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ABSTRACT
In this paper, we present work done over the past few years
in our lab on speech, language and dialogue processing for
the German collaborative research centre SFB-588 about
“Humanoid Robots – Learning and Cooperating Multimodal
Robots” to improve human-robot communication. Dialogues
between humans and robots should be as natural as possible,
wherefore we’ve analysed in which situations we have prob-
lems to understand the user in human-robot dialogues and
built a reinforcement learning approach with a simulated user
model, whereby we could improve naturalness and robust-
ness significantly compared to a hand-crafted dialogue strat-
egy. We also conducted experiments on proactive initiation of
dialogues by the robot, the recognition of previously unknown
names, and faces of persons. Another important issue is the
interface between dialogue management and speech recogni-
tion. Here we could improve both, recognition and under-
standing performance by a tighter coupling of both compo-
nents. While we participated in many evaluations on far dis-
tant speech recognition, we also did first experiments in sound
event classification, to distinguish speech from other acous-
tic events, which become extremely important when moving
from close to far distant speech recognition.

1. INTRODUCTION

Systems like telephony based information and booking sys-
tems with simple human-machine interfaces consisting of
automatic speech recognition (ASR), dialogue management
(DM) and speech synthesis are well known in the public and
widely used. Nevertheless, those systems are restricted to
limited domains and mostly support only a system initiated
dialogue strategy in which the user is allowed to answer only
to questions in a very limited way. Experiences with such
systems show that while the performance is often acceptable,
user acceptance is still a big problem. In the upcoming field of
humanoid and human-friendly robots user acceptance is even
more an issue. Therefore, the ability of the robot to interact
in a simple, unconstrained and natural way with its users is
of great importance. A user should neither be restricted by
a command based speech interface nor should he be forced

to wear head-mounted microphones in order to communicate
with the robot. Instead, spontaneous, mixed initiative speech
dialogues recorded by distant microphones should be possi-
ble.

In the German collaborative research centre SFB-588
about “Humanoid Robots – Learning and Cooperating Mul-
timodal Robots” [1] our lab is working on improving the
naturalness of human-robot communication. Therefore we
present in this paper work done over the past few years in
our lab on speech, language and dialogue processing in the
field of human-robot communication. We analysed in which
situations conventional dialogue systems have problems to
understand the user in human-robot dialogues and built a re-
inforcement learning approach with a simulated user model,
whereby we could improve naturalness and robustness signif-
icantly compared to a hand-crafted dialogue strategy. We also
conducted experiments on proactive initiation of dialogues by
the robot. Another important research area is the recognition
of previously unknown words. Both, the speech recognition
and the dialogue system should be able to detect and to re-
act properly in such situations. First experiments were done
in this direction, by recognising previously unknown names
and faces of persons. To improve both, the recognition and
understanding performance, we implemented a tighter cou-
pling between the speech recognition and the dialogue man-
agement. This allows us to direct the decoding process de-
pending on the dialogue state, so that areas of the speech
recogniser’s search space are favoured while others are pe-
nalised. While we participated in many evaluations on far dis-
tant speech recognition, we also did first experiments in sound
event classification, to distinguish speech from other acous-
tic events, which become extremely important when moving
from close to far distant speech recognition.

2. DIALOGUE MANAGEMENT

The dialogue manager interprets multimodal input and gen-
erates responses and spoken output. Its strategy defines
how communication with the user is directed and interpreted.
Within the collaborative research centre SFB-588, we see the
main challenge for dialogue management in providing a natu-



ral way to communicate and interact with the robot, and pro-
vide the robot with an interface to the environment through
which it can obtain new information and learn from commu-
nication partners. Natural communication with the robot in-
cludes multimodal interaction as well as robust error-tolerant
dialogue strategies. For the latter we present two approaches
in this paper, one by addressing errors in human-robot di-
alogues, and the second approach by providing the robot
to learn and adapt its dialogue strategies. We furthermore
present work on proactive initiation of conversations, work on
acquiring information about persons, and learning new words
of objects and their meanings.

