid r0b0t and itsSOFTWARE COMPONENTS INCLUDE SPEECH RECOGNITIONSPEECH
users. SYNTHESIS PERSON AND GESTURE TRACKINGDIALOGUE

In thIS paper we present our Work in thIS area. We MANAGEMENT AND MULTIMODAL FUSION OF SPEECH AND
have developed components for speech recognition, multi- ;<1 res Fic 18): PART OF THE COMPONENTS HAVE ALREADY
modal dialogue processing, visual detection and modeling
of users, including head pose estimation and pointing
gesture recognition. All components have been integrated
on a mobile robot platform and can be used for real-time The remainder of this paper is organized as follows:
multimodal interaction with a robot. In Section Il we describe our JANUS speech recognition

The target scenario we addressed is a household situsystem which we use for human-robot interaction and
tion, in which a human can ask the robot questions relatepresent some experimental results. In Section lll, visual
to the kitchen (such as “What's in the fridge ?”), ask theperception of the user is discussed. Here we present our
robot to set the table, to switch certain lights on or off, toapproach to visually detect and track a user, his head, hands

I. INTRODUCTION

BEEN INTEGRATED IN A HUMANOID ROBOT WITH TWO ARMS.



and head orientation, as well as our approach for detecting 2) Dialogue-Context Dependent Search Space Control:
pointing gestures and pointing direction. In Section IV, theNhen using speech recognition together with dialogue
dialoge component of the robot is described. In Section \§ystems, the dialogue context is always known. This in-
the integration of all the components on a mobile robot iormation can be used to improve the speech recognition
explained and a typical interaction scenario is describegherformance, because less probable answers to a clar-
We conclude the paper in Section VI, where we also givéfication question of the robot can be penalized. Also
an outlook to future work. at the beginning of a dialogue the search space of the
recognizer can be restricted by disabling all answers to
system questions like “yes” or “no”. This is done by
The probably most prominent interaction modality ofactivating/deactivating or penalizing specific semantic top-
humans is their SpeeCh. In order to prOVide for natural hLIeve| rules in the grammars given by the diak)gue manager
man computer interaction, recognition and understandinguring runtime. Penalizing of rules should be preferred,
of spontaneous speech is of utmost importance. because it still allows user queries in different contexts.
For speech recognition we are using the Ibis decoder 3) Experimental ResultsFor our experiments we col-
[4], which was developed at the University of Karlsruhejected a set of nearly 360 user queries of 9 different
as part of our Janus Recognition Toolkit (JRTK) [5]. Usingspeakers, which result in around 15min of speech. We
this toolkit we have developed a user-independent speegheasured the word error rate (WER), the sentence error
recognizer for spontaneous human robot interaction. rate (SER), the real-time factor (RTF) and the memory
requirements of our recognizer. A low SER is important

A. Context Free Grammar Decoding . .
. for a good language understanding. The RTF is measured
The lbis decoder allows us to decode along context, 4 800MHz PIIL.

free grammars in addition to the classical statistical n- o, recognition system for the robot interaction con-

gram language models. Using grammars instead of Rggtq of about 34,000 gaussian models and was trained
gram language models is especially an advantage in smafl, hearly 300 hours of conversational telephone speech

domains, like in our household scenario. In such domam{%witchboard). This size of the acoustic model allows
there is normally less domain dependent data available f%rS to decode in less than real-time as can be seen in

the training of robust statistical n-gram language mOdelstable[], which gives us the ability to run also other

The context free grammar implementation in Ibis hag,,mnonents of the human-machine interface on the same
also several other advantages. Rather than compiling 0Rgmpyter. Incremental adaptation techniques like vocal-
finite state graph out of all the terminals given by theyp .t jength normalisation (VTLN) and constrained MLLR
grammars, we use a more dynamic approach, where sevejal seq to compensate for different speakers, channels and
rule based finite state graphs consisting of terminals arlgackground noises.
non-terminals, are linked together by their non-terminal Table[] also shows, that when adding the filler-words to
symbols. . the dictionary the grammar based system reaches nearly

Another feature is that the grammars can be expandgfle same WER as the n-gram based system. But the

on the fly by new rules or terminals without restarting theadvantage of the grammar based system is besides its
recognizer. Even new words can be added to the grammﬁ(gher recognition speed the much lower SER.

and the search network on the fly. In most cases we work

Il. SPEECHRECOGNITION

with non-statistical semantic grammars, i.e. each transition TABLE |
to the next word has the same language model score, COMPARISON BETWEEN GRAMMAR BASED AND NGRAM BASED
whereby terminals are grouped by their semantical meaning SPEECH RECOGNITION
to non-terminal symbols.

