THE EPHYRA QA SYSTEM AT TREC 2006

N. Schlaefer and P. Gieselmann

Interactive Systems Labs
University of Karlsruhe
Germany
{nico,petra} @ira.uka.de

ABSTRACT

The Ephyra QA system has been developed as a flexible
open-domain QA framework. This framework allows us
to combine several techniques for question analysis and
answer extraction and to incorporate multiple knowl-
edge bases to best fit the requirements of the TREC QA
track, in which we participated this year for the first
time. The techniques used include pattern learning and
matching, answer type analysis and redundancy elimina-
tion through filters. In this paper, we give an overview
of the Ephyra system as used within TREC 2006 and
analyze the system’s performance in the QA track.

1. INTRODUCTION

Instead of focusing on the optimization of a single ap-
proach, we combine several techniques for question anal-
ysis and answer extraction to best fit the requirements
of the track. Individual techniques usually have weak-
nesses regarding their precision and the types of ques-
tions they cover, thus we integrate multiple approaches
to build a strong overall system.

For the factoid and list questions, we combine a sim-
ple approach based on answer type analysis with a more
sophisticated pattern learning approach. The first ap-
proach determines the expected answer type of a ques-
tion from a hierarchy of named entity (NE) types and
chooses an appropriate NE tagger to extract entities of
that type. While this approach has a high precision, it
fails if the answer type cannot be determined or the an-
swer cannot be tagged. Thus, we complement it with an-
other approach that uses textual patterns to classify and
interpret questions and to extract answers from text snip-
pets. The interpretation of a question abstracts from the

G. Sautter

Institute for Program Structures and
Data Organization
University of Karlsruhe
Germany
sautter@ipd.uka.de

original question string while preserving its semantics
and allows forming a query that is largely formulation-
independent. The patterns for answer extraction are au-
tomatically learned using a set of question-answer pairs
as training data.

Our approach for the ’other’ questions is based on
a pipeline of answer selection components that gradu-
ally eliminate redundant information and text snippets
that do not provide sensible information on the target
object. We experimented with various features for de-
tecting redundancy and eliminating irrelevant informa-
tion and multiple arrangements of these features in the
pipeline.

The remainder of this paper is organized as follows.
Section 2 gives an overview of our QA framework. Sec-
tion 3 deals with the factoid component, Section 4 de-
scribes how we extended it to address the list questions
and Section 5 is about the ’other’ component. In Section
6 deals with the results of the three TREC runs we sub-
mitted and their interpretation. Finally, Section 7 sum-
marizes the key findings and outlines open issues for fu-
ture work.

2. SYSTEM OVERVIEW

Our experiments for the QA track are based on our QA
framework Ephyra, introduced in [1]. Ephyra is orga-
nized as a pipeline composed of standardized compo-
nents for query generation, search and answer selection.
The components can be combined and arranged arbitrar-
ily, and different configurations can be used for different
question types. This architecture facilitates experiment-
ing with various setups and allows integrating multiple
QA techniques and knowledge sources in one system.

R
1 Cuestion

i [l
e . i | i
i string i i 1 Answer : Ranked |
| :. > Searcher — - » Filter '
! . o L candidates answers |
: Cuestion P ¥ :
N 1
i MNormalizer i i N\ i i 7N i
1 1! [i

i [[l
i Question > i i Tahoo i i i
i tnormalize d) \—@W o o 1 4 |
: v Patterns P Enowledge [¥ Angwer Pattern Sorter i
' h Mfiner i Filter Filter i
| Question P b i
i Analyzer P b i
s <y | [e i .
i o—— \W/ i i Knowledge |— i i TwEr L] Dupllcate i
i Answer type Fatterns ! i Miner ! i TPatterns Filter i

]]
o | i i
1
| Queny f ——— 3 |
i Generator CJueries i Search i Angwer Type Stopweord !
; : ! Filter Filter |
B | |
a | L a =
1 | | 3 A_ﬂ :{' :
' | | SWEL

i Bag of Words Query Question i i Projection Resuhf Length i
i C%enerator Eeformulation Interpretation i i Filter Filter i
| Generator CGenerator ! ! i

i]]
| = a |

Query generation

Answer selection

Fig. 1. Pipeline for factoid and list questions.

To incorporate a new technique for question analysis or
answer extraction or a new knowledge source, one can
simply plug in an additional component. Figure 1 shows
the setup of our pipeline for factoid and list questions.

