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Abstract

In this paper, weinvestigaterecognition of humanfaces
in a meetingroom. The major challenges of identifying
humanfacesin this environmentincludelow quality of in-
put images,poor illumination,unrestrictedheadposesand
continuouslychangingfacial expressionsandocclusion.In
order to addresstheseproblemswe proposea novel algo-
rithm, DynamicSpaceWarping (DSW).Thebasic idea of
the algorithm is to combinelocal features under certain
spatial constraints. We compare DSWwith the eigenface
approachondatacollectedfromvariousmeetings.Wehave
testedboth front and profile face imagesand imageswith
two stagesof occlusion.Theexperimentalresultsindicate
thattheDSWapproachoutperformstheeigenfaceapproach
in bothcases.

1. Intr oduction

While significant progresshas been made with face
recognition systems[11], the application areasare still
severely limited. Most efforts concentrateon the “f acein
thecrowd” problemwherea probefaceis matchedagainst
a potentiallyhugegallery of known faces. The input im-
agesare usually of high quality with controlled lighting
conditionsdisplayingfacesin a restrictednumberof views.
While the galleriescontainfacesof thousandsof different
people,individualmodelsareusuallybuilt usingonly a few
pictures.Recentlyresearchershave begunto work on sys-
temsto identify peoplefrom videosequences[6, 8]. Aside
from the increasedcomputationaldemandsof a real-time
system,this task is challengingdue to the variancecre-
atedby the interactionof peoplewith eachother and the
surroundingenvironment.We areinterestedin thespecific
context of a meetingroomfor which we have developeda
new facerecognitionalgorithm.Ouralgorithmis capableof
handlingocclusionsthattypically appearduringmeetings.

The remainderof the paperis structuredasfollows. In
Section2 we give an overview of the meetingroom envi-
ronmentin whichweconductedourexperiments.Section3
introducesthe new DynamicSpaceWarping(DSW) algo-
rithm alongwith the baselinePrincipal ComponentAnal-
ysis (PCA) approachto facerecognition. In Section4 we
presentthe databaseof face imageswe collectedin our
meetingroom andthe resultsof our experiments.Section
5 concludeswith a summaryof thepresentedwork.

2. Meeting RoomEnvir onment

Face-to-facemeetingsusuallyencompassseveralmodal-
ities including speech,gesture,handwriting and person
identification.Recognitionandintegrationof eachof these
modalitiesis important to createan accuraterecordof a
meetingfor laterreference.At theInteractiveSystemsLabs
we aredevelopinga multimodal meetingarea[1] to con-
tinuouslytrack,captureandintegratetheimportantaspects
of a meetingusingtheJANUS speechrecognizer[16] and
a multimodalpersonidentificationmodule[14]. The iden-
tity of ameetingparticipantis currentlydeterminedusinga
combinationof speaker identificationandcolor appearance
identification.Our goal is to increasetherobustnessof the
personidentificationsystemby addingfacerecognition.

The automaticrecognitionof facesconstitutesa partic-
ularly difficult patternrecognitiontask. This is dueto the
substantialvariationsin appearancethatfacesundergowith
changingillumination, orientation,scaleandfacialexpres-
sions. The possibilitiesof restrictingthis variancein our
meetingroomarelimited sincewecannotrestrictthemeet-
ing participantsto follow specificbehaviors. Therefore,the
taskof performingcontinuousfacerecognitionin a room
with morethanonepersoncreatesa numberof challenges:



� Low quality video input

Givena limited numberof camerasin fixedlocations,
a wide viewing anglehasto beusedin orderto cover
the whole scene. This resultsin relatively low reso-
lution imagesof thefaces.To capturehigh resolution
picturesof a faceit is necessaryto closely track the
personin questionwith a dedicatedcamera. With a
largernumberof peopleto betrackedandidentifiedin
a room, it becomesimpossibleto usea singlecamera
perperson.

� Illumination

Dependingon theheadposeandthepositionof a per-
sonrelative to theoverheadlights, the illumination of
thefacechangesdramatically. We canobservethefull
rangeof shadevariationseventhoughtheoveralllight-
ing conditionsin the room remainconstantover the
courseof a meeting.

� Unrestrictedheadposeand changingfacial expres-
sions

Givenby thedynamicnatureof a meetingalmostany
naturalheadposeand facial expressioncanandwill
occur.

