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ABSTRACT
This paper presents an architecture for fusion of multimo-
dal input streams for natural interaction with a humanoid
robot as well as results from a user study with our system.
The presented fusion architecture consists of an application
independent parser of input events, and application specific
rules. In the presented user study, people could interact with
a robot in a kitchen scenario, using speech and gesture input.
In the study, we could observe that our fusion approach is
very tolerant against falsely detected pointing gestures. This
is because we use speech as the main modality and pointing
gestures mainly for disambiguation of objects. In the paper
we also report about the temporal correlation of speech and
gesture events as observed in the user study.

Categories and Subject Descriptors
H.5.2 [INFORMATION INTERFACES AND PRE-
SENTATION]: User Interfaces

General Terms
Human Factors, Experimentation, Languages

Keywords
multimodal fusion and multisensory integration; speech, vi-
sion, natural language, gesture; multimodal architectures

1. INTRODUCTION
Multimodal interfaces [23] have been in the focus of re-

search since Bolt’s [2] seminal work. Recently, multimodal
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interfaces have been applied to facilitate natural interaction
with human-friendly robots [13], [12]. A major challenge is to
understand different input modalities in changing environ-
ments with background noise and changing light condition,
which complicates speech recognition and visual tracking.
The work presented in this paper is part of our efforts on
building technologies for multimodal human-robot interac-
tion. An overview of the complete system, including details
about the speech recognizer, person tracking and gesture re-
cognition, can for example be found in [25]. In this work, we
focus on the integration of different input modalities. We
present our architecture for multimodal fusion that tries to
cope with the above problems, together with an evaluati-
on of the whole system. The presented system is tolerant
against falsely detected gestures, which is important as our
experiments have shown that under the given conditions, we
could achieve a gesture detection rate of 87% (recall), but
achieving only 47% precision (53% falsely detected gestu-
res).

1.1 Related Work
So far, different systems for multimodal fusion and mul-

timodal dialogue systems exist e.g. [15], [22]. In our experi-
ments we have found out that the system has to cope with
many false detections, which is different from gesture input
on 2D surfaces e.g. to pen input [21], which we will address
later in this paper. Different formalisms and approaches have
been taken for multimodal fusion, like statistical approaches
[27], salience-based [8], or rule-based [14], and biologically
motivated approaches [26].

Existing work with pen input systems [21], and more re-
cently 3D gestures [5], has shown that speech and manual
gestures are correlated in time. Time correlation has also
been evaluated for speech and gestures in multi party dialog
[4], for gaze and speech [17], and based on prosody [18]. In
this paper we will also present an indication for very close
correlation in time between gesture and referring words in
speech.

1.2 Overview
For multimodal fusion we have chosen a rule-based ap-

proach on the semantic level, with a separation of the sys-
tem into an application independent parser and application
specific fusion rules. For representation of semantics we use
typed feature structures (TFS) [3]. The parser uses cons-
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traints to determine which elements can be merged, after-
ward construction rules are applied to create the output.
We do not only rely on direct deictic references like ’this’,
since words like ’the’, ’this’, and ’that’ can easily be mixed
up by the speech recognizer. Merging is rather done on an
information-based approach by comparing object types that
are defined in an ontology. We extend previous work on mul-
timodal parsing [14] [16] to deal with falsely detected input,
integrated processing of n-best lists and a clean separation
of constraints and merging rules. Different to pen input, it is
much harder to detect when a gesture has taken place for 3D
pointing gestures. We thus cannot rely on this information.
To obtain robustness, different form other work [14], [16], we
use speech as the main modality, and gesture to resolve am-
biguities, which is better suited to deal with falsely detected
gestures. For redundant multimodal input, multimodal fusi-
on improves the robustness of the system e.g. when speech
recognition errors occur.

