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ABSTRACT

The study of meetings, and multi-party conversation in general, is

currently the focus of much attention, calling for more robust and
more accurate speech activity detection systems. We present a novel

multichannel speech activity detection algorithm, which explicitly

models the overlap incurred by participants taking turns at speaking.

Parameters for overlapped speech states are estimated during decod-
ing by using and combining knowledge from other observed states

in the same meeting, in an unsupervised manner. We demonstrate

on the NIST Rich Transcription Spring 2004 data set that the new

system almost halves the number of frames missed by a competitive
algorithm within regions of overlapped speech. The overall speech

detection error on unseen data is reduced by 36% relative.

1. INTRODUCTION

The study of meetings, and multi-party conversation in general, is

currently the focus of much attention. As an almost canonical form

of naturally occurring speech, meetings pose many new challenges,

but also new horizons for applications. The majority of these implic-
itly assume error-free automatic speech-to-text transcription. Speech

recognition, in turn, calls for speech activity detection algorithms ca-

pable of segmenting multichannel audio into contiguous intervals of

foreground speech.

Speech activity detection in meetings was initially approached
as a monochannel detection task, where audio frames in each chan-

nel were classified as either speech or non-speech, independently

of other channels. Results were mostly unacceptable due to a high

degree of acoustic inter-channel coupling, even with close-talking

microphones. A multichannel extension to a single-channel, cep-
stral feature, hidden Markov model detection system was first in-

troduced by Pfau et al [1], in which cross-correlation was used in a

post-processing pass to discard hypothesized speech which could be

accounted for by activity on other channels; Stolcke et al recently
improved on the employed cross-correlation measure [2]. Feature

selection specific to the task of multichannel speech and crosstalk

classification was pioneered by Wrigley et al [3], and subsequently

explored in the context of an ergodic hidden Markov model (eHMM)
system [4]. In our own work on meetings, we introduced a multi-

channel speech activity detector [5] based only on cross-correlation.

Most recently, the NIST Rich Transcription (RT) 2005 Spring Eval-

uation [6] produced much new activity and interest in the field.

In this paper we propose a novel algorithm, which combines
our cross-correlation-based multispeaker speech activity detection

[5] with the idea of overlapping speech states. In constrast to [3]

in which the eHMM consisted of 4 states (foreground speech, non-

speech, background speech, and crosstalk), we present here an eHMM
with 2K states, specifying every possibly combination of speech and

non-speech for each of K participants. This eliminates the need for

rule-based channel hypothesis recombination. The system presents

much promise for tracking the turn-taking behavior and overlap pat-

terns of individuals.

2. DATA

In all experiments presented in this paper, we use the NIST Rich

Transcription 2004 development and evaluation datasets [6]. Each
consists of eight 10-minute meeting excerpts, two collected at each

of 4 sites: NIST, LDC, ICSI, and CMU. The number of participants

varies between 3 and 7 in the development set; the evaluation set

contains a meeting excerpt with 10 participants.

3. ANALYSIS OF BASELINE

As part of the NIST RT04s evaluation, we presented a parameter-free

multichannel speech activity detection algorithm [5]; speech (S) or
non-speech (N ) were hypothesized independently for each partici-

pant, but based on a cross-correlation measure derived by consider-

ing all K microphone channels simultaneously:

Ψ̂k =

(
S if

P
j �=k

log10

“
max φjk

φjj [0]

”
> 0

N otherwise
(1)

where φjk is the cross-correlation between channels j and k, and

φjj [0] is the channel energy. When exactly one source y[n] is active

in the meeting room, the response of each microphone under very
simplistic assumptions is

xk [n] =
Gk

dk,y

y [n] + nk [n] (2)

where Gk , nk and dk,y are the k-microphone-specific gain, uncor-

related noise and distance to source y, respectively. Under these
assumptions, and by further assuming that the gains of all the micro-

phones are equal, the criterion in Equation 1 reduces to

dk,y <

0
@Y

j �=k

dj,y

1
A

1

K−1

(3)

In other words, the algorithm identifies as speech all those channel

k frames for which the source is closer to microphone k than to the
geometric mean of the distances to all the remaining microphones.