2.1. Error Analysis of Human-Robot Dialogues

One of the biggest challenges in current human-robot commu-
nication are misunderstandings and problematic situations:
Errors and misunderstandings often result in error spirals
from which the user can hardly escape which leads to user
frustration and task failure. These errors are on one hand due
to imperfect speech understanding but on the other hand also
to user uncertainty about how to interact with a robot. Within
the present study, we focus on the second point and work
towards a new generation strategy which includes detecting
problematic situations and helping the user.

We made a preliminary user study to get a deeper insight
into the dialogue problems and classified them from the user’s
point of view:

• The user is unsure what to do.
• The robot’s response is inconsistent with the user’s ex-

pectation.
• There is no response from the robot to a user utterance.
• The robot tells the same information for several times.

All these problems result in user frustration and task fail-
ure. In the first case, the user explicitly asks for help. There-
fore, we invented a general help strategy which covers all the
tasks the robot can accomplish in a hierarchical structure so
that the user first gets general and then more and more fine-
grained information about the robot’s capabilities. The robot
also explicitly hints the user to tasks it cannot do to avoid
errors caused by unknown vocabulary words. For example,
all the users in the present study asked the robot to clean,
but since it was unable, this resulted in recognition errors and
misunderstandings.

In the other cases, the user feels lost and somehow con-
fused by the dialogue. In the user study, we find different
factors indicating that the user needs help and that a problem
occurred:

• No speech act can be found in the user utterance.
• The user utterance is inconsistent with the current dis-

course.
• The user utterance can only be partly parsed.

• The user utterance is inconsistent with the robot’s ex-
pectations.

• The user asks for the same information for several
times.

In addition, certain wordings indicate that the user tries to
correct the preceding utterance, such as “no”, “I do not want”.
All these features are used for an automatic problem detec-
tion: We define an error correction necessity which increases
when one of the above features can be found in a user utter-
ance. When the error correction necessity is above a given
threshold, the robot explains its capabilities and the discourse
information is finally cleared so that the user can start from
scratch again. When the user is then able to continue his
dialogue with the robot without problems, the error correc-
tion necessity decreases from turn to turn, but stays at a cer-
tain level indicating that there were problems within this dia-
logue. In this way, we can avoid error spirals and support the
user in problematic situations. Our analysis of the user study
showed that a large number of user utterances can be classi-
fied reliably using these features. In the future, we might also
include prosodic-acoustic features because they have been
proven useful for automatic error detection as shown by [2].

We keep track of the user knowledge in a user model so
that the user does not get the same information twice, if not
explicitly asking for it. Whenever a user talks for the sec-
ond time with the robot, the robot knows what it already told
him and therefore we can classify a user utterance asking for
already known information also as problematic. In the fu-
ture, we will evaluate the problem detection module in com-
bination with the user model and define useful thresholds for
starting problem correction dialogues.

2.2. Learning in Human-Robot Dialogues

Human-Robot dialogues are by nature multimodal and the
robot’s perception includes a variety of sensor signals that
deliver important information to the dialogue manager. We
use such non-speech information to obtain information about
the environment and about the user. Using a person-tracking
module the dialogue manager gets notified about pointing
gestures from the user and can resolve this information in
the context of spoken utterances to communicate with the
user in a very natural way. Multimodal fusion as well as di-
alogue management is performed by the dialogue manager
TAPAS [3] that has explicitly been developed for this purpose.
It uses the same goal-based dialogue framework as the ARI-
ADNE [4] system. For fusion of speech and pointing gestures
we have developed a robust rule-based approach which is es-
pecially suitable to handle input with many false detections.
Fusion of speech and gesture events observes their semantic
content as well as time constraints and allows processing of
n-best lists. In experiments, the system showed a significant
improvement by being able to sort out falsely detected gesture
events [5].