� Occlusion

Peopleconstantlymove their headsandhandsduring
a meeting.This thenresultsin thewhole faceor part
of the facebeingobstructedby a hand,a pieceof pa-
per or otherobjects. Furthermore,dependingon the
numberof camerasand their location the recognizer
alsohasto copewith occlusionstemmingfrom other
peopleobstructingthefield of view.

Figure 1 containsa collectionof faceimagesrecorded
duringmeetings,demonstratingtheseproblems.Compared
with the remarkablehuman performancein recognizing
facesfrom pictures[2, 15] it is surprisingto notethat hu-
mansstruggleto recognizepeopleon low quality video if
they arenot familiar with the facesthey aregiven to iden-
tify [4].

3. FaceRecognitionSystem

3.1.Local VersusGlobal Approachesto FaceRecog-
nition

Earlycomputervisionsystemsfor facerecognitionmea-
sureda setof geometricfeaturesin the faceandcompared
theresultingvectorwith previouslystoredpattern(e.g.[7]).
Theselocal,featurebasedapproacheshavebeensuperseded
in recentyearsby global, templatebasedalgorithms.Em-
pirical evidencesuggeststhat algorithmsbasedon whole
facetemplatestendto outperformlocalapproaches[3, 5].
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Figure 1. Enlar ged face images illustrating the
challenging meeting room envir onment.

3.2. PCA BasedFaceRecognition

Amongthenumerousglobalfacerecognitionalgorithms
introducedin recentyears,theeigenfaceapproachproposed
by Turk and Pentland[12] is one of the most influential.
It usesprincipalcomponentanalysisto linearly projectthe
high dimensionalimagespaceto a lower dimensionalfea-
turespace.Oncetheeigenvectorsof thecovariancematrix
which spanthefeaturespacearedetermined,recognitionis
performedby computingthe Euclideandistancesbetween
the test imageand the referenceimagesin featurespace.
While the eigenfaceapproachperformswell in ‘mugshot’
settings,it has difficulties handling occlusions. The al-
gorithm encodesan input imageassinglepoint in feature
spaceandthereforehasno meansto recover from the dis-
tortion inducedby occlusions. This effect canbe seenin
Figure8.

3.3. Dynamic SpaceWarping

Weproposeanew facerecognitionalgorithmwhichtries
to overcomethe shortcomingsof the eigenfaceapproach.
Insteadof projectingthe input faceonto a singlepoint in
featurespaceweuseamovingwindow asdepictedin Figure
2 to createa sequenceof points. The window passesover
thefacefrom theupperleft to thelower right corner.
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Figure 2. A sequence of subwindo ws over the
face .

pal component analysis and project the vector ���(� �)�
piecewise into the eigenspace. In our experimentsthe
number of subimagesis constantover all training im-
ages( %'� �+* ). The subimages��� � can be usedin two
ways in the PCA. Besidesthe obvious way of combin-
ing all subimages�,� � into a single eigenspaceit is also
possibleto build * differenteigenspacesusing the images- � �� �
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However, our experimentsdid not show significantdiffer-
encesbetweenthesevariants. The resultingsequenceof
points in featurespaceis storedasreferencesequencefor
thegiventrainingimage.A faceimageof unknown identity
is comparedwith the stored referencesequencesusing
dynamicprogramming,which makesthetechniquesimilar
to dynamictime warpingasusedin speechrecognition[9].
Due to this similarity we call it dynamicspacewarping.
Thesubwindows � of thetestsequenceandthesubwindows
# of eachtemplate 2 definea set of grid points

- �3�4#5��2 . .
Eachgrid point canbeassociatedwith a distance6 - �3�4#5�32 .
betweenthe respective subwindows. The algorithm now
searchesfor thepaththroughthegrid pointswhichprovides
the best match betweenthe test patternand a reference
pattern.We define 7 - �3�4#5��2 . astheminimumaccumulated
distancealong any path leadingto the grid point

- �3�4#5��2 . .
With 7 -  �$#��32 . initializedasfollows:

7 -  �4#5��2 . �98 � �	: � 6
-  �
%;��2 .

wecanformulatetheupdaterule as:

7 - �3�4#5�32 . � 6 - �3�$#��32 .�< !=�$%?>(7 - �'@  �$#5��2 . �
7 - ��@  �$#A@  �32 . ��7 - �3�4#B@  ��2 .DC

The best referencesequenceis given by !E�4%�F(7 - %;�4#5�32 .
(with % being the length of the test sequence).Figure 3
depictsthedifferentstepsof thealgorithm.