1) Handling of Spontaneous Speecdh:major problem WER SER| RTF | Memory
when using context free grammars in speech recognition | grammar based 25.55% | 48.21% | -— | 37 MB

+ filler words 23.05% | 45.18% | 0.759 37 MB
n-gram based | 22.95% | 51.79% | 0.801 37 MB

is the modeling of spontaneous speech together with its
ungrammaticalities like hesitations or word repetitions. Due
to the fact, that these effects can occur at any time in a
speech query, it is impossible to model them manually i%
the grammar. The same applies also to non-human noises.
We are using so-called filler words to cope with such A well-known problem in the speech recognition com-
spontaneous speech events. These words consists of spe@ignity is the difficulty of automatic speech recogntion with
acoustic models trained only on e.g. non-human noises é@mote microphones or even worse, with microphones at
hesitations and they can potentially occur between any twéariant distances. Therefore, in many cases, head-mounted
terminals of the grammar. Instead of asking the grammailose-talking microphones are used for speech recognition.

for their probability, a predefined filler penalty is applied. Since we want to develop human-friendly robots that
eventually can operate in our daily lifes, we certainly

don’'t want to force people to wear such head-mounted
microphones in order to communicate with the robot.

Distant Microphones
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Fig. 2
FEATURES FOR LOCATING HEAD AND HANDS SKIN-COLORED3D-PIXELS ARE CLUSTERED USING A KMEANS ALGORITHM. THE RESULTING
CLUSTERS ARE DEPICTED BY CIRCLESIN THE SKIN COLOR MAPR, DARK PIXELS REPRESENT HIGH SKINCOLOR PROBABILITY. THE DISPARITY
MAP IS MADE UP OF PIXEL-WISE DISPARITY MEASUREMENTS THE BRIGHTNESS OF A PIXEL CORRESPONDS TO ITS DISTANCE TO THE CAMERA

TABLE Il

Therefore, we need to develop technologies to improve
ANALYSIS OF THE SENSIBILITY AGAINST VARIATIONS IN THE

speech recognition under such situations, i.e. with remote DISTANGE OF THE MICROPHONES FOR AN ALREADY ADAPTED
microphones at variable distances. SysTEM

1) Speech SegmentatioAnother issue, when using re- '
mote microphones is the speech segmentation, because the
user is not able to push a button for recording. Therefore
we initially developed an energy and zero-crossing based
speech segmentation, which transmits the segmented audio
signals to the recognizer.

2) Experimental Results:We have performed some
initial adaptation experiments to evaluate the sensibility
of our real-time recognizer in combination with singleig aimost no loss in recognition accuracy for a 20% change
microphones at different distances. Due to the lack of; gistance when compared to the results in tafle II.
enough testing and adaptation material in the houshold \we gre currently working on adapting the model-
domain, wg’ve coIIected'Zhrs of read speech of 25 speakegs mpination-based acoustic mapping (MAM) [7] devel-
Iortadaptatlon and 15min of read speech of 9 speakers fheq for car navigation in our lab to the robot szenario.
esting.

For each microphone distance we adapted the codebooks IIl. VISUAL PERCEPTION OF THEUSER
on the adaptation data using MLLR [6], without performing  Knowledge about the users location, posture and focus
speaker adaptation. As can be seen in taljle Il, we reaef attention is an important cue for the understanding
significant WER reduction of around 10% - 15% throughof human intention within a dialogue situation. From the
adaptation for the remote conditions, but the results Withili'rnages delivered by a fixed-baseline stereo camera head,
a normal action radius of about 4-8ft to the robot are eveve extract the following information in real-time: a) the
for the adapted case inacceptable. To see how sensible ®®-positions of the users’s head and hands, b) the head
orientation and c) the direction of the pointing gestures

Aft 5ft 6ft
adapted on 5ft| 42.4% | 44.7% | 60.1%

TABLE I
that are performed by the user.
WERS FOR UNADAPTED AND ADAPTED SYSTEMS AT DIFFERENT
MICROPHONE DISTANCES A. 3D Tracking of Head and Hands
Head and hands can be identified by color as human
close T Tapel pi =R o o skin color clusters in a small region of the chromatic