In our approach for multimodal fusion, the robot needs to
know the exact position of objects that are usually not in the
visual field of the robot, to calculate possible matches with
the pointing gesture of the person. It is in this case also re-
stricted to known objects, with a given wording and their se-
mantic representation. To overcome this limitation, we have
started to explore online learning mechanisms that allow the
robot to explore and learn about its environment during an
interaction. First, the system needs to detect its limitations
that are given for example when the person references objects
that are not known to the robot. We have conducted exper-
iments to test the suitability of detecting unknown words in
speech, to clarify references to unknown objects and then to
learn their semantic meaning. Within an evaluation set of 42
dialogues, with eleven test persons, where persons requested
unknown objects, 10 dialogues were aborted after recognis-
ing the wrong speech. Of the remaining 32 dialogues the un-
known word was detected in 84% on the first utterance and in
the remaining 16% after a clarification question. 75% of these
32 dialogues lead to successfully learning the new word, by
adding it to the correct position in the ontology and to the
grammar. Being able to adapt to a changing environment and
being able to adapt to unforeseen situations will play a major
role in the acceptability and success of an autonomous hu-
manoid robot.

In more recent experiments we have used the same mech-
anism to detect unknown words with dialogue strategies to
learn names of persons and combine them with a visual ID
[6]. There, the robot is the initiator of interactions, and tries
to obtain the attention from persons by trying to engage them
into a conversation. Different actions have been tested, like
playing sounds, turning the robot-head to the person, and
inviting the person to talk to the system. The experiments
have shown that different actions can be used to obtain the
attention from a person, however, only speech was suitable
to initiate a conversation. By a combining visual contact and
speech, the robot was finally able to obtain attention and ini-
tiate a conversation with persons. Following the initiation of
a dialogue, the robot can then ask persons about their names
and store this information to recognise the person in future
encounters. Table 1 shows the evaluation of different ac-
tions with subjective measures how much they influence at-
tention, and how much they are suitable to initiate a conversa-
tion. The experiment was conducted with eleven persons that
were instructed to walk by the robot and judge its actions.
Each user had to do this five times, each iteration with dif-
ferent combination of actions. The evaluated categories are
’eye-catching’ (does the action influence my attention?) and
’suitable’ (do you feel you should start a dialogue with the
system?). The values for eye-catching are scaled to 0 (no in-
fluence), 1 (medium), 2 (annoying). The values for ’suitable’
are scaled to -1 (not suitable), 0 (a little bit), 1 (yes).

The final evaluation then aims to evaluate how well the
robot was able to initiate a dialogue. It was conducted in 100
attempts distributed over five persons. The experiment was

Table 1. Evaluation of different system actions.
action eye-catching suitable
play sound 0.9 -0.3
turn head 0.9 -0.3
say ’hello’ 0.9 0.8
play sound then say ’hello’ 0.9 0.3
turn head then say ’hello’ 1.0 0.9

Table 2. Evaluation of the success rates per user.
person no. recognition rate success rate
1 80% 35%
2 100% 85%
3 60% 30%
4 70% 15%
5 100% 50%

artificial in a way that the persons re-did the same experiment
a couple of times and decided for themselves if they would
interact with the robot. The absolute numbers are thus sub-
jective to the willingness of the persons to interact with the
robot. During some of the iterations the users could not be
tracked correctly, e.g. due to changing light conditions. When
the system failed to track the user no interaction could be ini-
tiated. Table 2 shows, for each user, the tracker-recognition
rate and the success rate to start a dialogue. The table shows a
dependency of recognition rate to success rate, but also a bias
in a different behaviour by different users.

