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Abstract

In this paper, we present our approach for visual tracking of head, hands and head
orientation. Given the images provided by a calibrated stereo-camera, color and
disparity information are integrated into a multi-hypotheses tracking framework
in order to find the 3D-positions of the respective body parts. Based on the hands’
motion, an HMM-based approach is applied to recognize pointing gestures. We
show experimentally, that the gesture recognition performance can be improved
significantly by using visually gained information about head orientation as an
additional feature. Our system aims at applications in the field of human-robot
interaction, where it is important to do run-on recognition in real-time, to allow
for robot’s egomotion and not to rely on manual initialization.

1 Introduction

In the upcoming field of household robots, one aspect is of central importance
for all kinds of applications that collaborate with humans in a human-centered
environment: the ability of the machine for simple, unconstrained and natural
interaction with its users. The basis for appropriate robot actions is a comprehen-
sive model of the current surrounding and in particular of the humans involved
in interaction. This might require for example the recognition and interpretation
of speech, gesture or emotion.

In this paper, we present our current real-time system for visual user model-
ing. Based on images provided by a stereo-camera, we combine the use of color
and disparity information to track the positions of the user’s head and hands
and to estimate head orientation. Although this is a very basic representation of
the human body, we show that it can be used successfully for the recognition of
pointing gestures and the estimation of the pointing direction.

Among the set of gestures intuitively performed by humans when communi-
cating with each other, pointing gestures are especially interesting for communi-
cation with robots. They open up the possibility of intuitively indicating objects
and locations, e.g. to make a robot change its direction of movement or to sim-
ply mark some object. This is particularly useful in combination with speech
recognition as pointing gestures can be used to specify parameters of location in
verbal statements (Put the cup there!).
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Fig. 1. Feature for locating head and hands. In the skin color map, dark pixels repre-
sent high skin-color probability. The disparity map is made up of pixel-wise disparity
measurements; the brightness of a pixel corresponds to its distance to the camera.
Skin-colored 3D-pixels are clustered using a k-means algorithm. The resulting clusters
are depicted by circles.

A body of literature suggests that people naturally tend to look at the objects
with which they interact [1] [2]. In a previous work [3] it turned out, that using
information about head orientation can improve accuracy of gesture recognition
significantly. That previous evaluation has been conducted using a magnetic
sensor. In this paper, we present experiments in pointing gesture recognition
using our visually gained estimates for head orientation.

The remainder of this paper is organized as follows: In Section 2 we present
our system for tracking a user’s head, hands and head orientation. In Section 3 we
describe our approach to recognize pointing gestures and to estimate the pointing
direction. In Section 4 we present experimental results on gesture recognition
using all the features provided by the visual tracker. Finally, we conclude the
paper in Section 5.

1.1 Related Work

Visual person tracking is of great importance not only for human-robot-interaction
but also for cooperative multi-modal environments or for surveillance applica-
tions. There are numerous approaches for the extraction of body features using
one or more cameras. In [4], Wren et al. demonstrate the system Pfinder, that
uses a statistical model of color and shape to obtain a 2D representation of head
and hands. Azarbayejani and Pentland [5] describe a 3D head and hands track-
ing system that calibrates automatically from watching a moving person. An
integrated person tracking approach based on color, dense stereo processing and
face pattern detection is proposed by Darrell et al. in [6].

Hidden Markov Models (HMMs) have successfully been applied to the field
of gesture recognition. In [7], Starner and Pentland were able to recognize hand
gestures out of the vocabulary of the American Sign Language with high accu-
racy. Becker [8] presents a system for the recognition of Tai Chi gestures based
on head and hand tracking. In [9], Wilson and Bobick propose an extension to



the HMM framework, that addresses characteristics of parameterized gestures,
such as pointing gestures. Jojic et al. [12] describe a method for the estimation
of the pointing direction in dense disparity maps.

1.2 Our target scenario: Interaction with a household robot

The work presented in this paper is part of our effort to build technologies
which aim at enabling natural interaction between humans and robots. In or-
der to communicate naturally with humans, a robot should be able to perceive
and interpret all the modalities and cues that humans use during face-to-face
communication. These include speech, emotions (facial expressions and tone of
voice), gestures, gaze and body language. Furthermore, a robot must be able to
perform dialogues with humans, i.e. the robot must understand what the human
says or wants and it must be able to give appropriate answers or ask for further
clarifications.

We have developped and integrated several components for human-robot
interaction with a mobile household robot. The target scenario we addressed is a
household situation, in which a human can ask the robot questions related to the
kitchen (such as “What’s in the fridge ?”), ask the robot to set the table, to switch
certain lights on or off, to bring certain objects or to obtain suggested recipes
from the robot. The current software compontents of the robot include a speech
recognizer (user-independent large vocabulary continuous speech), a dialogue
component, speech synthesis and the vision-based tracking modules (face- and
hand-tracking, gesture recognition, head pose). The vision-based components are
used to
– locate and follow the person being tracked
– to disambiguate objects that were referenced during a dialogue (“Switch on

this light “, “Give me this cup”). This is done by using both speech and
detected pointing gestures in the dialogue model.

