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ABSTRACT

As non-native speakers become more frequent users of
speech recognition applications, increasing the tolerance of
the system with respect to non-native pronunciation and
language use is important and is currently the focus of re-
search in a variety of contexts. Dictionary modification,
acoustic model adaptation, and acoustic model manipula-
tion are a few of the techniques that have been reported
successful in improving recognition of non-native speech.
In this paper, we address the specific case of Japanese-
accented English, describing the lexical and acoustic mod-
eling techniques that give the best recognizer performance.
We find that automatically generated pronunciation vari-
ants perform as well as hand-coded “golden” variants in
reducing recognizer error, and that a significant improve-
ment in system performance can be achieved with acoustic
models retrained on a small amount of accented data.

1. INTRODUCTION

Non-native LVCSR is a very difficult task; recently re-
ported results range from of 14% WER' for the high-
proficiency speakers in Broadcast News to over 60% [2]
for spontaneous speech. A number of methods for han-
dling non-native speech in speech recognition have been
proposed. These fall into three general categories: lexical
modeling, topological modeling and acoustic modeling.

In lexical modeling approaches, the pronunciation dic-
tionary is altered to reflect likely mispronunciations. Lex-
ical modeling has resulted in improved recognition of na-
tive speech when actual pronunciations are different from
the pronunciations that were trained, as is the case with
regional accents [6] or spontaneous speech [14]. Because
many common pronunciation errors made by non-native
speakers are consistent and well-known, simple lexical
modeling for non-native speakers can be very easily im-
plemented. Both rule-based [1] and data-driven [8] gener-
ation of pronunciation variants for lexical modeling have
been successful in reducing word error in recognition of
non-native speakers.

Topological modeling, or allowing transitions between
different sets of acoustic models, can also increase the rec-
ognizer’s tolerance of non-native pronunciation without re-
quiring any additional training. This technique is par-
ticularly effective in pronunciation tutoring applications,
where the expected phoneme sequence is known or can be

I This was the ROVER result from the 1999 Broadcast News
evaluation.

restricted, and feedback about the path through the native-
non-native model space is helpful for the user [7, 11].

The class of acoustic modeling techniques is the largest.
If training data and/or trained acoustic models are avail-
able, significant improvements in recognizer performance
can be achieved with adaptation [13], model interpolation
[18], training on accented speech, training on L1 speech,
and recognition directly from L1 models [16].

For this study, we implemented a number of lexical
and acoustic modeling techniques to compare their per-
formance on one LVCSR task, for a group of speakers with
similar English proficiencies from the same 1.1 background.
We restricted our study to native speakers of Japanese in
order to control for as many variables as possible; we ex-
pect, however, that the trends that we have observed will
be similar for other L1 groups.

2. DATA

2.1. Speakers

For this research we recorded 40 native speakers of
Japanese reading English news. Speakers were evaluated
for English proficiency using the SPEAK system [15] and ten
speakers of similar proficiencies were chosen for a test set.
The test speaker proficiency scores ranged from 1.83 to 2.17
on a scale of 0 to 3 (a score of 3 does not represent native
speech, but rather completely intelligible yet detectably
non-native speech). The speakers had all had extensive
schooling in English, but had been in an English-speaking
environment for one year or less and reported some diffi-
culty understanding and making themselves understood.

In addition to the non-native speakers, ten native speak-
ers were also recorded under the same conditions. All com-
parisons to performance on native speech refer to this test
set.

2.2. Task

Fach speaker read three articles, totaling approximately
150 sentences, from a database of children’s news. Of the
three articles, two were unique to each speaker (to maxi-
mize phonological breadth), and one was read by all speak-
ers (to provide a control article on which reading skill and
recognizer performance can be evaluated independent of
text content). Of the recorded data, data from 10 speak-
ers was held out for language modeling experiments and
the remainder was data was partitioned into several sets
for training and testing as shown in Table 1. Speakers
were told that they should make their best attempt to



pronounce any unfamiliar words, and that if they made
an error they could either continue or return to the be-
ginning of the sentence. Recordings were done in a quiet
room with a close-talking microphone; speakers were alone
during recording.

| Partition | speakers | utterances | hours |
Testing 10 | 419 [ 1.1
Adaptation 50 utterances per speaker
Training 15 1343 2.8
Cross-validation | 5 301 0.9

Table 1: Data set composition

2.3. Transcription

Detailed transcriptions were made of the recorded speech.
Reading errors were transcribed and classified. Heavily ac-
cented words were transcribed phonetically and classified
as consistent or unique for that speaker. Mispronounced
words were flagged; most mispronunciations were due to
unfamiliarity with the lexical item and were easily distin-
guishable from accented words. Transcription and distri-
bution of speech errors are described more fully in [10].
Although phonetic transcriptions were done by linguistics
students who had had training in field methods, inter-coder
consistency was not high, the primary areas of disagree-
ment being vowel identity and presence of r-coloring. For
this reason, in experiments using the phonetic transcrip-
tions for pronunciation variant generation, a subset of the
training database that had been transcribed by a single
transcriber was used.