1.3 Application Scenario
The system is designed to run on a humanoid robot in a

kitchen scenario. The robot’s task is to help people in the
kitchen, to bring dishes, switch on lights, put objects into
the dishwasher [11]. We are currently porting the system to
the humanoid platform ARMAR [1], which is shown in Fi-
gure 2. In the experiment the user could instruct the robot
to get or bring objects and switch on or off lamps and the air
conditioner. The system disambiguates object descriptions
either by exact description from speech input or by disambi-
guation through the interpretation of pointing gestures. The
experiment was performed with a stereo camera for person
tracking and a head set microphone with automatic segmen-
tation for speech recognition.

Figure 1: Interaction with our development system.
Software components include: speech recognition,
speech synthesis, person and gesture tracking, dia-
logue management and multimodal fusion of speech
and gestures.

The following example dialogues show possible interaction
scenarios with speech only or with speech and gestures.
example dialog 1: (speech only)
User: ”please switch on the light”
System: ”which light?”
User: ”the big lamp”
System: ”switching on the big lamp”

example dialog 2: (speech + gest)
User: ”please switch on the light”

Figure 2: Some components have already been inte-
grated in a humanoid robot with two arms.

System: ”which light?”
User: ”this lamp” (+ pointing gesture)
System: ”switching on the big lamp”

The remainder of the paper is organized as follows: Section
2 describes (pre-)processing of the input. Section 3 descri-
bes the parsing and fusion algorithms, for which application
specific rules are created in section 4. Section 5 finally pres-
ents an evaluation of the described system and a small user
study that has been performed to create fusion rules.

2. INPUT PROCESSING AND INFORMA-
TION REPRESENTATION

An input event (in its semantic representation) is referred
to as an input token. Fusion is done by applying a single,
best fitting rule to a set of input tokens. Each rule has a left
hand side that defines how to combine multiple tokens; and
a right hand side that defines preconditions and constraints
for the input tokens, to test if the rule can be applied. The
right hand side defines constraints for the number, modality,
time properties and the semantic content of the input tokens.

The gesture input to the system is provided by a gesture
recognizer working with stereo cameras [20]. By using ste-
reo cameras, 3D depth information is available that allows
to detect pointing directions in 3D space. A gesture event
contains two 3-dimensional vectors. One vector contains the
position of the user’s hand. The other vector contains the
pointing direction. The 2 vectors are parsed into a feature
structure of the following type:

gst pointing 3d
HX

[
0.1

]
HY

[
0.2

]
HZ

[
0.1

]
PX

[
0.1

]
PY

[
0.2

]
PZ

[
0.1

]


This information is used to retrieve object information

from the environment model database. The result is a list
of objects that are close to the pointing direction within
an error cone. From the resolved database request a feature
structure of the following type is created:
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[
gst pointing 3d resolved
REF

[
< object− type >

] ]
For example:

gst pointing 3d resolved

REF

 obj lamp
NAME

[ ′′littlelamp′′ ]
SCORE

[ ′′168.16′′ ]



The feature ”SCORE” contains a score computed by the

object resolving algorithm. It defines, how well the object
fits to the pointing gesture. The maximum (best) score is
180. The resolving algorithm computes a score for each ob-
ject in the environment model. It returns a (sorted) list of
objects that is limited by a predefined threshold that must
be exceeded by the score. We will refer to this list as the
n-best list. Note that with this definition n is not fixed and
changes with each result.

The system creates one feature structure for each object
in the n-best list. The n-best list is wrapped in an object
structure that allows to access only the best element or to
access the whole set to handle each feature structure in the
list.

For speech recognition, we are using the Janus Recogniti-
on Toolkit (JRTk) [9] with the Ibis single pass-decoder [24].
We use the option of Ibis to decode with context free gram-
mars (CFG) instead of statistical n-gram language models
(LM). The dialogue manager uses the same grammars as
the speech recognizer to convert the resulting parse tree in-
to typed feature structures. This is performed by conversion
rules that are defined in the grammar as semantic tags of
the grammar nodes. The spoken input ”please switch on the
lamp” is transformed to the TFS

act switch

ONOFF

[
prp onoff
BOOL

[
true

] ]
OBJ

[
obj lamp

]


The grammar for speech recognition and language under-
standing contains 164 non-terminal grammar nodes and ≈
1000 terminals. A complete roll-out of the grammar genera-
tes roughly 232 million input sentences.

