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Interactive Systems Laboratories
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Abstract

This work introduces a maximum-likelihood basedmodel order
(MO) selection technique for spectral envelopes to apply speaker
dependent adaptation in the feature-space similar to vocal tract
length normalization.

Speech recognition systems based on spectral envelopes are us-
ing a fixed MO for the underlying linear parametric model. Us-
ing a fixed MO over different speakers or channels might not
be optimal. To address this problem we investigated the use of
warped and scaled minimum variance distortionless response spec-
tral estimation techniques with speaker dependent MOs based on a
maximum-likelihood criteria. Comparing experimental results on
the Translanguage English Database we can show an improvement
by 1,9% relative compared to the word error rate by the fixed MO
and 3,5% relative to the traditional Mel-frequency cepstral coeffi-
cients.

1. Introduction
Common speech recognition systems which are based on perceptual
linear prediction or linear prediction cepstral coefficients are using a
fixedmodel order(MO) for the underlying linear parametric model.
Using a fixed MO over different speakers or channels might not be
optimal, therefore we propose the use of speaker dependent MOs.
Commonly the MO with the smallest error (with arbitrary cost func-
tion; e.g., squared error) in comparison to the Fourier spectrum is
considered the best. In speech recognition the case is different in
such as the represented envelope of our test speaker should fit best
to the initial acoustic models of the recognizer. This can be es-
tablished by optimizing the likelihood of the recognizer for every
single speaker in dependence on the MO.

2. Theoretical Considerations
In this chapter we briefly repeat the warpedminimum variance dis-
tortionless response(MVDR) spectral estimation technique and its
relation to warped linear prediction, as well as the scaling of the
MVDR envelope. Furthermore we give a brief summary about
speaker normalization based on the vocal tract length which then
can be readily extended to estimate the MO for every single speaker
in a maximum likelihood manner.

2.1. The Warped & Scaled Minimum Variance Distortionless
Response Spectral Envelope

MVDR spectral estimation was previously proposed by Murthi and
Rao [1, 2] as a spectral envelope technique, and applied to speech
recognition by Dharanipragada and Rao [3]. Moreover, we ex-
tended this approach bywarping the frequency axis with the bi-
linear transformation prior to MVDR spectral estimation, therefore

dubbedwarped-MVDR, to ensure that more parameters in the spec-
tral model are allocated to the low, as opposed to high, frequency
regions of the spectrum, thereby mimicking the frequency resolu-
tion of the human auditory system and byscalingof the spectral
envelope as a means for extracting robust features [4, 5].

Similar to Burg [6] who has shown the relationship between the
MVDR- and thelinear prediction(LP) envelope, we can write the
relationship between the warped-MVDR and the warped-LP enve-
lope as follows:
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der 0 top, and explains why the (warped) MVDR spectrum gen-
erally exhibits a smoother frequency response with decreased vari-
ance than the corresponding (warped) LP spectrum [2]. This at-
tribute makes the (warped) MVDR envelope also more interesting
for our considerations as we can adjust the ’resolution’ of our enve-
lope due to the MO in smaller steps.

For a fast computation of the warped-MVDR spectrum we have
extended Musicus’ [7] algorithm to calculate the MVDR spectrum
from the LP coefficients as follows (for more details see [8]):

1. Computation of the warped-LP coefficients(LPC)
For our experiments we used an algorithm by Matsumoto et
al. [9] to calculate the warped-LP coefficients, but any other
algorithm should work similarly well.
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3. Computation of the warped-MVDR spectrum

Swarped MVDR(ω) =
ε∑M

k=−M µ̃ke−jωk
(2)

ε = 1/Pe wherePe stands for the prediction error variance.

Note that the spectrum (2) is in the warped frequency domain.
Hence, it is necessary to replace the Mel-filterbank in the front end
of an automatic speech recognizer with a filterbank of uniformly
half overlapping triangular filters.

Spectral peakshave been shown to be particular robust to
additive noise in the logarithmic domain, sincelog(a + b) ≈
log(max{a, b}) [10]. Therefore we match the warped-MVDR en-
velope to the highest spectral peak of the Fourier spectrum to get



thewarped&scaled-MVDRenvelope resulting in features which are
less distorted by noise [5].

After having repeated some basics of the warped&scaled-
MVDR envelope we want to investigate how thefundamental fre-
quency(FF), generated by the vibration of the vocal folds and rat-
ing from 60Hz for a large man up to300Hz for a small woman or
child, influences the estimate of our envelope. Therefore we gen-
erate spectral envelopes with different MOs of impuls trains with
different FFs which have been filtered by a transfer functionH(z).
The used transfer function has two formants; the first at1000Hz and
the second at2000Hz. Comparing this spectral envelopes to the
spectral envelope of the transfer functionH(z) itself we see that
different MOs approximate the transfer function differently well.
Furthermore we realize that high MOs in combination with a high
FF uncover the excitation frequency together with their harmonics.
To find the best MO, we are interested in the prediction error in
dependency on the MO and the FF. Therefore we plot the squared
error in dependency on the MO for different FFs, see Figure 4. For
some cases we see more than one minimum, but following the ab-
solute minimum we can conclude that a higher FF is modeled better
by a low MO and vice versa. This can be explained by the fact that
the FF is setting the periodic baseline for all higher-frequency har-
monics. Sparse harmonics result in a lower resolution than dense
harmonics, therefore the MO should be reduced for sparse harmon-
ics to reach the optimal estimate.