While there exist other sound sources in the room, the overwhelming

majority of sources that meet this criterion are the mouths of the

microphone wearers, and the overwhelming majority of the audible
output of the latter appears to be speech.
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To reduce the effect of contact and breath noise, channel audio

was pre-emphasized using a first-order high-pass IIR filter, 1 − z−1

and framed at 300ms intervals; the detector’s output was smoothed
by closing short non-speech gaps, discarding short speech blips, and

padding contiguous speech activity intervals with a half-second col-

lar. Parameters governing the smoothing were chosen empirically to

equalize the miss and false alarm rates on the development set. We
have found in subsequent experiments, however, that system per-

formance can be significantly improved if these parameters are opti-

mized jointly with the frame step and the frame size. These very sim-

ple modifications produce an improved baseline (B1) system whose
performance we show alongside that of the original RT04s baseline

(B0) in Table 1.

Baseline pre-smoothing post-smoothing
Algorithm MS FA 1 − F MS FA 1 − F

B0 (orig) 32.90 4.18 21.07 14.41 14.17 14.29

B1 (impr) 37.63 3.77 24.32 11.70 12.18 11.94

Table 1. Error rates (%) on the RT04s devset using the baseline
detectors, both prior to and following their respective smoothing
passes (MS = miss rate, FA = false alarm rate, 1–F = complement
of F-score).

Closer analysis of the algorithm reveals that, while only 12%

of the development set is transcribed as containing 2 simultaneous

speakers, more than 35% of the total miss rate occurs in these re-

gions. In particular, only in 6% of those frames are both speakers
hypothesized as speaking; in 69% of them only one of the correct

speakers is detected, and in 24% neither speaker is detected. The

latter is due to the absence of clear maxima in cross-channel corre-

lations in the presence of multiple sources. However, the algorithm
exhibits a surprisingly low false alarm rate. The remainder of this

paper is concerned with addressing the large miss rate by training

model-based detectors on the high-precision labels provided by the

B1 baseline.

4. MODEL-BASED DETECTION FRAMEWORK

We investigate model-based detection of multispeaker speech activ-
ity in the hope that models generalize to missed sections of a meeting

which are temporally adjacent to sections classified correctly by the

baseline. As always, we aim to select the multispeaker assignment

of speech and nonspeech, whose posterior probability given the mul-
tichannel signal is the supremum for the whole meeting:

Ψ̂ ≡
n
Ψ̂1, . . . , Ψ̂K

o
= argmax

Ψ

P (Ψ |X) (4)

.
= argmax

Ψ

Y
n

P (Ψ [n] |X [n]) (5)

.
= argmax

Ψ

Y
n

Y
k

P (ψk [n] |X [n]) (6)

.
= argmax

Ψ

Y
n

Y
k

P (ψk [n] |xk [n]) (7)

where in Equation 5 we make an assumption of conditional inde-

pendence between states across frames, in Equation 6 we further

assume independence between speakers within frames, and in Equa-
tion 7 we assume, given each participant’s channel, the conditional

independence of participant state on all other channels. We explore

each of these assumptions in reverse order.

For simplicity, we use a single Gaussian to model states. The

mean and covariance are estimated directly,

µ̂m =
M1,m

M0,m

(8)

Σ̂m =
M2,m

M0,m

−

„
M1,m

M0,m

«T „
M1,m

M0,m

«
(9)

where the terms Mi,m are the ith uncentered moments computed

using frame data labeled by the improved B1 baseline algorithm as

falling into each class m,

Mi,m =
X

Ψ[n]=m

[f (X [n])]i (10)

where f is a feature vector extracted from the audio X [n].
We note that the effect of the selected frame size and frame step,

both of 110 ms in duration, is to discretize the references. The dis-

cretized references, relative to the “ground truth”, utterance-level

references, exhibit a miss rate and false alarm rate of 0.92% and

0.96%, respectively; this is small relative to the errors made by ei-
ther baseline algorithm. The discretized references make it possible

to compare the performance of detection systems trained on the out-

put of the improved baseline to that of systems trained on the ground

truth.