3. EXPERIMENTS

We have implemented a number of lexical and acoustic
modeling methods to compare their effectiveness in im-
proving recognition accuracy on non-native speech. In this
section, we describe the approaches that we tried and com-
pare their performance on our test set.

3.1. Baseline system

The baseline system uses the JANUS speech recognition
system [3] with quintphone contextual models. It has
been our experience that even for strongly accented speak-
ers, in LVCSR tasks, context-dependent models outper-
form context-independent models unless optimization tech-
niques such as BBI are also used. There are approximately
150k Gaussians in the system, with 6000 distributions shar-
ing 2000 codebooks. VTLN and speaker-based cepstral
mean subtraction are applied. Performance of this sys-
tem is 9.4% WER under baseline conditions on the Broad-
cast News domain. The language model for the children’s
news task combines two language models, one trained on
text and transcribed broadcast news corpus data and a
second trained on text written for children, with context-
dependent interpolation weights. Performance on the na-
tive speakers in our test set was 18.9%; the degradation
was found to be attributable to slight differences in speaker
characteristics and domain.

3.2. Lexical Modeling

Although the exact implementation of lexical modeling ap-
proaches depends on the way word pronunciations are rep-
resented in the recognizer, all involve generation of pro-
nunciation variants that reflect likely deviations from the
expected native pronunciation of phones and words.

38.2.1. Automatic generation of pronunciation variants

One resource that has been used with success [8, 6] in pro-
nunciation variant generation is phoneme recognition. Be-
cause unconstrained phoneme recognition is vulnerable to
recognizer error, and many of the confusible non-native
phones are also confusible for native speakers, we gener-
ated pronunciation variants in two passes. First, we ran
an unrestricted phoneme recognition pass. We rejected all
mappings below a certain confusibility threshold, all which
were linguistically improbable (e.g. [] — [t] / [k]--), and
all which also had high confusibility for native speakers
(e.g. [s] = [z])- We then did an alignment pass, allow-
ing the recognizer to choose from the network of potential
mappings the phoneme sequence with the highest acoustic
score. Fach variant generated this way was then associ-
ated with a probability based on the frequency with which
it was found in the training data.

8.2.2. Rule-based generation of pronunciation variants

Information about the phonological structure of Japanese
and common mistakes made by Japanese learners of En-
glish was used to create a set of context-sensitive variant
generation rules. As was noted in [4], rules based on lin-
guistic knowledge are well-studied, stable, and not sen-
sitive to recognizer bias or data sparsity. Linguistically-
motivated variant generation rules can be applied selec-
tively to reflect specific phonological effects; for some ap-
plications, knowledge about the probable linguistic basis
of recognition errors is valuable. We applied variant gen-
eration rules in several stages to represent transformations
such as direct phoneme mapping, allophonic variation, and
consonant cluster simplification.

3.2.3. Text resources

Many English words are used in modern Japanese, and be-
cause these words are often converted to the Japanese syl-
labary when written, a rough dictionary of likely accented
pronunciations can be compiled by extracting English-
origin words from text. This is not as ad-hoc a method
as it may seem; the widespread use of such Japanized
words encourages fossilization of incorrect pronunciation
in some common words while words with identical phono-
logical contexts are pronounced correctly.

We used an online dictionary to select word-level pro-
nunciation variants to add to our system. This approach
has the benefit of adding a much smaller set of words (163,
compared to up to 10,000 for automatic generation of vari-
ants), leading to faster recognition.

8.2.4. Results

In all lexical modeling experiments, a first recognition pass
was run to create a word lattice. Pronunciation variants



were then added to the lattice and an acoustic rescoring
pass was done to produce the final hypotheses. It has been
our experience that this technique results in better recog-
nition accuracy than adding the words to the dictionary;
supporting experiments are described in [9]. A hand-coded
dictionary with transcribed pronunciations for frequent re-
alizations of the 100 most common words is also tested as
a gold standard.

Results are shown in Table 2. All improvements were
found to be highly significant using both matched-pairs and
Wilcoxon signed-rank tests. The improvements from incor-
porating variants based on phonological rules are smaller
than those from incorporating automatically-generated
and hand-coded pronunciations, and performance of the
automatically-generated variants reaches that of the gold
standard.

| Pronunciation variant type | WER |

Baseline 55.7
Phone mappings 52.8
Japanese dictionary 52.7
Cluster simplification 52.5
Automatically generated 50.8
Hand-coded 50.6

Table 2: Results of lexical modeling experiments

As the success of lattice adaptation naturally depends
on having the correct word in the lattice, and we had envi-
sioned that lexical modeling would occur on top of acous-
tic modeling, we did these initial experiments on “golden”
lattices which were written after adaptation on perfect hy-
potheses. For this reason, the baseline performance is much
better than that reported in the following sections. The
lattice error rate in these lattices was 34.4%, which is high
compared to the native speech (7%). However, when lattice
error was measured on the retrained system to be described
in Section 3.3.2, it was much lower (26%) than that of the
gold-standard lattices, leading us to expect that the same
or stronger performance gains will be seen when applying
acoustic and lexical modeling in combination.