In speech recognition we are interested in the spectral enve-
lope estimation of the transfer function which fits best to the initial
acoustic models of the recognizer. The problem statement is similar
to those of estimating the best vocal tract length which should be
regarded next.

2.2. Speaker Dependent Model Order Selection

A commonly used approximation in speaker normalization is that
the spectral representations(SR)s, e.g, the power spectra or the
spectral envelopes(SE)s, of the same phoneme by two different
speakers are uniformely scaled versions of each other

SR(f)Speaker A ≈ SR(αAB · f)Speaker B (3)

whereαAB is an uniform scaling parameter depending on the dif-
ference in vocal tract length betweenSpeaker AandSpeaker B. We
now want to extend this approach by using the free parameter of the
SE, the MO, which is commonly optimized to maximise the word
accuracy of a speech recognition systema priori where the free MO
is set to the same parameter for all speakers in the training and test
set. Similar to (3) we can adjust the MOm of Speaker B, holding
the MO l of Speaker Afixed, to find the ’best fit’ between the SEs
of the same phoneme by two different speakers.

SE(l)Speaker A ≈ SE(m)Speaker B (4)

Instead of adapting the MO of our investigated speaker to a single
speaker, we have to adapt to ’best fit’ the models of our trained
speech recognition system. To do so we have to calculate the
cepstral featurecm of the SE of MOm. As a sequence of dif-
ferent MOs we can write the cepstal feature as the vectorC =
(cm, cm+1, .., cn)T . Let λl denote a set of given hidden Marcov
models trained on a broad variety of speakers with afixedMO l. The
optimal MOm̂ for the given speaker is then obtained by maximis-
ing the likelihood of the adaptation dataC given the corresponding
word stringW :

m̂ = arg max
m

Pr(C|λl, W ) (5)

The optimal MO can then be obtained by a grid search over a range
of values. As more than one minimum might exist, see Figure 1,
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Figure 1: The normalized likelihoods in dependence on the model
order for two different speakers are shown.
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Figure 2: The relationship between the model order and the fun-
damental frequency (left image) and vocal tract length (right im-
age) are shown for all 39 speakers of the Translanguage English
Database corpus. Every single point stands for a speaker while the
red line represents the regression line.

gradient descent should not be used as it might not lead to the global
minimum.

To compare the FF (calculated by the average magnitude dif-
ference function [11]) as well as the vocal tract length to the MO
we want to determine regression lines. Our linear regression prob-
lem which must be solved is to fit a straight line to a number of
points so that the squared deviations of the observed points from
that line are minimized. Comparing for all 39 speakers from the
Translanguage English Database corpus, as described in the follow-
ing chapter, we can see, Figure 2, that the MO might depend on the
FF. A correlation also exists for the vocal tract length value which
is not surprising as the FF is also correlated to the vocal tract length
value. That means (in average) a male speaker (lower FFs, warp
factor< 1) should have a higher MO than a female speaker (higher
FFs, warp factor> 1).

We couldn’t find any statistical relevant correlation between the
MO and the signal to noise ratio, which varied between10dB and
22dB. This seams to be a contradiction to Tierney [12] who has
claimed that corrupted speech has to be modeled using a higher MO
of the all-pole model, to model both, speech and noise. But as we
are only interested in the best prediction of the physical excitation
of the vocal tract we have no interest in modeling the noise and
therefore we shouldn’t expect an increase in MO.

3. Speech Recognition Experiments
The speech recognition experiments described below were con-
ducted with theJanus Recognition Toolkit(JRTk), which is devel-
oped and maintained jointly by the Interactive Systems Laborato-
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Figure 3: Shown are MVDR spectral envelopes (red lines) for different model orders (30, 50 and 70) and different fundamental frequencies
(100, 150 and200Hz) in comparison to the MVDR spectral envelope with model order 80 of the transfer functionH(z) (gray lines).
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Figure 4: Shown are the squared error of the spectral envelope belonging to different model orders (between 20 and 100) and fundamental
frequencies (100, 150 and200Hz) in comparison to the MVDR spectral envelope with model order 80 of the transfer functionH(z). We see
that for every fundamental frequency the minimal error is reached by a different model order.