Unadapted| 26.6% | 29.7% | 47.7% | 51.9% | 66.1% | 69.3% | color space[[8]. To model the skin-color distribution, two
adapted | 26.5% | 28.4% | 42.5% | 44.7% | 59.7% | 60.1% | color histograms{™ and.S~) are built by counting pixels
belonging to skin-colored respectivatpt-skin-colored re-

. _ . . ._gions in sample images. By means of these histograms, the
recognizer is to variations in the distance, we ran decodmg;lw

. . . robability of a pixel being skin-color can be calculated.
experiments in which we testeq_the codebooks adapted e result is a gray-scale map of skin-color probability
5it data.on the'4ﬁ and 6ft condition. Therefore, no spea}ke Fig. [4.a). To eliminate isolated pixels and to produce
adaptation (which would also peTfOrm channel adap_tgtlon losed regions, a combination of morphological operations
was perfo_rmed. As can be seen in t@ I, the stability ofg applied to the skin-color map.
the resulting recognizer against moving speakers (changing

distance to the microphone) seems to be very good, as there




Due to the robot’s motion, the lighting situation is likely Two neural networks, one for pan and one for tilt angle,
to vary strongly. Thus, it is important to initialize and to up-process the head’s intensity and disparity image and output
date the skin-color model automatically. In order to do thisthe respective rotation angles. As we directly compute the
we incorporate the lighting invariant depth information, andrientation from each single frame, there is no need for the
search for a person’s head in the disparity map (Fig. 2.dyacking system to know the user’s initial head orientation.
of each new frame. Following an approach proposed in The networks we use have a total number of 1597
[Q], we first look for a human-sized connected region, andeurons, organized in 3 layers. They were trained in a
then check its topmost part for head-like dimensions. Pixelgerson-independent manner on sample images of rotated
inside the head region contribute ", while all other heads. We collected training data from six users. Users
pixels contribute toS—. By means of this procedure, the were standing approximately at a distance of two to three
skin-color model is permanently kept up to date and naoneters away from the camera and were free to move around
manual initialization is required. within the camera’s field of view (see Fig] 3). We asked

The task of tracking consists in finding the best hy-people to freely look around and recorded their exact head
pothesiss, for the positions of head and hands at eaclpose using a magnetic pose tracker. The recorded rotation
time ¢. The decision is based on the current observatioangles varied from-90° to 90°. We evaluated the system’s
(the 3D skin-pixel clusters, Fig.] 2.c) and the hypotheses
of the past framess;_1,s;_»,.... With each new frame,
all combinations of the clusters’ centroids are evaluated to
find the hypothesis; that exhibits the highest results with
respect the product of the following 3 scores:

» The observation scoreP(O;|s;) is a measure for
the extent to whichs; matches the observatiof),.
P(O¢|s:) increases with each pixel that complies with
the hypothesis.

« Theposture score’(s;) is the prior probability of the
posture. It is high if the posture representedspyis Fig. 3
a frequently occurring posture of a human body. FOrSAMPLE IMAGE FROM THE DATA COLLECTION. A MAGNETIC SENSOR
the calculation OfP(St), a basic model of the human PLACED ON THE SUBJECTSHEAD PROVIDES GROUND TRUTH FOR
body was bU"t from training data' HEAD POSE WHICH WAS USED FOR TRAINING AND EVALUATION.

« Thetransition scoreP(s;|s;—1, St—a2, .. .) IS @ measure

for the probability ofs; being the successor of the ]
past frames’ hypotheses. It is higher, the better thgerformance on a multi-user test set and on new users. For

positions of head and hands in follow the path the multi-user evaluation, the system was tr_ained on images
defined by the preceding positions. from all users and was tested on different images frpm the
Fame users. The results for new users was obtained by
aining the system on images from five users and testing
n the sixth user. Table 1V shows the results for multi-user

nd new user tests.

Our experiments indicate that by using the metho
described, it is possible to track a person robustly, eve“
when the camera is moving and when the backgrounﬂ
is cluttered. The tracking of the hands is affected by’71

occasional dropouts and misclassifications. We address this TABLE IV
problem by applying multi-hypotheses tracking, so that the1ean ERROR OBTAINED FOR THE MULTFUSER AND NEW USER TESTS
tracker is free to choose the most likely path through an (PAN/TILT ANGLES)
n-best set of hypotheses for each frame, instead of being
tied to a single (and maybe wrong) hypothesis. [ mean error | multi-user | new user |
B. Head Pose Estimation dop o | S0T33 T IL0757
Monitoring a person’s head orientation is an important depth + gray| 43721 | 9.7/56

step towards building better human-robot interfaces. Since

head orientation is related to a person’s direction of atten- |t can be seen that the combined approach of adding

tion, it can give us useful information about the objects Oﬁepth images to the input feature vector improves the
persons with which a user is interacting. It can furthermorgesults significantly in both cases.

