ON THE COMPLEXITY OF COGNITION

S. JAEGER
Interactive Systems Laboratories
University of Karlsruhe
Computer Science Department, 76128 Karlsruhe, Germany
email: stefan.jaeger@ira.uka.de

This paper presents an investigation of a cognitive problem in terms of complexity
theory. Two global optimization approaches are presented for recovering trajecto-
ries from static, handwritten word images. Both take graph-theoretical represen-
tations of symbols as input. The first, polynomial approach minimizes the length
of the recovered trajectories. This approach cannot recover trajectories traversing
parts of the word more than twice. The second approach, which minimizes costs
at distinguished nodes of the trajectory, is more powerful in this respect and is
proved to be NP-hard. An efficient divide-and-conquer method is proposed that
splits handwritten words into independent subparts and recovers trajectories for
every subpart, which turn out to be very small in practice. The splitting technique
exploits morphological features from the static word image.

1 Introduction

This paper describes a theoretical investigation towards recovering trajectories
from static word images. The solution to this problem would be a major
step towards a unified view on handwriting recognition that combines on-
line as well as off-line aspects [3, 9, 12]. There is no doubt that recovering
trajectories is a difficult problem that touches aspects of many fields such as
perception, cognition, and many more. This paper introduces an approach
trying to measure this difficulty in terms of complexity theory.

Figure 1 shows a scanned binary image of the letter “B” and its skeleton.
The skeleton, which is shown on the right-hand side of Figure 1, is the graph-
theoretical abstraction of the scanned word image. A skeleton is a graph
comprising nodes and edges, where nodes occur at crossing points or ends of
strokes. It coincides in most areas with the centerline of the writing trace
and provides us with the necessary formalism for theoretical investigations. In
Figure 1, the original trajectory corresponds to the following sequence of edges:
A B,C,B,D,E,F,G, H, where the edges C,B, and E must be retraced.

Sections 2 and 3 present two graph-theoretical methods for recovering the
original trajectories from skeletons. While the first approach presumes that
the original trajectory is a path with the minimum length, the second approach
tries to minimize the deviation from the straight writing line. Both methods
are global optimization techniques based on the assumption that the perception



Figure 1: A binary image of the letter “B” and its skeleton.

(or cognition) of handwritten symbols is guided by some (unknown) economical
principle.

Sections 2 and 3 address computational complexity issues. Section 4
presents an efficient divide-and-conquer technique that split words into smaller
subparts. This method considerably reduces the size of handwritten units in
practice.

This paper mainly deals with theoretical issues. However, Reference [9]
presents practical evaluations of both methods. Readers not interested in the
theoretical issues may skip the theoretical parts of this paper and turn to
Section 4, which describes the practical splitting technique.

2 Minimizing Length

This section formulates the recovery of trajectories as a global, graph-theoretical
optimization problem. It presumes that the original trajectory is equivalent
to the path that has the minimum length and visits every edge at least once.
The search for this path is reduced to well-known graph-theoretical methods.
In [1], this approach has already been applied to the Arabic language.

Complezity of Length Minimization:

In graph-theoretical terms, the shortest path in a graph that visits every edge
at least once is called the Chinese postman path. Accordingly, the search for a
Chinese postman path is called the Chinese postman problem [7]. Solving the
Chinese postman problem requires the following two main processing steps:

1. Searching for a minimum perfect matching:

Given a graph G = [X, U] with a set of nodes X and a set of edges U, a
matching is a subset M of U such that no two edges of M are adjacent [7].



In a perfect matching, every node of G is an end node of at least one
edge in M. The word “minimum” requires that the sum of weights in M
is minimal. Reference [4] describes an algorithm that finds minimum
perfect matchings in polynomial time.

2. Searching for an Eulerian path:

An Eulerian path is a path that contains every edge of a given graph G =
[X, U] exactly once: Searching for Eulerian paths needs only polynomial
time [7].

Since both processing steps need polynomial time, solving the Chinese postman
problem, i.e. minimizing lengths in skeletons of written symbols, also needs
polynomial time. As we will show in the next section, this does not hold for
minimizing deviations.

A Chinese postman path has an interesting property: It traverses every
edge at most twice. Hence, a Chinese postman path can not describe trajecto-
ries that traverse edges more than twice. Reference [9] contains some typical
examples of trajectories traversing edges more than twice. For instance, the
original writing trace of the “k” shown in Figure 2 corresponds to the following
sequence of edges in its skeleton: A, B,C,B,D,B,E,F,G. We can see that

Figure 2: Recovering the trajectory of a “k”.