In a related setup we have started to explore learning
methods, especially reinforcement learning, that allow the
robot to learn and adapt its dialogue strategy. So far, dif-
ferent reinforcement learning approaches have been studied
to learn a dialogue strategy either from an existing dialogue
corpus, from online experience, or within a simulation en-
vironment. Our setup describes the strategy of a bartender
robot that learns in a multimodal scenario, to request infor-
mation which object to serve [7]. The user has the option to
describe the desired object by speech or by pointing at the
object. In addition to interpreting unconstrained input by the
user, the dialogue engine can decide among the options to re-
quest information about the type, the location or the colour
of an object, confirm each single information slot, the com-
plete information collected so far, or point at a single object
to confirm the object itself. Since reinforcement learning re-
quires a large amount of data, we chose to create a user sim-
ulation, so that training the strategy could be accomplished
completely within the simulation. The simulation included a
user model with speech utterances and pointing gestures, as
well as a stochastic error model for each input modality. The
chosen approach was the first to combine multimodal input
with error models for simulation-based reinforcement learn-
ing. The results show that training the simulation from a small
pre-collected Wizard-of-OZ study, already led to a very accu-
rate dialogue model. The results of a final evaluation with the
trained dialogue strategy showed a significant improvement



Table 3. Word error rates (WER) for single and multiple dis-
tant microphones, e.g. table tops and microphone arrays on
lectures. Evaluation data for 2006 was significantly more dif-
ficult than compared to 2005

2004 2005 2006
single 75.1% 66.5% 54.7%
multiple 69.6% 55.8% 53.4%

over a non-trivial hand-crafted dialogue strategy.

3. ROBUST SPEECH RECOGNITION

Moving away from head-mounted microphones to far distant
microphones is another important issue when designing a nat-
ural human-machine interface. The robot should be able to re-
act all the time to events occurring in his environment, which
means, that his sensors – microphones as ears and cameras as
eyes – have to be turned on all the time.

In this Section, we focus on the ears of the robot and
will present techniques and first experimental results bringing
us closer towards a natural human-machine interface, namely
sound event classification [8] and a tighter coupling between
the speech recogniser and the dialogue manager [9, 10].

To reduce the performance gap between far distant and
close talking speech recognition we participated also in eval-
uations organised by the CHIL project [11] or the National
Institute of Standards and Technology (NIST). The evalua-
tions dealt with distant speech generally, wherefore meetings
and lectures, recorded with different kinds of microphones
have to be recognised. Since June 2004 we could improve the
speech recognition word error rate (WER) on Lectures on far
distant speech from 69.6% to 53.4% (see Table 3) [12]. Nev-
ertheless, results obtained by the evaluations can be used to
improve the speech recognition also in limited domains.

All speech recognition experiments were done with the
help of the Janus Recognition Toolkit (JRTk) featuring the
IBIS decoder [13], developed at our lab.

3.1. Sound Event Classification

Due to the fact, that the robot’s microphones are always open,
we need to detect and classify all environmental sounds and
have to connect them with actions by the robot. Speech sig-
nals for example should be transfered to the speech recog-
niser, while a door bell ring or a microwave beep should be
handled elsewhere. This is not an easy problem, because
speech and noises from the environment and from the robot
itself can interfere with each other.

In this Section we focus on sound event classification in a
kitchen environment, because in the main SFB-588 scenario
the humanoid robot is intended to assist elderly or disabled
humans in kitchen tasks such as cooking, cleaning and to pro-
vide safety assurance. The ability to detect important kitchen

sounds is vital to this set of functions and can improve the
recognition of far distant speech in such noisy environments;
many important state indicators in the kitchen, like alarms,
bells, buzzers, water boiling, or oil beginning to sizzle in a
pan, leave little or no visual evidence. Towards the goal of dis-
tinguishing these sound events, we developed a novel feature
extraction method [8]. Our method learns Independent Com-
ponent Analysis (ICA) basis functions [14] over multi-frame
windows of frequency domain features to capture inter-frame
temporal dependencies.

For the kitchen domain we found relevant sound classes
according to the following three categories:

• observation of dangerous situations
• observation of human activities
• observation of automated activity

Using a Sony ECM-719 microphone roughly 6000 instances
of real-world kitchen sounds had been collected which are
distributed over 21 classes. These instances were divided at
random into a training (70%) and a test set (30%) as shown in
Table 4.