The multimodal fusion component synchronizes and com-
bines the output of the recognition components and sends
the result to the dialogue manager. Using a rule-based sys-
tem fits into the approach of the dialogue manager to be
well suited for rapid prototyping [7]. It doesn’t require a
preexisting corpus for training the system.

3. MULTIMODAL FUSION

3.1 Architecture
The fusion component runs in a multi-threaded architec-

ture. On the input side tokens are added asynchroneously
to the input set. During fusion, the tokens are read from
this set by the parser, and combined into one output stream
representing the fusion result.

Each modality has its own channel for receiving modali-
ty specific events that are then transformed into semantic
structures, according to the previous section. After transfor-
mation, the tokens are added to the input set. The input set
is used to synchronize the different threads that are adding
and reading from the set. During one parser run, new inputs
to the set are delayed until the parser run is finished. The
input set thus remains constant for the parsing algorithm.

To merge the input streams, constraint-based parsing is
applied to the input tokens in the set. Parsing rules include
constraints to determine whether a subset of tokens can be
merged, and instructions (creation rules) to construct the
merge result.

3.2 Parsing
Different from parsing algorithms normally used in na-

tural language processing, a linear order of the elements is
not appropriate for multimodal integration. Parsing is rat-
her performed on a pool of elements, where new elements
can be added and elements can be removed. This mode of
operation is similar to the multichart parser [16]. Different
from the multichart approach, this parser can skip tokens
that remain in the pool for different iterations until a fusion
rule can be applied, or a time expiration rule can be applied.
This is important to deal with different arrival times of the
various modality specific recognizers, see also section 3.3.

The parsing algorithm observes each possible subset of
the input set. One parser run first observes all subsets with
the greatest size possible, and then step by step all smaller
subsets. It is thus able to parse longer matches first.

Our system needs to be robust against falsely detected
gestures. They lead to tokens that should be ignored by the
parser. This is accomplished by removing tokens, for which
no fusion rules can be applied, from the input set after a
predefined amount of time. Runtime characteristics of the
system are described in section 5.5.

3.3 Online Characteristics
Parsing of the input set must obey some characteristics

of online algorithms. For example, the arrival time of the
input events can change for different delays in the speech
and gesture recognizers. It is possible that an event B arrives
before event A, though A occurred before B. In this case
it is possible that - at the time of parsing - the input set
contains only B, because A has not arrived yet. This has to
be considered when creating parsing rules for a system.

We have observed different time delays in various setups,
i.e. different hardware and CPU resources available for speech
recognizer and gesture recognizer, in which the arrival ti-
mes of the gesture event ranged between 400 ms before the
speech event and 200 ms after the speech event. To cope
with this, we extended the constraints of the fusion rules.
The decision to implement this by fusion rules is appropria-
te, since they are designed to take care of application specific
peculiarities. The interpretation of this behavior would be
to wait for a certain amount of time for a gesture event, if
the speech content suggests that there might be information
to disambiguate.

3.4 Multimodal Fusion Rules
To allow the parsing algorithm to be independent of the

rule definition, a multimodal fusion rule consists of cons-
traints and result construction rules. The parsing algorithm
uses the constraint definitions to determine which rules can
be merged. After that, the construction rules are applied
to create the fusion results. For the same purpose, it is not
predefined, when constraints are checked, so they may not
change or modify the input structures. The execution of con-
struction rules may not influence the decision whether input
tokens can be merged or not.

The system knows some predefined basic constraint ty-
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CONTENT

 $1 = act switch

ONOFF

[
prp onoff
BOOL

[
$2 = bool

] ] 
Figure 3: CONTENT constraint

pes, including content, time and modality constraints. In
addition, script constraints are allowed to offer more flexibi-
lity. Like predefined constraints, script constraints return a
boolean value. Script constraints can be defined ”in-place”
which means directly in the code, or they can be extracted
and used in the same way as predefined constraints.

The CONTENT constraint (e.g. Figure 3) defines the mi-
nimum of information that needs to be represented by the
matching token. The constraint is evaluated in the same
manner as underspecified feature structures, where the ty-
ped feature structure nodes are elements in an ontology, e.g.
[6].