Edge B is traversed three times.

The approach presented in the next section, i.e. minimizing deviations, can
describe trajectories that traverse edges n-times. However, we will see that the
theoretical complexity of this approach is higher.

3 Minimizing Deviations

This section formulates the recovery of trajectories as a global search for the
path with the minimum cost, where costs are deviations from the straight
writing line at nodes of the skeleton. It constructs an appropriate problem



representation that allows adequate assignments of costs and a graph theoret-
ical solution to the minimization problem. The new representation is called
line graph and is defined as follows:

The line graph L(G) of a graph G is a simple graph whose nodes are the
edges of G, with two nodes of L(G) adjacent whenever the corresponding edges
of G are adjacent [7, 8].

The concept of the line graph has been given different names by different
authors, e.g. interchange graph or derivative, and the reader interested in the
properties and characterizations of line graphs is referred to [8]. In Figure 3, the
Line graph By, is superimposed on the skeleton Bg of Figure 1. Consequently,

Figure 3: A skeleton of the letter “B” and its line graph.

the nodes of the line graph are given the same labels as the corresponding
edges of the skeleton. The line graph provides an appropriate structure for
assigning costs of transitions between edges of the skeleton. However, the cost
of an immediate and reversed traversal of the same edge, e.g. the traversal
of Edge C' in Bg, cannot be assigned to an edge of the line graph. In fact,
these costs are implicitly set to zero. Figure 4 shows the line graph B; with
symbolic costs assigned to every edge. For instance, ¢(A, B) is the cost of the
transition from Edge A to Edge B in the skeleton of “B”. To understand the
following processing steps it is sufficient to assume that costs are deviations
between edges in the skeleton, which are measured in the vicinity of nodes.
In real applications, however, a reliable and precise computation of angles is
crucial. Approximated skeletons can help detecting minor changes in directions
at nodes. Additionally, local stroke width is useful to determine the vicinity
for a node [9].

In order to formalize the recovery of trajectories, we first need to mention
the following graph-theoretical definitions:



Figure 4: A line graph of the letter “B” with costs assigned to every edge.

A path (or cycle) passing through every node of a graph G exactly once is
called a Hamiltonian path or (cycle). A graph G containing a Hamiltonian
cycle is called a Hamiltonian graph. The search for the shortest Hamiltonian
cycle in a graph G is referred to as the Hamiltonian problem here.

A path (or cycle) passing through every node of a graph G at least once is
called a pre-Hamiltonian path (or cycle) [7].

Using these definitions, the recovery of writing traces is formulated as follows:

Find the pre-Hamiltonian path that has the minimum cost in the
line graph.
This problem will be referred to as the pre-Hamiltonian problem.

The pre-Hamiltonian problem resembles the Hamiltonian problem. In fact,
the pre-Hamiltonian problem in a graph G is identical to the Hamiltonian
problem in a complete graph G', where G’ is called the completion of G [7].
The completion G'is a complete graph that has the same set of nodes as G.
The weight of an edge (4, 7) in G’ is the length of the shortest path from 4 to j
in G. To illustrate the relationship between the pre-Hamiltonian problem and
the Hamiltonian problem, let us consider the following pre-Hamiltonian cycle
in a graph with eight distinct nodes.

(K1,Ko,Ks3,..; K, evooy Ko,y ooy K5, ooy Ky .. Ku, .., K1)

While the first occurrence of each node is explicitly shown, the other occur-
rences are represented by dots. Only the first and last nodes, which are iden-
tical, are shown twice. The cost of this specific cycle can be minimized by



traversing the shortest path between any pair of successive nodes explicitly
shown. Hence, it is sufficient to find the optimal order of the eight nodes
shown and use the costs of shortest paths as distances between these nodes.
This is equivalent to the Hamiltonian problem.