3.1.1. Experimental Results

For the baseline system BASE we used MFCCs with 20ms
windows and 10ms shifts. When adding first and second
temporal derivatives the feature vectors resulted in a 39-
dimensional feature space. For the test systems we derived
20 log mel spectra from the power spectra. The dimensional-
ity was reduced to 13 dimensions for the test system’s features
using a PCA transformation which allowed us to retain at least
95% of the total eigenvalue mass. Finally a global ICA trans-
formation [15] was applied which had been trained on single
(ICA1) and multi-frame (ICA7) feature vectors (3 frames left
and 3 frames right context) for all classes.

After training GMMs and ergodic 3-state HMMs, we
evaluated the models using the maximum likelihood criterion.
For all systems the average per-class error and the average
per-class precision were computed.

For a fair comparison the number of Gaussians was kept
fixed at 15 (i.e. for the 3-state HMMs the Gaussians were
distributed evenly among the states). Note that this actually
means that there are three times as many parameters in the
baseline systems as for the ICA systems. Table 5 shows that
for both model types the ICA systems outperform the baseline
significantly. Further a gain can be observed for ICA systems
when using temporal ICA basis functions. These temporal
basis functions are able to cover both frequency information
and temporal context at a time as shown in figure 1. Note
that there is a performance difference between GMMs and
HMMs which is basically due to the constraint of having ex-
act 5 Gaussians per state for the HMMs. When relaxing this
constraint to fixing only the total number of Gaussians to 15
per model, the corresponding ergodic HMM based ICA7 sys-
tem gives an only slightly worse error of 9.4% compared to



Fig. 1. Seven-Frame ICA Basis Functions

Table 4. Sample counts and durations in seconds per class.

class training test total
(duration) (duration) (duration)

boiling 221 (662) 98 ( 319) 319 (981)
bread cutter 25 (40) 11 (27) 36 (67)
cutting vegetables 134 (89) 58 (41) 192 (130)
door 114 (101) 50 (44) 164 (144)
door bell 50 (110) 22 (55) 72 (164)
egg timer ring 11 (34) 6 (17) 17 (51)
footsteps 240 (140) 104 (66) 344 (206)
lighter 84 (42) 37 (20) 121 (61)
match 141 (131) 62 (59) 203 (189)
microwave beep 110 (30) 49 (17) 159 (47)
others 858 (1130) 369 (547) 1277 (1677)
oven switch 472 (133) 208 (60) 680 (194)
oven timer 12 (16) 6 (8) 18 (24)
over-boiling 186 (129) 81 (70) 267 (199)
pan stove 584 (308) 256 (132) 840 (439)
pan sizzling 107 (343) 46 (146) 153 (489)
telephone 134 (920) 63 (393) 197 (1313)
speech 125 (82) 55 (38) 180 (120)
stove error 18 (12) 8 (5) 26 (17)
toaster 119 (92) 53 (46) 172 (138)
water 421 (1129) 184 (464) 605 (1593)
total 4166 (5670) 1826 (2573) 5992 (8243)

9.2%. We further suspect to get better results with HMMs
when choosing class dependent topologies.

3.2. Dialogue-Context Dependent Speech Recognition

Our goals for a tight coupling between a speech recogniser
and a dialogue manager are to share as much information
between these two components as possible, to improve es-
pecially far distant speech recognition and hence system un-
derstanding performance. Therefore, the implementations of
IBIS [13] and TAPAS allow us to share the linguistic knowl-
edge sources, i.e. context-free grammars, which gives us the
ability to use the results of one component directly for im-

Table 5. Error and precision, number of Gaussians fixed at
15 per class

System GMM ERG3
Error Precision Error Precision

BASE 12.4% 80.6% 12.2% 82.8%
ICA1 10.6% 82.8% 10.9% 82.2%
ICA7 9.2% 85.0% 10.2% 83.4%

proving the performance of the other component in the next
step [9].

Due to the fact, that IBIS uses linked recursive transition
networks (RTNs) for its internal grammar representation, the
original grammar structure can be directly accessed, which
has several advantages:

• IBIS can also be used as a parser for natural language
processing. Therefore, a separate parser is superfluous.
The recognised and parsed output can be directly given
to TAPAS.