Figure 2 shows a picture of the mobile robot and a person interacting with
it.

Fig. 2. Interaction with the mobile robot. Software components of the robot include:
speech recognition, speech synthesis, person and gesture tracking, dialogue manage-
ment and multimodal fusion of speech and gestures.



2 Tracking Head and Hands

In order to gain information about the location and posture of the person, we
track the 3D-positions of the person’s head and hands. These trajectories are
important features for the recognition of many gestures, including pointing ges-
tures. In our approach we combine color and range information to achieve robust
tracking performance.

In addition to the position of the head, we also measure head orientation using
neural networks trained on intensity and disparity images of rotated heads.

Our setup consists of a fixed-baseline stereo camera head connected to a stan-
dard PC. A commercially available library [13] is used to calibrate the cameras,
to search for image correspondence and to calculate 3D-coordinates for each
pixel.

2.1 Locating Head and Hands

Head and hands can be identified by color as human skin color clusters in a small
region of the chromatic color space [14]. To model the skin-color distribution,
two histograms (S+ and S−) of color values are built by counting pixels belong-
ing to skin-colored respectively not-skin-colored regions in sample images. By
means of the histograms, the ratio between P (S+|x) and P (S−|x) is calculated
for each pixel x of the color image, resulting in a grey-scale map of skin-color
probability (Fig. 1.a). To eliminate isolated pixels and to produce closed regions,
a combination of morphological operations is applied to the skin-color map.

In order to initialize and maintain the skin-color model automatically, we
search for a person’s head in the disparity map (Fig. 1.b) of each new frame.
Following an approach proposed in [6], we first look for a human-sized connected
region, and then check its topmost part for head-like dimensions. Pixels inside
the head region contribute to S+, while all other pixels contribute to S−. Thus,
the skin-color model is continually updated to accommodate changes in light
conditions.

In order to find potential candidates for the coordinates of head and hands,
we search for connected regions in the thresholded skin-color map. For each
region, we calculate the centroid of the associated 3D-pixels which are weighted
by their skin-color probability. If the pixels belonging to one region vary strongly
with respect to their distance to the camera, the region is split by applying a
k-means clustering method (see Fig. 1.c). We thereby separate objects that are
situated on different range levels, but accidentally merged into one object in the
2D-image.

2.2 Single-Hypothesis Tracking

The task of tracking consists in finding the best hypothesis st for the positions of
head and hands at each time t. The decision is based on the current observation
(the 3D skin-pixel clusters) and the hypotheses of the past frames, st−1, st−2, . . ..

With each new frame, all combinations of the clusters’ centroids are evaluated
to find the hypothesis st that exhibits the highest results with respect the product
of the following 3 scores:



– The observation score P (Ot|st) is a measure for the extent to which st

matches the observation Ot. P (Ot|st) increases with each pixel that com-
plies with the hypothesis, e.g. a pixel showing strong skin-color at a position
the hypothesis predicts to be part of the head.

– The posture score P (st) is the prior probability of the posture. It is high if
the posture represented by st is a frequently occurring posture of a human
body. It is equal to zero if st represents a posture that breaks anatomical
constraints. To be able to calculate P (st), a model of the human body was
built from training data. The model consists of the average height of the
head above the floor, a probability distribution (represented by a mixture
of Gaussians) of hand-positions relative to the head, as well as a series of
constraints like the maximum distance between head and hand.

– The transition score P (st|st−1, st−2, . . .) is a measure for the probability of
st being the successor of the past frame’s hypotheses. It is higher, the better
the positions of head and hands in st follow the path defined by st−1 and
st−2 (see Fig. 3)1. The transition score is set to a value close to zero2 if the
distance of a body part between t − 1 and t exceeds the limit of a natural
motion within the short time between two frames.

Fig. 3. The transition score considers the distance between the predicted position s′t
and the currently measured position st.

2.3 Multi-Hypotheses Tracking

Accurate tracking of the small, fast moving hands is a hard problem compared
to the tracking of the head. The assignment of which hand actually being the
left resp. the right hand is especially difficult. Given the assumption, that the
right hand will in general be observed more often on the right side of the body,
the tracker could perform better, if it was able to correct its decision from a
future point of view, instead of being tied to a wrong decision it once made.

We implemented multi-hypotheses tracking to allow such kind of rethinking:
At each frame, an n-best list of hypotheses is kept, in which each hypothesis

1 In our experiments, we did not find strong evidence for a potential benefit of having
a more complex motion model (e.g. a Kalman filter) for the movements of the hands.