The completion Beo of “B” is shown in Figure 5. According to the defini-

SU—

Figure 5: A completed line graph of the letter “B”.

tion of completions, every edge (i,5) of B¢ is assigned the cost of the shortest
path joining ¢ and j in the weighted line graph Bj,. For instance, Edge (C, D)
represents the shortest path (C, B, D) that joins Node C and Node D in By,.
Consequently, Edge (C, D) is assigned the cost ¢(B,C) + ¢(B, D). (The costs
are not shown in Figure 5 to keep the figure clear.) Suppose the shortest Hamil-
tonian path in B¢ is (A4,B,C,D,E,F,G,H). We can then transform this
path into the shortest pre-Hamiltonian path in By, by expanding Edge (C, D)
in (C,B, D). The result is the following path (4,B,C,B,D,E,F,G, H) rep-
resenting the original trajectory in the skeleton, which contains the retrograde
edges B,C, and E [9].

Dijkstra’s algorithm [7] computes the shortest paths between all pairs of
nodes in By, with Complexity O(N?), where N is the number of nodes.

The search for the shortest Hamiltonian cycle in a weighted complete graph
is called the traveling salesman problem or simply TSP-problem. Thus, the
approach described here maps the recovery of trajectories to the traveling
salesman problem, which is an NP-hard problem.

Reference [9] extends this technique in order to recover paths with the
minimum cost that have prescribed beginnings and endings. This is impor-
tant since the splitting technique proposed in Section 4 requires a prescribed



beginning and ending in order to split words into subparts. Nevertheless, the
mapping to the traveling salesman problem is not affected by this extension.

Complezity of Minimizing Deviations

This section shows that minimizing the overall deviation using line graphs is
an NP-hard problem. It assumes that the reader is familiar with the terms
NP-hard and NP-complete, both central concepts in complexity theory. Read-
ers not familiar with complexity theory can find a comprehensive description
of these terms in [5]. According to the state of the art in complexity theory,
minimizing deviations is probably computationally intractable, i.e. the exis-
tence of a polynomial time algorithm is unlikely. Section 4, however, shows
that this problem can be solved in moderate time by dividing the skeleton into
subparts. The two main processing steps of minimizing deviations are:

1. generating line graphs from skeletons,
2. searching for the shortest pre-Hamiltonian paths in line graphs.

While the first processing step can be accomplished in polynomial time [7],
the second step is NP-hard. Due to the resemblance of the shortest pre-
Hamiltonian paths to Hamiltonian paths with minimum costs and the fact
that the latter cannot be found in polynomial time, one is tempted to take the
NP-hardness for granted. However, the problem is more complicated since we
only need to find pre-Hamiltonian paths in line graphs. Moreover, only line
graphs that can be derived from planar graphs are under consideration.

A graph is planar if it can be embedded in the plane, i.e. it can be drawn
on a plane surface so that no two edges intersect [8].

If two strokes cross each other, the skeleton necessarily contains a node
representing the intersection point. Consequently, every skeleton is planar.
The selection of a specific cost function, which assigns costs to every edge
of a given line graph, restricts the set of line graphs even further. For this
restricted set of graphs the existence of a polynomial time algorithm cannot
be excluded in advance. Indeed, in the literature mention is made of solutions
in polynomial time for some problems with line graphs. For example, in line
graphs the independent set problem, as well as the search for cliques can be
solved in polynomial time. The test whether a given graph is a line graph can
also be done in polynomial time. More details and references can be found
in [11].

The NP-hardness proof proceeds in two steps and shows the following:



e First, that the search for Hamiltonian paths (not pre-Hamiltonian paths)
in line graphs derived from planar graphs is NP-hard (hereafter referred
to as Problem 1).

e Second, that when costs are introduced, the search for the shortest pre-
Hamiltonian paths is NP-hard (hereafter referred to as Problem 2).

Actually, it is the latter problem we are mainly interested in. Note that we
will only show the NP-hardness for a small subset of all possible skeletons. In
fact, the search for the shortest pre-Hamiltonian paths in planar, cubic, and
triply-connected skeletons is be shown to be NP-hard.