• Rules can be activated/deactivated or weighted (pe-
nalised) during run-time, which can be used, e.g., to re-
strict the decoding process to sub-grammar parts only.

We have divided all entry rules of the grammars into
two sets, a ResponseSet consisting only of rules likely to
be used in between a dialogue, i.e. elliptical expressions
and responses to information requests and a QuerySet con-
sisting of rules likely to be used at the beginning of a dia-
logue. TAPAS uses a generic approach for an expectation
model that describes which utterances are most likely used by
the user for his next query/response and gives this informa-
tion to IBIS [10]. The expectation model is created based on
the current dialogue context and expected information. At the
beginning of the dialogue, all rules of the ResponseSet are pe-
nalised, whereas during the dialogue the specified set of rules
out of the ResponseSet given by TAPAS are preferred over all
others. It should be emphasised that still other user inputs can
be recognised by IBIS which is conform to a mixed initiative
dialogue system.

3.2.1. Experimental Results

We compared the speech recognition results, i.e. the word er-
ror rates (WER) and sentence error rates (SER) in the SFB
domain of a household robot on both, close and distant talk-
ing microphones, to measure the difference in performance
gain by introducing the new methods. Therefore, we col-
lected a dialogues of 8 different speakers which consists of
346 spontaneous speech queries and 300 responses to clarifi-
cation questions from the robot. For the distant data only one
microphone at a distance of about 2-3m from the speaker was
used, which means that no array processing could be done to
improve the speech recognition results. Given the parsed tran-
scripts of the pre-recorded dialogs, the dialog manager was
used to compute the preferred rules for the next user response
depending on the dialog context. The weighting parameters
for the grammar sets were optimised on a cross validation set.

In Table 6 the baseline results are reported. It can be seen
that the recognition results for the user responses are worse
than for the user queries. Especially for the distant condition
the WERs for the user responses are about 50% worse than
for the user queries. The sentence error rates do not vary as
much as the word error rates. When using our context de-
pendent grammar weighting as described above it can be seen



Table 6. Close (C) and distance (D) talking word and sen-
tence error rates (baselines).

WER SER
User queries (C) 20.21% 34.10%
User responses (C) 30.28% 30.67%
Overall (C) 23.52% 32.51%
User queries (D) 30.53% 51.15%
User responses (D) 43.77% 43.62%
Overall (D) 34.86% 47.66%

Table 7. Close (C) and distant (D) talking word and sen-
tence error rates together with their relative improvements
compared to Table 6.

improvement
WER SER WER SER

Queries (C) 19.63% 33.53% 2.87% 1.67%
Responses (C) 29.11% 30.00% 3.86% 2.18%
Overall (C) 22.74% 31.89% 3.32% 1.91%
Queries (D) 28.81% 50.29% 5.63% 1.68%
Responses (D) 36.77% 39.60% 15.99% 9.22%
Overall (D) 31.41% 45.33% 9.90% 4.89%

in Table 7 that there is an overall reduction of the WER of
3.3% for the close and 9.9% for the distant talking condition.
Whereas there is a smaller gain for the user queries, the user
responses are recognised much better. It can also be seen, that
the relative improvement increases for the distant condition.

4. CONCLUSION

To improve the human-robot communication, we analysed
problematic communication situations and evaluated possible
reasons for errors within the dialogues. We observed the user
behaviour whenever the robot tries to initiate a dialogue and
developed methods how the robot can start a new conversa-
tion. In addition, we extended the dialogue module so that the
robot can learn and adapt its strategy to the current situation.
We developed methods to detect and recognise new words so
that the robot can also adapt to new environments. For a nat-
ural interaction with the robot it is important that the user can
talk to it without head-mounted microphones. Therefore, we
developed a sound-event classifier which can distinguish dif-
ferent kitchen sounds on one hand and speech on the other
hand. To further improve the recognition accuracy and the
understanding rate, we used context-dependent speech recog-
nition.
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