5. FACTORIZED STATE MODELING

In this section, we treat the state of each participant k independently,

constructing a single speech m = S model and a single non-speech
m = N model for each. The total number of states for a meeting

of K participants is 2K. We also restrict the feature space to one

feature, namely the channel energy in dB.

We construct a detector based on Equation 7, in which, given

the audio in channel k, the state of participant k is assumed inde-

pendent of the audio in other channels. If we additionally assume

an equiprobable prior for both states, ψ̂k [n] can be selected using a

maximum likelihood (ML) classifier,

ψ̂k [n] = argmax
ψk [n]∈{S,N}

P (ψk [n] |xk [n])

.
= argmax

ψk [n]∈{S,N}
P (xk [n] |ψk [n]) (11)

Alternately, lifting the assumption of conditional independence and
instead basing a detector on Equation 6, which allows each partici-

pant state to be estimated from the audio on all channels, leads to

ψ̂k [n] = argmax
ψk[n]∈{S,N}

P (ψk [n] |X [n])

.
= argmax

ψk[n]∈{S,N}

P (X [n] |ψk [n]) (12)

The results of both systems are shown in Table 2.

Comparing the first three rows to the last six in Table 2 reveals

that using all channels is advantageous, even when the participant
states are assumed independent. Furthermore, models trained using

labels produced by the B1 baseline (without smoothing) are much

better than those trained using the “ground truth” discretized refer-

ence labels, as well as the smoothed B1 baseline labels. We be-
lieve this is because the reference segmentation naturally contains
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Initial Labels MS FA 1 − F

P (xk|ψk)
discretized references 23.29 36.96 30.79

B1 baseline w/ smoothing 23.94 35.73 30.33
B1 baseline (w/o smoothing) 30.46 24.98 27.83

P (X|ψk), diag Σ
discretized references 18.82 33.10 26.65

B1 baseline w/ smoothing 17.74 33.07 26.19
B1 baseline (w/o smoothing) 31.77 11.50 22.95

P (X|ψk), full Σ
discretized references 13.42 25.65 20.00

B1 baseline w/ smoothing 13.63 31.63 23.68

B1 baseline (w/o smoothing) 28.81 7.59 19.58

Table 2. Error rates (%) on the RT04s devset using factorized state
models, with initial labels supplied by references and by the B1 algo-
rithm, both before and after smoothing; abbreviations as in Table 1.

many intra- and inter-word pauses, leading to much broader mod-

els. Finally, detection using full covariance matrices shows a vast

improvement over diagonal matrices. In the remainder of this pa-

per we therefore employ only the unsmoothed B1 baseline labels,
full covariance matrices, and all channels for the estimation of every

state.

6. JOINT STATE MODELING

We now discard the assumption of independence among participants
(made in Equation 6), and estimate the joint speech activity state

directly as in Equation 5. This requires consideration of the full

2N state space; it is useful to think of each state m as identified

by a binary codeword whose 1 bits represent speaking participants
and whose 0 bits represent silent participants. A corresponding ML

classifier has the form

ˆΨ [n] = argmax
Ψ[n]

P (Ψ [n] |X [n]) (13)

.
= argmax

Ψ[n]

P (X [n] |Ψ [n]) (14)

and allows for the explicit modeling of overlap between arbitrary
participants. However, because the baseline algorithm is poor at de-

tecting overlap, there is very little training data for the overwhelming

number of states. In this section, we propose three approaches to “in-

creasing” the amount of data for training these state models during
decoding.