Problem 1 can be solved with the help of known research results. In [2],
the search for Hamiltonian paths in line graphs is referred to as the edge Hamil-
tonian path problem. The edge Hamiltonian path problem is shown to be NP-
hard by reducing the cubic Hamiltonian Path problem to it. The cubic Hamil-
tonian path problem, i.e. the search for Hamiltonian paths in cubic graphs, is
a known NP-complete problem. A graph is said to be a cubic graph if every
node is shared by exactly three edges, i.e. every node has Degree 3. How-
ever, cubic graphs need not always be planar. A well-known example of this
is shown in Figure 6. To ensure planarity, we confine the set of cubic graphs

Figure 6: A cubic, nonplanar graph.

used in [2] to planar, cubic graphs. This restriction to planar, cubic graphs
has no severe impact on the NP-hardness proof in [2]. This follows from the
analysis of [6] which demonstrates that the search for Hamiltonian cycles or
paths in planar, cubic, triply-connected graphs is NP-hard. A graph is said to
be triply-connected if a deletion of any two vertices leaves the graph connected.
The evidence for NP-hardness in [6] is provided by reducing the satisfiabil-
ity problem of propositional calculus, a well known NP-hard problem, to the
Hamiltonian problem in planar, cubic, triply-connected graphs. Hence, the
proof of [2] remains valid and can be applied to planar, cubic graphs. Conse-
quently, the search for Hamiltonian paths in line graphs derived from planar,
cubic graphs remains NP-hard (Problem 1).

The result of Problem 1 helps solving the second problem, which will
provide direct proof that the recovery of writing traces, as it is understood here,



is NP-hard. Of course, the NP-hardness proof strongly depends on the costs we
assign to every edge of the line graph. This paper shows NP-hardness for the
definition of costs as it is shown in Figure 7. Suppose a writer has started at

0

N A
N A

o9)

Figure 7: The definition of deviations.

Point A in Figure 7 and has reached the center of the circle M. If he is heading
toward Point F, the cost is defined by Angle . If he is heading toward Point B,
the cost is defined by Angle 8. Thus, all deviations are measured in the range
from 0°(0) to 90°(%). Naturally, the cost of a 90°-angle is higher than the
cost of a 0°-angle, which is in accordance with the fact that straight lines are
easier to write than right angles. The deviation between a straight line and its
retraced stroke is zero. Note that the cost of a trajectory is independent of the
direction in which it is traversed. This symmetry is an intrinsic characteristic
of the definition of costs shown in Figure 7. Reference [9] shows that using an
alternative cost function that assigns high costs to retrograde strokes does not
avoid NP-hardness.

The proof of Problem 2 exploits the solution to Problem 1, i.e. the fact
that searching for Hamiltonian paths in line graphs derived from planar, cubic
graphs is NP-hard. It shows that a polynomial solution to Problem 2 would
entail a polynomial solution to Problem 1, which is a contradiction. Since the
proof of Problem 2 is technical (see [9] for more details), we only present the
following theorem as the final result:

Theorem: The search for the shortest pre-Hamiltonian paths in line graphs
derived from skeletons of written symbols is NP-hard.



4 Splitting Technique

While searching for a minimum perfect matching is the most time-consuming
part of the Chinese postman problem, solving the traveling salesman problem
requires an expensive search for a traveling salesman tour. Since the prac-
tical requirements are very stringent, e.g. throughput requirements in postal
automation, it is essential for the searches to be efficient. This is accomplished
by splitting words into subparts. Skeletons of words often comprise several
distinct, connected components which are independent from each other. A
first splitting step is to recover trajectories independently for each connected
component. However, if there is only one connected component or the exisiting
components still contain too many edges, it may be necessary to reduce the
number of nodes further. This section shows an efficient divide-and-conquer
technique detecting splitting edges in the skeleton that are traversed only once
and from left to right. Splitting edges divide the skeleton into distinct parts
in which trajectories can be recovered independently. They meet two require-
ments:

1. A splitting edge is not part of the outline of an enclosure.
(Reference [13] describes an efficient algorithm that detects enclosures
and verifies this feature for off-line images.)

2. A splitting edge has two distinct nodes. One node is nearer to the be-
ginning of the trajectory and the other one is nearer to the end, where a
node p is nearer to the beginning (end) than a node p' if the shortest path
joining p to the beginning (end) is shorter than any other path joining
p' to the beginning (end).

Figure 8 shows the decomposition of a skeleton. The skeleton consists of two
1 5

Start Stop

g 3

Figure 8: The decomposition of a skeleton.

connected components and contains five enclosures, each having been assigned
a number in Figure 8. Since algorithm [13] regards the writing pad, i.e. back-
ground, as a special type of enclosure, the numbering ranges from 1 to 6. The



right-hand connected component is decomposed into nine components using
eight splitting edges. Note that splitting edges can divide a single character
into two or more components. Experimental tests with handwritten Ameri-
can city names show an average of approximately four edges per component.
Components containing more than sixty edges may occur. Nevertheless, these
components are very rare.