Speaker WER VTLN WER VTLN order WER VTLN order WER VTLN order
1 37,6% 0,95 38,5% 0,95 60 38,2% 0,94 73 37,4% 0,94 74
2 39,5% 0,96 38,3% 0,97 60 38,4% 0,97 63 38,0% 0,97 62
3 60,7% 0,98 58,2% 1,00 60 57,4% 1,00 65 57,0% 0,99 47
4 38,5% 1,07 36,3% 1,08 60 36,3% 1,08 60 35,9% 1,08 61
5 36,6% 1,04 35,9% 1,07 60 35,3% 1,07 30 35,6% 1,07 29
6 28,5% 0,90 28,8% 0,92 60 28,9% 0,92 79 28,2% 0,92 80
7 22,1% 0,94 22,6% 0,95 60 22,4% 0,95 64 22,2% 0,95 64
8 43,3% 0,99 43,2% 1,02 60 42,9% 1,02 35 41,9% 1,02 35

Average 38,4% 0,98 37,7% 1,00 60 37,5% 0,99 59 37,0% 0,99 57

Test Adaptation&Test

Fourier Trans. Warped&Scaled-MVDR
Fixed Order Variable Order

Table 1: Given areword error rates(WER)s for eight test speakers together with theirvocal tract lenght normalization(VTLN) factor and
model order. For the spectral representation we used the Fourier transform and the warped&scaled-MVDR spectral envelope. In thetestcase
the model order was only estimated for the eight test speakers while in theadaptation&testcase the model order was estimated for the 31
adaptation speakers and for the eight test speakers.



ries at the Universiẗat Karlsruhe in Karlsruhe, Germany and at the
Carnegie Mellon University in Pittsburgh, Pennsylvania, USA.

Our recognition experiments were conducted on theTranslan-
guage English Database(TED) corpus [13] which presents several
kind of problems to cope with: Speakers are often nonnative, have
a strong accent or are not even fluent, spontaneous speech pheno-
mena occur quite frequently and the recordings were made with a
lapel microphone, hence the signal often contains noise. As rel-
atively little supervised data is available for acoustic modeling we
have trained our acoustic models on theBroadcast Newscorpus [14]
(104 hours of speech collected from speakers of both sexes) and
adapted on 31 speakers (8 hours) out of the 39 transcribed speakers
from the TED corpus usingMaximum likelihood linear regression
(MLLR) [15]. Our test set contained the final 8 speakers (6 male
speakers, Sp.4 and Sp.5 female) of the TED corpus with a wide va-
riety of mother tongues (Sp.1: English, Sp.2: Italian, Sp.3: French,
Sp.4: French, Sp.5: Danish, Sp.6: German, Sp.7: Dutch, Sp.8:
Japanese).

Our baseline model consisted of 4.139 codebooks with 32
Gaussians each. The features used for speech recognition were ob-
tained by calculating 13 static cepstral coefficients for each frame of
speech which have been normalized by cepstral mean subtraction.
Thereafter, linear discriminant analysis was used to reduce the cur-
rent features plus 3 left and right adjacent features to a final feature
length of 40. MLLR was used to adapt the means and covariances
of the speaker-independent model for every speaker in the test set.
Feature Space Adaptationwas not used as it only improve the likeli-
hood, but not theword error rate(WER) of our system which stayed
the same. The static cepstral coefficients were obtained through
a discrete cosine transform from the warped&scaled-MVDR enve-
lope followed by a filterbank consisting of 30 so adapted filters to
compensate for the differences between the bilinear transform and
the Mel-frequency. All features were calculated every 10 ms from
speech data sampled at 16 kHz, using a 16 ms Hamming window.
The Fourier transform case was comprised of a fast Fourier trans-
form followed by a Mel-filerbank instead of the warped&scaled-
MVDR envelope followed by the adapted filterbank; everything
else stayed the same. The 3-gram language model was generated
by proceedings from conferences such as ICSLP, Eurospeech and
ICASSP with a dictionary containing 40.000 words (the most fre-
quently words in the proceedings) resulting in an out of vocabulary
rate below 0,5%.

Comparing our results in Table 1 we can confirm our former
finding on theSwichboardcorpus [5], that the warped&scaled-
MVDR performs better than the Fourier transform as a spectral esti-
mate. The proposed model order adaptation can further improve this
performance by 1,9% relative WER reulting in a relative WER im-
provement by 3,5% in comparison to the traditional Mel-frequency
cepstral coefficients.

4. Conclusions
We found the use of unsupervisedmaximum-likelihood(ML) es-
timation helpful to determine a speaker dependent MO and could
show an improvement in word accuracy over a fixed MO which
was seta-priori to optimise the word accuracy. Even though an er-
ror reduction was achieved, two speakers of thetestcase performed
worse in comparison to thefixed ordercase. This means that the
ML did not always converge properly, leaving space for further im-
provement which will be considered in our future works.
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