The MODALITY constraint defines the input channel.
Possible values are for example ”speech” or ”gesture”.

Additionally, an input token has properties like timestamps
that are not represented in its typed feature structure. They
can be checked by script constraints. Script constraints can
be used to test if events overlap in time or follow each other
within a maximum amount of time. Script constraints are
defined in Python and have the same power as a full pro-
gramming language. This is shown in SCRIPT1, see Figure
4. SCRIPT1 first checks by type inheritance if the found ob-
ject is of type lamp and then sets a variable that will later
be used for constructing the result TFS.

Constraints allow the definition of variables. The definiti-
on of a variable can take place in CONTENT constraints or
in script constraints. The variables are then used to during
result construction.

The left hand side of a fusion rule describes how to con-
struct results and is represented in the form of a typed fea-
ture structure.

4. EXEMPLARY RULE DEFINITION
This section describes some rules from the system, that

are used to resolve deixis in general [19], and n-best list
processing of recognizer output.

4.1 Rules for Gestures and Speech
The rule in Figure 6 performs resolution of a deictic refe-

rence. The information that is required for the speech event
is that the user wants to switch on or off something. The
constraints for the gesture token require the referenced ob-
ject to be a lamp, see SCRIPT1 in Figure 4.

4.2 Speech only
Figure 7 shows a rule to parse only a single speech token

without merging it with a gesture token. As already descri-
bed in section 3.2, longer rules are processed before shorter
rules. Long at this refers to the number of tokens that are
matched by the right hand side. Hence the rule in Figure
7 only applies to a speech token, if this token cannot be
merged with other tokens.

The CONTENT constraint only requires the element ba-

se:bot which is the most general node in the ontology. Thus,
any typed feature structure that is not undefined matches
the constraint.

import jarray
#simple example: uses only best element
obj_lamp = tfs.getType( "generic:REF" )
if onto.isMoreGeneral("obj_lamp", obj_lamp.typeName):

# set var $lamp
vars.addVarType("$3", obj_lamp )
constraint = 1

else:
constraint = 0

Figure 4: SCRIPT1 (Python) - if the referenced ob-
ject has the correct type, set variable $3 and return
true

In the given example the variable $1 transfers the top
level node from the speech token to the top level node of the
result TFS. The content of the input typed feature structure
remains unchanged.

The time constraint TIME causes the system to wait 200
milliseconds for incoming gesture events that can be mer-
ged with the speech token. The constraint is evaluated as a
python expression. ’tfs’ is a predefined variable in the script
environment that points to the input token object which is
matched by this right hand side definition. The property
’tfs.time’ contains the time stamp at which the token has
been added to the input set.

4.3 N-Best Lists
The resolution of pointing gestures in the environment

model results in an n-best list. This is first because of the
impreciseness of the gesture recognizer, that cannot resolve
with an accuracy below a few centimeters, second because
recognition errors are possible. Third, gestures can be ambi-
guous, even with perfect recognition. Consider for example
a window and a lamp that stands in front of this window.
The pointing gesture to the lamp could refer to the lamp or
to the window. This ambiguity can only be resolved within
the spoken context.

Section 2 already describes how the n-best list is created
from a database request. SCRIPT2 in Figure 5 is a modi-
fication of SCRIPT1 (Figure 4). It checks for all retrieved
elements from the n-best list, if they fit to the speech token.

for tfsi in tfs.all:
obj_lamp = tfsi.getType( "generic:REF" )
if onto.isMoreGeneral("obj_lamp", obj_lamp.typeName):

# set var $lamp
vars.addVarType("$3", obj_lamp )
constraint = 1
break

else:
constraint = 0

Figure 5: SCRIPT2 (Python) - iterate over nbest
result of gesture resolution, if the referenced object
has the correct type, set variable $3 and return true
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lhs

CONTENT


act switch

ONOFF

[
prp onoff
BOOL

[
$2

] ]
OBJ

[
$3

]