A disadvantage of the proposed method is that it needs a prescribed be-
ginning and ending of the trajectory. For this reason, a simple heuristic, which
is based on pairs of potential candidates for beginnings and endings, is given
in [9].

5 Result and Conclusion

This paper describes the hardness of a specific cognitive problem in terms of
complexity theory. Two different graph-theoretical approaches to recovering
trajectories from static word images have been presented, both global optimiza-
tions. The first approach, which minimizes the length of the recovered trajec-
tory, has polynomial complexity but cannot recover trajectories that traverse
parts of the word more than twice. The second approach, which minimizes the
deviation from the straight writing line, is more powerful in this respect. How-
ever, it is proved to be NP-hard. An efficient divide-and-conquer technique has
been presented that applies both approaches to smaller subparts to improve
efficiency. This technique has no effect on the finally recovered trajectory.

A drawback of both approaches is that they cannot recover trajectories
containing several pen-ups and pen-downs. Nevertheless, it is possible to ex-
tend both approaches to model pen-ups and pen-downs [9]. This has not been
investigated further since the consistent traversal of letters, which is the most
important requirement for character recognition, is not necessarily affected by
this restriction.

The average edit distance between original and recovered trajectories, i.e.
the number of insertions and deletions of edges, is about 4 for the traveling
salesman approach. This distance was measured on an on-line database con-
taining 7000 words, where the average length of a trajectory is 17. The TSP
approach performs only slightly better than the Chinese postman approach on
this database. Reference [9] presents some successfully recovered trajectories.

In another experiment, the on-line recognition system NPen++ [10] was
trained and tested with recovered on-line information extracted from addresses
containing handwritten American city names (TSP approach). Though the
genuine off-line recognition rates are still higher (94% on a 400 word dictio-
nary), a recognition rate about 73% was reached with recovered on-line data
(see [9] for more details).



Acknowledgments

Substantial parts of this work were carried out at the Daimler-Benz Research Center

in Ulm, Germany. I wish to thank Jiirgen Schiirmann, Norbert Bartneck, Bernhard
Nebel, and Stefan Manke for their support. Many thanks also to Eberhard Mandler
and Ulrich Kressel for the fruitful discussions we had.

References

1.

®© N

10.

11.

12.

13.

I. S. Abuhaiba and P. Ahmed. Restoration of Temporal Information
in Off-line Arabic Handwriting. Pattern Recognition, 26(7):1009-1017,
1993.

A. A. Bertossi. The Edge Hamiltonian Path Problem is NP-Complete.
Information Processing Letters, 13(4,5):157-159, 1981.

G. Boccignone, A. Chianese, L. P. Cordella, and A. Marcelli. Recovering
Dynamic Information from Static Handwriting. Pattern Recognition,
26(3):409-418, 1993.

. J. Edmonds and E. L. Johnson. Matching, Euler Tours and the Chinese

Postman. Mathematical Programming, (5):88-124, 1973.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. H. Freeman & Co., New York, 1979.
M. R. Garey, D. S. Johnson, and R. E. Tarjan. The Planar Hamiltonian
Circuit Problem is NP-Complete. SIAM J. Comput., 5(4):704-714, 1976.
M. Gondran and M. Minoux. Graphs and Algorithms. Wiley, 1984.

F. Harary. Graph Theory. Addison-Wesley, Reading Mass., 1969.

S. Jaeger. Recovering Dynamic Information from Static, Handwritten
Word Images. PhD thesis, University of Freiburg, 1998. Foelbach
Verlag.

S. Jaeger, S. Manke, and A. Waibel. Npen++: An On-Line Handwriting
Recognition System. In 7th International Workshop on Frontiers in
Handwriting Recognition (IWFHR), Amsterdam, 2000.

D. S. Johnson. The NP-Completeness Column: an Ongoing Guide.
Journal of Algorithms, pages 434-451, 1985.

P. M. Lallican and C. Viard-Gaudin. A Kalman Approach for Stroke
Order Recovering from Off-line Handwriting. In Fourth International
Conference on Document Analysis and Recognition (ICDAR), pages 519—
522, 1997.

E. Mandler and M. F. Oberldnder. A Single Pass Algorithm for Fast
Contour Coding of Binary Images (in german). In Proc. of the 12th
DAGM-Symposium, pages 248-255, 1990.