2 P (st|st−1, st−2, . . .) should always be positive, so that the tracker can recover from
erroneous static positions.



is connected to it’s predecessor in a tree-like structure. The tracker is free to
choose the path, that maximizes overall probability of observation, posture and
transition. In order to prevent the tree from becoming too large, we limit both
the number n of hypotheses being kept at each frame, as well as the maximum
length b of each branch. By setting b e. g. to a value of 15 (which represents 1sec
at 15 FPS), it is possible to fix that part of the trajectory that is older than
1sec. This is important, as in a real-time application we do not want to delay the
following interpretation of the tracker’s output too much, as this would conflict
with the responsiveness of the system.

2.4 Head Orientation

Our approach for estimating head-orientation [submitted to FG’04 separately] is
view-based: In each frame, the head’s bounding box - as provided by the tracker
- is scaled to a size of 24x32 pixels. Two neural networks, one for pan and
one for tilt angle, process the head’s intensity and disparity image and output
the respective rotation angles. The networks we use have a total number of
1597 neurons, organized in 3 layers. They were trained in a person-independent
manner on sample images of rotated heads.

2.5 Results
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Fig. 4. Percentage of frames with hand-tracking errors in relation to the number of
hypotheses per frame (n).

Our experiments indicate that by using the method described, it is possible
to track a person robustly, even when the camera is moving and when the back-
ground is cluttered. The tracking of the hands is affected by occasional dropouts
and misclassifications. Reasons for this can be temporary occlusions of a hand, a
high variance in the visual appearance of hands and the high speed with which
people move their hands.
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Fig. 5. The hand position is transformed into a cylindrical coordinate system. The plot
shows the feature sequence of a typical pointing gesture.

The introduction of multi-hypotheses tracking improves the performance of
hand-tracking significantly. Fig. 4 shows the reduction of hand-tracking errors
by increasing the number n of hypotheses per frame. In order to detect tracking
errors, we labeled head and hand centroids manually. An error is assumed, when
the distance of the tracker’s hand position to the labeled hand position is higher
than 0.15cm. Confusing left and right hand therefore counts as two errors.

In our test-set, the mean error of person-independent head orientation esti-
mation was 9.7o for pan- and 5.6o for tilt-angle.

3 Recognition of Pointing Gestures

When modeling pointing gestures, we try to model the typical motion pattern of
pointing gestures - and not only the static posture of a person during the peak
of the gesture. We decompose the gesture into three distinct phases and model
each phase with a dedicated HMM. The features used as the models’ input are
derived from tracking the position of the pointing hand as well as position and
orientation of the head.

3.1 Phase Models

When looking at a person performing pointing gestures, one can identify three
different phases in the movement of the pointing hand:

– Begin (B): The hand moves from an arbitrary starting position towards the
pointing target.

– Hold (H): The hand remains motionless at the pointing position.
– End (E): The hand moves away from the pointing position.

We evaluated pointing gestures performed by 15 different persons, and mea-
sured the length of the separate phases (see Table 1). Identifying the hold-phase
precisely is of great importance for the correct estimation of the pointing direc-
tion. However, the hold-phase has the highest variance in duration and can often
be very short (only 0.1sec), thus potentially showing little evidence in an HMM



which models the complete gesture. So especially with respect to this fact, we
train one dedicated HMM for each of the three phases. In addition to that, there
is a null-model, that is trained on sequences that are any hand movements but
no pointing gestures.

µ σ
Complete gesture 1.75 sec 0.48 sec

Begin 0.52 sec 0.17 sec
Hold 0.72 sec 0.42 sec
End 0.49 sec 0.16 sec

Table 1. Average length µ and standard deviation σ of pointing gesture phases. A
number of 210 gestures performed by 15 test persons have been evaluated.

3.2 Segmentation

For the task of human-robot interaction we need run-on recognition, meaning
that a pointing gesture has to be recognized immediately after it has been per-
formed. So at each frame, we have to search backwards in time for three subse-
quent feature sequences that have high probabilities of being produced by the
begin-/hold-/end-model respectively. The lengths of the sequences to be evalu-
ated vary between µ±2σ according to table 1. The null-model acts as a threshold,
such that the phase-models’ output must exceed the null-model’s output dur-
ing the course of a gesture. Once a gesture has been detected, its hold-phase
is being processed for pointing direction estimation (see section 3.4), and the
system is set to sleep for a small amount of time to avoid the same gesture being
recognized multiple times.

3.3 Features

We evaluated different transformations of the hand position vector, including
cartesian, spherical and cylindrical coordinates3. In our experiments it turned
out that cylindrical coordinates of the hands (see Fig. 5) produce the best results
for the pointing task.