The experiments presented here use a restricted feature set of

only energy (ENE) and zero crossing rate (ZCR) per channel. While

we have experimented with other features, for example with prob-
ability of voicing and kurtosis (shown to be useful in [3]), system

performance using them alone and in combination with energy has

been consistenly low. We believe this is due to the fact that such

features are often bimodally distributed in speech and are therefore

poorly modeled by our single Gaussian states. The gain from the
zero crossing rate feature is minimal, but we retain it here.

A standard approach to dealing with miserly training data condi-

tions is to share parameters. We explore one particular type of shar-

ing, namely the interpolation of class covariances with the global
covariance. We add, for the purposes of covariance estimation only,

to each moment Mi,m a quantity

∆Mi,m = λG

X
Ψ[n] �=m

[f (X [n])]i (15)

While shrinking state covariances towards the global covariance

mitigates the problem of near-singular or simply poor estimates, it

does not improve the estimates of the class means. It is reasonable to
expect some improvement in detection accuracy by considering how

speaker j sounds on their channel when predicting what speaker k

will sound like on theirs. We extend this idea to all states, by defining

a rotation operator, R (·), over channels, which exchanges channel
j with channel k; we use the same notation to define an identical

operator over the bit positions of class codewords. We implement

this multichannel rotation by adding to each moment the quantity

∆Mi,m = λR

X
R(Ψ[n])=m

[f (R (X [n]))]i (16)

This has the effect of sharing data mass among states with the same

numbers of active speakers; single speaker states for infrequently

speaking participants are just as likely to benefit as overlap states.
Finally, we propose to synthesize overlapped speech directly by

“imagining” what overlap from two speakers sounds like, assuming

it is known with high precision what both speakers sound like in

isolation. If one participant is known to be speaking during frame
p and a second participant is known to be speaking during frame

q, an overlap frame between those two speakers can be synthesized

by summing, at sample level, the audio for all channels from both

frames; features can then be computed as if the frame were undoc-

tored. This multichannel synthesis consists of adding to each mo-
ment the quantity

∆Mi,m = λS

X
Ψ[p]∪Ψ[q]=m
Ψ[p]∩Ψ[q]= 0

[f (X [p] + X [q])]i (17)

where we indicate explicitly that candidate addend frames must not

share any speakers prior to addition. The above sum over p and q is

partial; we identify for each frame p up to K candidates for addition.
Results for all three algorithms are shown in Table 3, separately

and in combination. The parameters λG, λR and λS are empirically

determined by minimizing the F-complement score on the develop-

ment set. While rotation alone gives very modest gains, in com-
bination with covariance sharing the improvement is considerable.

It is also interesting to note that when applied alone, multichannel

synthesis has the highest impact when the parameter λS is 1.0 —

in other words, when each synthesized frame is treated like a real,
undoctored frame of audio. Using all three algorithms together has

a cumulative effect; combination also modifies the location of the

minimum in λ-space.

Algorithm MS FA 1 − F rel impr

ENE+ZCR 31.51 8.10 21.51 —

+ sharing 28.67 7.69 19.52 9.3

+ rotation 28.79 7.04 19.36 10.0
+ synthesis 25.20 9.16 17.96 16.5

Table 3. Error rates (%) on the RT04s devset using maximum likeli-
hood joint state classifiers and 1 − F score improvement, relative to
unbiased joint state model estimation in the first row; abbreviations
as in Table 1.

7. STATE TRANSITION MODELING

In previous sections, we approximated P (Ψ |X) by ignoring the

prior probability of each state. Here we explore lifting the assump-
tion made in Equation 5, that of frame-wise temporal independence,
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by applying transition probabilities within a fully ergodic hidden

Markov model (eHMM) paradigm as in [4]:

Ψ̂ = argmax
Ψ

P (Ψ |X) (18)

.
= argmax

Ψ[n]

Y
n

P (X [n] |Ψ [n]) ·

P (Ψ [n] |Ψ [n − 1]) (19)

The transition probabilities were trained separately using 25 ISL

meetings, with no overlap with the RT04s data; each probability de-
pends only on the number of active speakers in the state transited

from, the number of active speakers in the state transited to, and the

number of speakers in common between the two. We use Viterbi de-

coding to find the single best path through each meeting and apply
a smoothing pass to fill in short gaps as for the baseline. The per-

formance improvements from applying Viterbi decoding and from

smoothing are relatively large; we present them in Table 4.