3.3. Acoustic Modeling
3.8.1. Speaker Adaptation

It has been reported that various forms of adaptation
help tremendously for high-proficiency non-native speech
[13, 17], and we have observed the same for speech of the
lower proficiency levels that we are targeting. Without
adaptation, the word error rate for our speakers on our
task was over 90%. Supervised MLLR adaptation brought
word error rate down to 67.3% for an unseen test set and
52% for the adaptation utterances. All experiments de-
scribed henceforth assume speaker-level MLLR adaptation
on 50 utterances, which was found to be the saturation
level.

8.3.2. Retraining with accented data

With only two hours of training data, the options for acous-
tic modeling are limited. Although we found that we did
not have enough data to grow a robust decision tree based

on the non-native pronunciation, we were able to mod-
ify the baseline acoustic models by running two additional
training iterations using the non-native data for dramatic
improvements in word accuracy. Table 3 shows the de-
crease in word error rate for each speaker.

baseline | retrained
Speaker | WER WER
208 64.8 42.9
209 65.0 74.2
212 74.0 54.2
216 59.6 40.8
218 64.6 36.4
220 64.7 59.1
221 92.2 38.6
222 57.4 36.5
225 77.3 53.9
227 53.6 34.8
AVG 67.3 47.2

Table 3: Improvements in WER for the retrained system

In an effort to decrease word error further, we experi-
mented with model interpolation. As the retrained acous-
tic models (from here on called non-native models) were
trained on a small amount of data, there is a danger of over-
fitting, a problem which has been addressed by smoothing
the models via interpolation with a more robust model
([5], e.g). In the native and non-native model sets, there
is a one-to-one mapping between senones representing the
same phonetic context. In the native model, the mixtures
of Gaussians are based on many training samples, while in
the non-native model, the mixtures of Gaussians are prob-
ably overfitted to the non-native training data. Our goal is
to move the non-native distribution towards the native dis-
tribution to the point of maximum robustness. To achieve
this, we interpolated each element of the corresponding na-
tive and non-native mean and covariance vectors as well as
the distribution weights. Specifically, for each non-native
senone S4 in a system with R mean vectors in each code-
book and an underlying feature space dimensionality of N,
the mean vector u, the covariance matrix C, and the dis-
tribution weight vector d are interpolated with those of the
native senone SP to create senone model S¢:

Vie RVj € N—HS‘ = uf}w +u5(1 —w)
Vi e RVj e N.CS = Ciw+CJ(1—w)

Vie RdS =dlw+dl (1 —w)

Where w is the experimentally determined weighting
factor.

The new covariances were calculated in this way in or-
der to find a medium between the smaller variances in the
native models and the larger variances in the non-native
models. It was not our intent to re-calculate them to rep-
resent the variance across all native and non-native sam-
ples. The counts that are stored to record the number of
times each senone was seen in the training data were also
updated.



Table 4 shows the effect on word error rate of interpolat-
ing with different weights w. The optimal weighting factor
was found to be .72; this contrasts with the result in [18]
which found the optimal weighting factor to usually be less
than .5 with an interpolation scheme that operates on only
the mean vectors.

| model weight | 0 | 3 | .5 | .72 | 1 |
| WER [ 67.3 ] 58.3 [ 48.1 [ 45.1 | 47.2 |

Table 4: Results for interpolation with different interpola-
tion weights. A weight of 0 represents performance with
the original acoustic models. A weight of 1 represents per-
formance with the new models.

4. CONCLUSIONS AND FUTURE WORK

We have described the methods that we found successful
for adapting to non-native speech for a single test group
of lower-proficiency native speakers of Japanese. We have
found that lexical modeling adaptation is effective when
applied directly to the lattice, and that while there is
no significant difference between different phonologically-
motivated pronunciation variant generation methods, an
automatic technique performs better, with no significant
difference from recognition on hand-coded pronunciations.
We also found that additional training with a small amount
of accented data can reduce error rate from 67.3% to 45.1%.
While other methods of non-native acoustic modeling did
not yield improvements in word accuracy, there was im-
provement in other areas; re-training with the L1 speech
data, for example, led to a 25% reduction in lattice error.
We have only touched on some of the techniques that
could be used for adapting to non-native speech. Many
of these methods could be applied in combination, first
retraining to get good lattices, for example, and then re-
recognizing with an adapted lexicon. As techniques involv-
ing introduction of new polyphones have suffered from data
sparsity problems, adapting the polyphone tree directly as
suggested in [12] may be possible with small amounts of
data. We have also not explored word-level modeling; al-
though this is a read task and one would not expect to
see significant differences in native and non-native word
use, the large number of reading errors does result in an
increase in perplexity for the non-native speakers.
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