The origin of the hands’ coordinate system is set to the center of the head,
thus we achieve invariance with respect to the person’s location. As we want
to train only one model to detect both left and right hand gestures, we mirror
the left hand to the right hand side by changing the sign of the left hand’s x-
coordinate. Since the model should not adapt to absolute hand positions – as
these are determined by the specific pointing targets within the training set –
we use the deltas (velocities) of θ and y instead of their absolute values.

3 See [16] for a comparison of different feature vector transformations for gesture
recognition.



Head-hand Forearm Head
line line orientation

Avg. error angle 25◦ 39◦ 22◦

Targets identified 90% 73% 75%
Availability 98% 78% (100%)

Table 2. Comparison of three different approaches for pointing direction estimation:
a) average angle between the extracted pointing line and the ideal line to the target,
b) percentage of gestures for which the correct target (1 out of 8) was identified, and
c) availability of measurements during the hold-phase.

In our recorded data, we noticed that people tend to look at pointing targets
in the begin- and in the hold-phase of a gesture. This behavior is likely due to
the fact that the subjects needed to (visually) find the objects at which they
wanted to point. Also, it has been argued before that people generally tend to
look at the objects or devices with which they interact (see for example the
recent studies in [1] and [2]).

In a previous work [3] it has been shown, that using information about head
orientation improves accuracy of gesture recognition significantly. While that
evaluation has been conducted using a magnetic sensor, we are now using the
visual measurements for head orientation. We calculate the following two fea-
tures:

θHR = |θHead − θHand| (1)
φHR = |φHead − φHand|

θHR and φHR are defined as the absolute difference between the head’s az-
imuth/elevation angle and the hand’s azimuth/elevation angle. Fig. 5 shows a
plot of all features values during the course of a typical pointing gesture. As can
be seen in the plot, the values of the head-orientation features θHR and φHR de-
crease in the begin-phase and increase in the end-phase. In the hold-phase, both
values are low, which indicates that the hand is ”in line” with head orientation.

3.4 Estimation of the Pointing Direction

We explored three different approaches (see Fig. 6) to estimate the direction of a
pointing gesture: 1) the line of sight between head and hand, 2) the orientation
of the forearm, and 3) head orientation. While the head and hand positions
as well as the forearm orientation were extracted from stereo-images, the head
orientation was measured by means of a magnetic sensor. As we did not want
this evaluation to be affected by gesture recognition errors, all gestures have
been manually labeled.

The results (see table 2) indicate that most people in our test set intuitively
relied on the head-hand line when pointing on a target. This is why we suggest
the use of the head-hand line for pointing direction estimation and also use this
line in all applications of our system.



Fig. 6. Different approaches for estimating the pointing direction. (The lines were
extracted in 3D and projected back to the camera image.)

Recall Precision Error
Sensor Head-Orientation 78.3% 86.3% 16.8◦

Visual Head-Orientation 78.3% 87.1% 16.9◦

No Head-Orientation 79.8% 73.6% 19.4◦

Table 3. Performance of gesture recognition with and without including head-
orientation to the feature vector.

4 Experiments and Results

In order to evaluate the performance of gesture recognition, we prepared an
indoor test scenario with 8 different pointing targets. Test persons were asked to
imagine the camera was a household robot. They were to move around within
the camera’s field of view, every now and then showing the camera one of the
marked objects by pointing on it. In total, we captured 129 pointing gestures by
12 subjects.

Our baseline system without head-orientation scored at about 80% recall and
74% precision in gesture recognition (see table 3). When head-orientation was
added to the feature vector, the results improved significantly in the precision
value: the number of false positives could be reduced from about 26% to 13%,
while the recall value remained at a similarly high level.

With head-orientation, also the average error in pointing direction estimation
was reduced from 19.4◦ to 16.9◦. As the pointing direction estimation is based
on the head- and hand-trajectories – which are the same in both cases – the error
reduction is the result of the model’s increased ability of locating the gesture’s
hold-phase precisely.

Although there was noise and measurement errors in the visual estimation
of head orientation, there was no significant difference in gesture recognition
performance between visually and magnetically extracted head-orientation.

s



5 Conclusion

We have demonstrated a real-time 3D vision system which is able to track a
person’s head and hands robustly, detect pointing gestures, and to estimate the
pointing direction. By following a multi-hypotheses approach in the search for
head and hands, we could improve hand tracking and achieve about 60% relative
error reduction.

We could show that the human behavior of looking at the pointing target
can be exploited for automatic pointing gesture recognition. By using visual
estimates for head orientation as additional features in the gesture model, both
the recognition performance and the quality of pointing direction estimation
increased significantly. In an experiment (human-robot interaction scenario) we
observed a 50% relative reduction of the number of false positives produced by
the system and a 13% relative reduction in pointing direction error when using
the additional head-orientation features.
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