− >

rhs1speech

CONTENT

 $1A = act switch

ONOFF

[
prp onoff
BOOL

[
$2 = bool

] ] 
MODALITY

[ ′′speech′′ ]
PATH

[ ′′generic : NAME′′ == None
]




rhs2gest

CONTENT

[
gst pointing 3d resolved
generic : REF

[
generic : object

] ]
MODALITY

[ ′′gesture′′ ]
SCRIPT M

[
SCRIPT1

]
TIME

[
{tfs1.tstop <= tfs.tstart + 100}

]


Figure 6: Rule to merge a speech token with a ge-
sture token to resolve a lamp object[

lhs
CONTENT

[
$1

] ]
− >

rhs1
CONTENT

[
$1 = base : bot

]
MODALITY

[ ′′speech′′ ]
TIME

[
tfs.time + 200 <= currtime

]


Figure 7: Single speech token parse rule

For example: if the user says ”please bring me this cup”, and
the gesture tokens contains the following elements (ordered
by confidence) { lamp1, cup, window }, SCRIPT2 will pick
the cup from the list.

4.4 Ellipsis in Answering
The example in Figure 6 only applies to typed feature

structures where the root node is a speech act. This is in-
tended, because the system described here is used to merge
multimodal input for a dialogue system.

During conversation, users utter elliptical constructions,
e.g. in answers. The utterance ”this light” is used in reply
to the disambiguation question of the system ”which lamp
do you want to switch on”. The user utterance above can be
used together with a pointing gesture. During input proces-
sing, the dialog manager applies a resolution algorithm to
the input (see section 2). The resolution is currently quite
simple. The system generates a list of transformations for
each dialogue state that map object definitions to a comple-
te representation within a speech act. The utterance ”this
light” with the semantic representation[
obj lamp

]
is converted to the complete representation
act switch

ONOFF

[
prp onoff
BOOL

[
true

] ]
OBJECT

[
obj lamp

]


The converted representation is then compatible to the
parsing rule in Figure 6.

5. EVALUATION
The evaluation was performed with a human-robot inter-

action task in the kitchen scenario. The user can use mul-
timodal commands instruct the robot with speech and ge-
sture.

Within that task we have evaluated speech recognition
and gesture recognition results, the overall success rates of
the system and its runtime performance.

We first describe the data sets created for evaluation, their
annotation and relationship. Based on these sets we have
conducted experiments to measure the time correlation bet-
ween speech signal and gestures / gesture recognition. After
that we show the recognition rates and system performance
on the described data sets.

5.1 Annotation Scheme & Evaluation Data
For evaluation, different data sets are created that contain

annotated gestures, recognized gestures, annotated speech
input and recognized speech input. Additional annotation
files, here referenced as functions on the data sets, descri-
be the correspondence of the data, including transcription
(recognized to annotated data) and the combination for mul-
timodal fusion. The first set is called Greal and contains the
manually transcribed gestures. Set Grec contains the auto-
matically recognized gestures. Set S, with subsets, contains
all speech utterances with transcriptions and timestamps.

The partial function ϕG : Greal → Grec maps a manually
transcribed gesture to the corresponding recognized gesture.
The function is only partial since not all annotated gestures
do have a recognized correspondent. All elements gl ∈ Grec

for which ¬∃i : ϕG(gi) = gl are false detections.
The partial function ϕM : Greal → S maps a manual-

ly transcribed gesture to the speech utterance to which it
belongs. The set S contains all speech utterances that are
relevant for multimodal fusion. The set Sd ⊂ S contains
all speech utterances that start with deictic references. It is
specifically relevant to measure time alignment between a
gesture and the deictic reference word in speech.

The data used throughout the evaluation was collected
from seven persons interacting with the robot, and contains
around 500 user inputs. Among these 500 user inputs there
are 102 multimodal inputs with speech and gesture. A set of
89 gestures that corresponds to 87% recall on the set of 102
gesture inputs is used to evaluate gesture resolution on the
given task. The pointing gestures were used to disambiguate
between three lamps. Five other objects, four cups and one
fan, were placed into the scene but not referenced by the
user, the distance between these objects and the lamps was
within the range of 10cm to 100cm.