Thesizeof themoving window andtheverticalandhor-
izontal offsetsare determinedautomaticallybasedon the
size of the input images. Empirical evidencesuggeststo
partitionthefaceinto nineoverlappingregions. In contrast
to otherlocal approaches,DSW doesnot requirethe local-
izationof facial landmarkssuchaseyes,noseor mouth.
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Figure 3. Processing steps of the DSW algo-
rithm.

4. Experiments

4.1. Database

In orderto evaluateouralgorithmwerecordedsix group
meetingsin the meetingroom. We thenmanuallylabeled
facelocation,orientation,identity anddegreeof occlusion.
The imagesin our datasetvary in sizebetween15x20and
40x54. We normalizethe sizeof the extractedimagesand
perform a set of standardpreprocessingprocedures(his-
togramequalization,lighting correction,normalizationto
zeromeanandunit variance).Using threedifferentviews
perperson(onefrontal andtwo sideviews) we built mod-
els for six membersof our group. The training imagesof
all viewswerecombinedinto asingleeigenspace(paramet-
ric eigenspace[10]). The position of the meetingpartic-
ipantschangedbetweenmeetings,thereforecreatingvari-
ancein viewsandilluminationconditionsfor eachface.Our
databaseconsistedof approximately1200pictures,averag-
ing to about60 picturespermodel. We randomlyselected
trainingimagesout of thepool,built themodelsandtested
on the remainingpictures.To assertthe validity of the re-
sultswe repeatedthis procedureandobtainedthe average
recognitionresult.

4.2. Results

Figure4 comparesthe recognitionratesof the classical
eigenfaceapproachandDSWfor varyingnumbersof train-



ing images.For bothalgorithmswe evaluatedtwo variants,
termedPCA1, PCA2 andDSW1, DSW2 respectively. In
thefirst versionthepatternvectorsresultingfrom theappli-
cationof PCAor DSWonthetrainingimagesfor onemodel
were averagedand only one referencevector was stored.
For thesecondvariantall vectorswereretained.
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Figure 4. Recognition rates of PCA and DSW
algorithms (no occ lusion).

For both variantsthe DSW approachachieves higher
recognitionrates.

In addition to normal faceimageswe also labeledap-
proximately150 faceswith two stagesof occlusions.Fig-
ure5 depictsexamplesfor bothcategories.Therecognition
ratesobtainedoverthoseimagesareshown in Figures6 and
7.

Occlusion
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Figure 5. Examples of face images with small
and large occ lusions.

Again, theDSW approachclearlyoutperformsthestan-
dard eigenfacealgorithm. The resultsof the experiments
usingthefirst variantof PCAandDSWwhereonly oneref-
erencevectoris stored,aresummarizedin Table1.

The localizedapproachof DSW enablesthe algorithm
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Figure 6. Recognition rates of PCA and DSW
algorithms (with small occ lusions).

#Train images 3 5 7 10

PCA1w/o occl 76.2% 79.9% 80.0% 82.7%
DSW1w/o occl 82.0% 86.8% 86.5% 89.4%
PCA1smloccl 29.7% 41.4% 35.9% 35.0%
DSW1smloccl 65.4% 57.9% 59.2% 55.9%
PCA1lrg occl 25.3% 31.6% 29.0% 30.8%
DSW1lrg occl 45.5% 49.9% 47.5% 48.6%

Table 1. Comparison of the recognition rates
for PCA1 and DSW1 on diff erent databases.

to dealbetterwith local occlusionsthanstandardPCA can.
Figure8 demonstratesthis observation with reconstructed
faceimages. In this procedurethe original imageis first
projectedinto theeigenspaceandthenreconstructedusing
theeigenspacerepresentationandtheeigenfacebasisof the
featurespace.Thefigureshowsoriginal imagesasrecorded
during meetingsandtheir counterpartsreconstructedfrom
a PCAandaDSW representation.For faceswithoutocclu-
sionthereconstructedimagesbarea strongresemblanceto
theoriginals. If partsof thefaceareoccludedby a handor
apenthefaceimagesreconstructedfrom aPCAeigenspace
show strong distortionswhile the imagesobtainedfrom
DSWarestill remarkablyclear.