be used to help a robot decide whether he was addressed N

by a person or not [10]. In our experiments head pos&- Pointing Gesture Recognition

has also proved to be helpful to decide whether a personIn the human-robot interaction scenario, we define a

has performed a pointing gesture, as will be described ipointing gesture as the movement of the hand towards a

section111-C. pointing target. We model this typical motion pattern of the
Our approach for estimating head-orientation is viewpointing hand in order to detect pointing gestures within

based: In each frame, the head’s bounding box - as prather natural hand movements. Therefore, we decompose

vided by the tracker - is scaled to a size of 24x32 pixelsthe gesture into three distinct phases (see Tafle V) and



model each phase with a dedicated Hidden Markov Model Speech input is parsed by means of a context-free gram-
(see [11] for details). The features used as the modelshar which is enhanced by information from the ontology

defining all the objects, tasks and properties about which
the user can talk. In our scenario, these objects are the
objects in the kitchen and their properties, for example the
ability to be switched on or off. The tasks are taking or

putting something somewhere, informing the user about the

TABLE V
AVERAGE LENGTH 1t AND STANDARD DEVIATION o OF 210POINTING
GESTURES PERFORMED BWL5 TEST PERSONS

s g content of the fridge, telling him recipes, etc. The semantic
Complete gesturg 1.75 sec| 0.48 sec . . . .
Begin | 0.52 sec| 0.17 sec representation created during parsing is theq compqred
Hold | 0.72 sec| 0.42 sec against the dialogue goals. If all the necessary information
End | 0.49 sec| 0.16 sec to accomplish a goal is available, the dialogue system calls

the corresponding service. But if some information is still
input are derived from the tracked position of the pointMiSSINg to accomplish a goal, the dialogue manager uses

ing hand. The hand coordinates are transformed into %{za_rifipation guestions to get this infprmation from thg user.
cylindrical, head-centered coordinate system in order tdMiS iS done by means of generation templates which are
become invariant against the person's location. We haJ/&SPonsible for generating the spoken output. _
noticed [11], that people tend to look at the pointing 1€ 9esture input is resolved by means of an environ-
target at an early stage of the gesture. We can exploit thf@&nt model which is stored in the database. Currently,
behavior by calculating the absolute difference between tHBIS environment model consists of different objects in the
head's azimuth (elevation) angle and the hand's azimutitchen. such as cups, dishes, forks, knifes, spoons and
(elevation) angle, and incorporate these two features to th@MPS- The environment model matches a pointing gesture
gesture models. with possible targets. All objects that meet the matching

In an evaluation with 12 test persons, this system scoregPnstraints form an n-best list of pointing hypotheses in
at abouts0% recall and74% precision in recognition of semantic representation. These hypotheses are used within

pointing gestures. When head-orientation was added to tf{3¢ SPoken context to disambiguate speech input. Disam-
feature vector, the results improved significantly in thd’iguation is performed by merging speech and gesture in
precision value: the number of false positives could b& Multimodal parsing process.

reduced from abou26% to 13%, while the recall value B. Multimodal Parsing

rerlnam%d atta thwllarly hlgtE Ie\’o/)eDI. intina_direct We use a constraint based approach to merge speech and
tn otrtﬁr I'O ]:eermtlrr:e et fptch]m Lng q |trecﬂ|10n, W?gesture. Speech is used as the main modality and gesture
extract the tine from the center of the head fo the centely onis are used to disambiguate input information. This

of the_ hantd V\t/gh'nt the gold;pthaée B thlfa é;lesturt(_a. Irt1 Ofuépproach has shown to be quite tolerant towards falsely
experiments, this turmed out to be a reliable estimate QFecognized gesture§ [14]. Parsing rules define constraints
pointing direction. With an average error bel@#®, it is :

ible to di biguate th ibl inting ¢ ¢ on time, context and input information, as well as rules
&OOS;E' caesec')s ISambiguate the possible pointing targets iy, merging. The multimodal parser is part of the dialogue

system and is applied after transforming speech and gesture
IV. MULTIMODAL DIALOGUE PROCESSING input to semantic tokens. _
The multimodal dialogue management processes the For disambiguation of speech input, gesture events have

output of the speech recognizer and the one of the gestuH% be assigned .to refe.rring speech events. Disambiguation
recognizer in order to understand what the user wants tf&" Mean. but is not I'm'ted_ to _ ) )

robot to do. Currently, the robot can help the user in the * Deixis, for example "switch on this lamp” is ambigu-
kitchen: A user can ask the robot to get cups or dishes ©OuS when looking only at the speech information.