5.2 Time Alignment
To define realistic time constraints, we have conducted

a small user study. Based on the collected data we have
analyzed the time correlation between gestures and speech.
Therefore we have built two gesture sets, one containing ma-
nually transcribed gestures (Greal) and the second one con-
taining the corresponding automatically detected gestures
(Grec). And we have created two speech sets, one containing
any deictic reference (S) and the second one containing on-
ly speech utterances that start with deictic referring words
(Sd).

The annotation of a gesture contains the time, (1) when
the user starts to raise the arm, (2) when the hold phase
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Figure 8: Time Correlation between start of gesture
and start of speech signal

begins, (3) when the hold phase ends and the user lowers the
arm, (4) the end phase of the movement. Figure 10 shows
statistics on the recorded duration of the hold phase, which
is between (2) and (3). In the following, when speaking about
the start point of a gesture, we refer to the start of the hold
phase (2).

Figure 8 shows the time correlation between the manu-
ally tagged start point of the gesture and the start of the
speech signal. This gives information about the left bound
for the time constraint for merging. The major part of the
start points are between 0.52 seconds before the start of the
speech signal and 0.7 seconds after the start of the speech si-
gnal. We have found that 1.0 seconds (gesture before speech)
is a good boundary, also for the timestamps of the recogni-
zed gestures that are usually located between (2) and (3).

The above analysis is important to define time constraints,
given the timestamps of a gesture and start and stop time-
stamps for the speech signal. However, to get a good under-
standing, how gestures are correlated, not only to the com-
plete utterance, but more detailed to deictic words, the same
data analysis has been performed on the subset Sd ⊂ S. The
set Sd is a little bit smaller and contains 53 utterances. Sd

contains only of those speech utterances, where the deictic
word is located at the beginning of the utterance, like ”this
lamp”. The result is shown in Figure 9. By estimating the
data with a normal distribution we obtain a mean value of
-0.3, which means that the gesture is detected 0.3 seconds
before speech starts, and a variance of 0.14. It can be seen
that in this analysis, the start point of a gesture is very
closely correlated to the start time of the deictic word.

5.3 Gesture Recognition
In this evaluation, we used the pointing gesture recognizer

described in [20]. Based on video images provided by a ste-
reo camera, the system tracks the 3D-positions of the user’s
head and hands in real-time. The trajectories of the hands
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-1,00 -0,76 -0,52 -0,27 -0,03 0,21 0,45 0,70 0,94 1,18

Figure 9: Time Correlation between start of gesture
and start of deictic words

are classified in a run-on manner by a set of HMMs1 in order
to detect the typical motion pattern of a pointing gesture.
A non-gesture HMM that represents any natural hand mo-
tions except pointing gestures is used as a threshold for the
gesture models. Scaling the the output of this HMM influ-
ences the sensitivity of gesture detection. By decreasing the
threshold, the percentage of successfully detected gestures
(recall) increases as well as the number of false detections.
Once a gesture has been detected, the line of sight between
the centroids of the head and the pointing hand is used as
an estimate for pointing direction.

The video data was collected with a static camera against
cluttered background. The test persons were free to move
within the camera’s field of view at a distance of 2-4m. Gi-
ven a comparatively low threshold setting, we could achieve
a recall of 87%, with a precision of only 47% in the evaluated
data set. This means that 13% of the gestures could not be
detected, whereas the system reported 53% false detections.
In our system, and in the presented evaluation, the false de-
tections do not harm the overall performance, since the false
detections could be sorted out by the described constraints.

In addition to the detection rates, the result of the resolu-
tion in the environment model is relevant for fusion success.
Therefore 89 gestures were evaluated. The result of the re-
solution process is an n-best list of objects that match the
pointing direction of the gesture well enough. In 94% of all
cases the desired object was resolved as an element of the
n-best list. However, only in 44% of successful resolutions,
the best hypothesis was the correct result. In 56% of the
successful resolutions, the correct hypothesis was found in
the n-best list. These results emphasize the importance to
use n-best lists for gesture results and not to rely on the
best hypothesis. The best fitting element is determined by
its ontology type.