The systemin its currentstageis a first steptowardsa
robustfaceidentificationsystemthatis capableof handling
real world situationsthat occurduring meetings.Work is
currentlyunderway to integratethe facerecognizerwith a
facetracker developedin our lab [13] andwith the multi-
modalpeopleID system[14]. The facetracker is able to
trackmultiple facesin thefield of view in real time. When
integratedwith thefacetrackerwewill beableto trainmore
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Figure 7. Recognition rates of PCA and DSW
algorithms (with large occ lusions).

robustmodelsbyutilizing thevastamountsof dataavailable
from many recordingsof ourmeetings.

5. Conclusion

We presenteda new algorithm for the recognitionof
facesunderadverseconditionsandshowed empiricalevi-
denceof its improvedperformancewith respectto thestan-
dardeigenfaceapproach.While our systemis ableto han-
dle occlusions,the low quality of the input imagesandthe
changingillumination conditions,the numberof views in
theexperimentswearereportingon is restricted.Giventhe
low quality of the input images,we believe thatbuilding a
3D headmodelfrom thedatato normalizefor differentview
directionsis not feasible. It thereforeseemsmorepromis-
ing to investigateinto view tolerantalgorithmswhich build
differentmodelsfor differentviews.

References

[1] M. Bett, R. Gross,H. Yu, X. Zhu, Y. Pan, J. Yang, and
A. Waibel. Multimodal meetingtracker. UnderReview.

[2] E. Brown, K. Deffenbacher, andW. Sturgill. Memory for
facesandthecircumstancesof encounter. Journalof Applied
Psychology, 1977.

[3] R. Brunelli andT. Poggio. Facerecognition: featuresver-
sustemplates.IEEE Transactionson Pattern Analysisand
MachineIntelligence, 15(10),1993.

[4] M. Burton, S. Wilson, and M. Cowan. Facerecognition
in poor quality video: evidencefrom securitysurveillance.
Psychological Science, 1999.

[5] S. Gutta, J. Huang, D. Singh, I. Shah, B. Takacs,and
H. Wechsler. Benchmarkstudieson facerecognition. In
Proceedingsof InternationalWorkshopon AutomaticFace
andGesture Recognition, 1995.

Original with occlusion

Reconstructed images

(PCA)

Reconstructed images

(DSW)

Reconstructed images

(PCA)

Original w/o occlusion

Figure 8. Face images and their counterpar t
obtained thr ough reconstruction from PCA
and DSW.

[6] A. Howell and H. Buxton. Towards unconstrainedface
recognitionfrom imagesequences.In Proceedingsof the
SecondInternational Conferenceon Automatic Face and
Gesture Recognition, 1996.

[7] T. Kanade. Pictureprocessingby computercomplex and
recognitionof humanfaces. Technicalreport,Dept.of In-
formationScience,KyotoUniversity, 1973.

[8] S.McKennaandS.Gong.Facerecognitionfrom sequences
usingmodelsof identity. In Proc.AsianConferenceonCom-
puterVision, 1998.

[9] H. Ney. The useof a one-stagedynamicprogrammingal-
gorithmfor connectedwordrecognition.IEEETransactions
onAcoustics,Speech andSignalProcessing, 32(2),1984.

[10] A. Pentland,B. Moghaddam,and T. Starner. View-based
andmodulareigenspacesfor facerecognition.In IEEECon-
ferenceon ComputerVision & PatternRecognition, 1994.

[11] P. Phillips, H. Moon, P. Rauss,andS. Rizvi. The FERET
evaluationmethodologyfor face-recognitionalgorithms.In
CVPR’97, 1997.

[12] M. Turk andA. Pentland.Eigenfacesfor recognition.Jour-
nal of CognitiveNeuroscience, 3(1),1991.

[13] J.YangandA. Waibel.A real-timefacetracker. In Proceed-
ingsof WACV’96, 1996.

[14] J.Yang,X. Zhu,R.Gross,J.Kominek,andA. Waibel.Mul-
timodal peopleID for a multimediameetingbrowser. In
Proceedingsof ACM Multimedia, 1999.



[15] R. Yin. Looking at upside-down faces.Journal of Experi-
mentalPsychology, 1969.

[16] H. Yu,M. Finke,andA. Waibel.Progressin automaticmeet-
ing transcription. In Proceedingsof the Eurospeech ’99,
1999.