and put them somewhere, to switch on or off the lights, * SPeech recognition errors, e.g. "switch on the little
to look in the fridge, to tell some recipes, etc. Therefore, ~ [amp” becomes ambiguous after misrecognition of the
results of the speech recognizer and the gesture recognizer dentifying adjective of the lamp. -

are sent to the dialogue manager which evaluates them in® N-best hypotheses from gesture recognition and re-
the discourse context. The multimodal fusion is based on ~ SOIVINg in the environment model.

the semantics of both input modalitiés [12]. « n-best hypotheses from speech recognition when be-
_ ing combined with gesture information.
A. Dialogue Management Therefore we can tolerate gesture recognition errors in

Our dialogue manager is based on the approaches of ttiee form of false detections, but are interested in missing
language and domain independent dialogue manager ARds few gestures as possible. Incorrect gestures that are not
ADNE [13]. For the domain-dependent part, we developedorrelated to a speech event can be sorted out by time
different kinds of resources: An ontology, a specificatiorconstraints. In our experiments, we have detected that - for
of the dialogue goals, a data base, a context-free grammad pointing gestures - the the referring spoken word and
and generation templates. the gesture are strongly correlated in timel[14]. By using

a (not very restrictive) 1000 ms boundary, both before the



start and after the stop time of the whole utterance, wiancluded the recognition of pointing gestures of a user
can capture the relevant gestures and ignore most falsedg well as the recognition of the user's head orientation,
detected gestures. which is an important cue to deterime a person’s direction
Other constraints test the informational compatibility ofof attention. We described how the components were
the input tokens, and the interpretation of gestures in thiategrated on a mobile robot platform and have been used
spoken context. A speech event such as "please bring nfier real-time human-robot interaction in a kitchen scenario.
this cup”, with the following semantic representation: Some of the presented components for human-computer

act_bring interaction have already been integrated in a more so-
OBJ | cup] phisticated humanoid robotic plattform with two arms [3].
DEICT[C[true} Within the German Humanoid robotics project, we are

only allows (i) objects that can be carried by the robot andoW working on improving the robustness of the presented
(ii) are instances of the class cup or it's subclasses, whicPmponents as well as we plan to integrate all these

are defined in the ontology.

systems on a new humanoid torso with two arms. Other

ongoing work involves the integration audio-visual person

V. SYSTEM INTEGRATION

recognition and the development and integration of an

We have integrated the components described in this pattentional mechanism for the robot.

per to demonstrate multimodal human-computer interation

using speech, gestures and dialogue processing. Currently.
all components run on two laptops. One laptop is mounted
and connected to the mobile platform; this laptop is use
for real-time image processing tasks. The other laptop i
used for speech and dialogue processing and is currently
not on board of the platform. The computers are connectegh;
via a wireless LAN. All components of the human-machine

interface communicate through a blackboard architectur%]
with a socket communication over a central communication

server. Each module has to register with its ID, whereby it[3]
is in addition also possible to subscribe to specific message
groups. Figurg]4 gives an overview over all the needed

components. The scenario we addressed in our current

(4]
gesture recognition segmentation
person tracking speech recognition
[5]
dialogue processing [6]
cognition
, (7]
Fig. 4
COMPONENTS OF THE SYSTEM
(8]

demonstration is a household situation, in which a user can
ask the robot questions related to a kitchen, such as “’"Whal®l
is in the fridge ?”, “What recipes would you recommend
with the available items ?”. A user could also ask the robot
to set a table, to switch some lights on or off or to bring(10]
certain objects, such as cups. In our scenario the robot can
locate and follow a user using the vision-based trackingj
system described in Sectipn|lll, as soon as a person appears

in the field of view of the robot's cameras. [12]

VI. CONCLUSIONS ANDFUTURE WORK

In this paper we have presented our ongoing work i3]
building technologies to improve natural human-machine
interaction with human-friendly robots. We presented compi4]
ponents for spontaneous speech recognition, multimodal
dialogue processing and visual perception of a user. This

T
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