1The HMMs were trained on 206 pointing gestures perfor-
med by 10 subjects. The training set is different from the
set that is used for the multimodal evaluation.
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no gest
52%

bad speech
17%

bad time
9%

no lamp
22%

Figure 11: Contribution of the different components
and constraints to failure of multimodal fusion. no
gest - 52% (gesture not correctly recognized), no
lamp - 22% (gesture could not be resolved to the
correct pointing goal), bad time - 9% (incorrect ti-
mestamps), bad speech - 17% (speech recognition
failed)

5.4 Fusion Evaluation
To evaluate the performance of the fusion approach, we

evaluate the complete system from user input to fusion out-
put.

On the 102 multimodal user inputs the overall success rate
was 74% with an error rate of respectively 26%.

An observation of the errors shows that 52% (relative) of
the errors are caused by failing to detect a gesture. In 22%
of the error cases fusion could not be correctly performed
because the gesture could not be resolved with high confi-
dence. In 9% of the error cases gesture and speech could not
be merged due to time constraints. 17% of the errors were
caused by speech recognition errors, either due to incorrect
segmentation or due to false recognition. See also Figure 11.

The failure of the time constraints is due to the fact that
most of the gestures have been detected with incorrect time
stamps.

5.5 Runtime Performance
The experiments have been performed on two PCs, one (3

GHz) camera PC with person tracking and gesture recogni-
tion, the second (2,2 GHz) PC with speech recognizer, com-

munication architecture, database, multimodal fusion and
dialog manager. The system is not yet optimized and still
contains some delays within the communication architecture
and polling cycles.

The speech recognizer runs in ≈ 0.8 time realtime [10]
with runon decoding (recognition is started while user still
talks).

The delays of the gesture recognizer, from the detection
of the gesture until the arrival at the fusion component, are
in most cases between 0.6 and 1.1 seconds. The multimodal
parser uses a loop delay of 50 milliseconds for each parsing
iteration, parsing time is below 20 milliseconds.

Dialog processing is also quite fast and takes on average
around 50 milliseconds. In addition, a few milliseconds have
to be added for database retrieval and gesture resolution as
well as for conversion of the speech recognizer’s output into
semantic structures. Since the recognizer already sends parse
trees, no extra time is lost by parsing the input with context
free grammars, only precompiled conversion rules have to be
applied that convert tree nodes to semantic structures.

The response time of the complete system mainly depends
on the runtime of the speech recognizer. The output is gene-
rated in most cases between 1 and 2 seconds after segmen-
tation stopped recording.

6. CONCLUSIONS AND OUTLOOK
We have presented an architecture for multimodal integra-

tion together with an evaluation of the system. The system
runs on a humanoid robot to facilitate natural multimodal
interaction. It is used for fusion of speech and pointing ge-
stures in three dimensional space. We have described the
parsing algorithm, the usage of constraints to find input to-
kens that can be merged, and construction rules for genera-
ting the merge result. We have shown a close correlation in
time of speech and gesture on a small evaluation set. The
fusion system is robust against false detection that occur in
the vision based tracking of 3D gestures. Using n-best lists
in the resolution process has helped to improve the results
of the system.

In the future we want to evaluate our system on larger da-
ta sets and improve the response time and fusion robustness.
Also, we want to extend the approach to merge speech with
n-best gesture results, and observe different methods to mer-
ge n-best lists from various modalities, with score functions
for comparing different combinations of elements.
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H. Holzapfel, K. Nickel, and A. Waibel. Natural
human-robot interaction using speech, gaze and
gestures. In Proceedings of the International
Conference on Intelligent Robots and Systems, Sendai,
Japan, 2004.

[26] I. Wachsmuth. Communicative rhythm in gesture and
speech. In Gesture-Based Communication in
Human-Computer Interaction: International Gesture
Workshop, GW’99, Gif-sur-Yvette, France, March
1999.

[27] L. Wu, S. L. Oviatt, and P. R. Cohen. Multimodal
integration - a statistical view. IEEE Transactions on
Multimedia, 1(4):334–341, 1999.

182