Algorithm MS FA 1 − F rel impr

Viterbi 22.81 4.77 14.73 31.5

+ smoothing 9.81 9.24 9.53 55.7

Table 4. Error rates (%) on the RT04s devset using Viterbi decoding
over all 2K states and 1−F score improvement, relative to unbiased
joint state model estimation in the first row of Table 3; abbreviations
as in Table 1.

8. DISCUSSION

Of interest is whether the performance seen on the development set

generalizes to unseen data. We note that in essense all data is unseen,
because the final system is a flat-start system whose acoustic mod-

els are trained only during decoding, based on labels provided by

the B1 baseline, which also requires no training. The state transition

probabilities were trained on completely different data. However,
the values of λG, λR and λS , as well as the final smoothing parame-

ters, were determined empirically by maximizing the F-score on the

development set. In Table 5 we show how each major change, de-

scribed in previous sections, affects performance on the NIST RT04s
evaluation set, which was unseen during system development.

Algorithm MS FA 1 − F rel impr

ENE+ZCR 41.61 8.09 28.58 —
+ sharing 37.93 7.19 25.61 10.4

+ rotation 38.30 5.95 25.48 10.9

+ synthesis 35.41 8.43 24.25 15.2

+ viterbi 32.46 2.78 20.29 29.0
+ smoothing 21.40 6.94 14.78 48.3

Table 5. Error rates (%) on the RT04s evalset using joint state clas-
sifiers and 1 − F score improvement, relative to unbiased joint state
model estimation in the first row; abbreviations as in Table 1.

The relative improvements on the evaluation set in Table 5 are

almost identical to those in Tables 3&4 on the development set. The
final system achieves a 1 − F of 9.53% and 14.78%, for the devel-

opment and evaluation set, respectively, as compared to 14.29% and

23.23%, respectively, achieved using our published B0 baseline with

smoothing. This represents a relative decrease in 1−F of 33.3% for
the development set and 36.4% for the evaluation set.

Finally, we examine to what extent this work, whose aim was

to reduce the miss rate and in particular to reduce the miss rate dur-

ing overlapped speech, has achieved its purpose. Table 6 shows that
the absolute contribution to the overal miss rate, for durations tran-

scribed as one participant speaking and as two participants speaking

simulataneously, has been reduced by 37% and 42% respectively, as

computed on the development set prior to smoothing. For all two-
speaker frames the new system correctly detects both speakers 59%

of the time, one of the speakers 33% of the time, and zero speakers

only 1.6% of the time.

prop B1 baseline final system
# spk

(%) MS FA MS FA

0 8.80 0.00 1.48 0.00 1.56

1 77.04 19.31 2.12 12.15 2.72

2 12.01 13.53 0.16 7.82 0.40

> 2 2.15 4.79 0.01 2.84 0.09

total 100.00 37.63 3.77 22.81 4.77

Table 6. Comparison of the miss rates (MS) and false alarm rates
(FA) for regions of zero, one, two, or more than two participants
speaking simultaneously, between the baseline B1 system and the
final system prior to smoothing, for the NIST RT04s development
set. Also shown (in the second column) are the relative proportions
of durations of regions.

9. CONCLUSION

We have presented a new speech activity detection system for meet-

ings recorded with multiple close-talking microphones, which em-

ploys Gaussian models for detection, trained at decoding time, using
labels provided by a baseline algorithm which also requires no prior

training. The performance exhibits a relative error reduction of 36%

on unseen data over a previous system [5] [5]. In future work, we an-

ticipate achieving significant improvements by employing mixtures
of Gaussians instead of single Gaussian models. This should addi-

tionally allow for the inclusion of other features.
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