At first the question string is normalized, e.g. we
drop unnecessary tokens and stem verbs and nouns. The
Question Analyzer then determines the expected answer
type of the question and interprets the question to cre-
ate a more concise representation of the question string.
Given this information, a set of query generators trans-
forms the question into queries for document retrieval.
We create a “bag of words”, which is a simple set of
keywords, as well as more specific queries such as re-
formulations of the question string.

Ephyra supports two types of search components to
incorporate external information sources. Knowledge
miners are used to search an unstructured source us-
ing an underlying IR system, e.g. a Web search en-
gine. Knowledge annotators extract answers from semi-
structured sources such as a gazetteer or a web service
that provides weather information. Although knowledge
annotation improves the performance on specific ques-

tion types, we did not use it for the TREC evaluation.

The search results are passed through a set of filters
to create a ranked list of answers. A filter eliminates bad
results (concatenations of function words, duplicate an-
swers, etc.), creates new results from existing ones (e.g.
by extracting factoid answers from a text snippet) or re-
arranges the results according to a specific feature such
as the similarity to the question string.

3. FACTOID COMPONENT

For the factoid questions, we combine two answer ex-
traction techniques: a simple approach based on answer
type analysis (Section 3.4) and a pattern matching ap-
proach that uses textual patterns to classify and interpret
questions and to extract answers from text snippets (Sec-
tion 3.5). For either approach, we first extract answers
from the Web and then search the AQUAINT corpus for
supporting documents. In the following, we discuss the
components of our pipeline for factoid questions and de-
scribe how results from the two answer extraction ap-
proaches are integrated.

3.1. Coreference Resolution

As in TREC 2005, the test set consists of question series
where each series asks for information regarding a par-
ticular target. In this way, each series is an abstraction
of a user session with a QA system so that the questions
may depend on the target, preceding questions or their
answers in the same series. Therefore, we need to re-
solve coreferences prior to submitting a factoid or list
question to our pipeline.

The goal of the coreference resolution is to resolve
referring expressions by the question target to produce
an independent, self-contained natural language ques-
tion for subsequent processing. We resolve personal,
possessive and demonstrative pronouns, such as “he”,
“her”, “their”, “this”. Our assumption was that pro-
nouns in a question always refer to the target and not to
a previous question or to an answer of a previous ques-
tion since in the question sets of the last years we only
found a handful of pronouns which could be interpreted
as referring to a preceding question or answer. This as-
sumption is supported by the fact that also other groups
only resolve the pronouns to the target [2, 3]. In addi-
tion, to resolve also to previous questions or answers, a
deep semantic analysis of the question would be neces-
sary which we do not have at the moment.

We replace an occurrence of a possessive pronoun
with ”X’s” where X is the target. All personal pronouns
are replaced by the target. For demonstrative pronouns,
we replace the whole phrase including the pronoun by
the target:

Target: Bushehr Nuclear Facility

Question: In what country is this facility
located?

After Resolution: In what country is Bushehr
Nuclear Facility located?

In addition, we check whether ”her” is used as posses-
sive pronoun or as personal pronoun by using part of
speech information from the OpenNLP tagger [4] on the
succeeding words: If the succeeding word is a noun, it
is unlikely that ’her” is used as a personal pronoun. In
this way, we can resolve questions such as "Who were
her family members?” to "Who were Carolyn Bessette
Kennedy’s family members?”.

3.2. Question Normalization

The question normalizer generates two representations
of a factoid question, one used for question analysis with
textual patterns, one to generate query strings for doc-
ument retrieval. For either representation, we first drop
unnecessary punctuation marks and phrases such as “’so-
called” or “approximately”. To facilitate pattern match-
ing, all verbs are replaced by their infinitives and all
nouns by their singular forms. For query generation,
we modify verb constructions with auxiliaries that dif-
fer in questions and corresponding answers, e.g. ~did ...
occur” is replaced by “occurred”.

3.3. Query Generation and Search

We extract the keywords from the second representation
to build a simple “bag of words” query (Bag of Words
Generator). In addition, we generate a number of re-
formulations of the question string that anticipate what
a responsive sentence may look like (Question Refor-
mulation Generator). For instance, the question "Where
was Mozart born?” is transformed into the query string
”Mozart was born in”. The Question Interpretation Gen-
erator creates a query string from a concise representa-
tion of the question, which we call its interpretation (see
Section 3.4).

Our factoid pipeline comprises two knowledge min-
ers (KMs) that retrieve text snippets given these query
strings. The Yahoo KM returns the snippets fetched by
the Yahoo API, while the Indri KM uses the Indri IR
system [5] to search the AQUAINT document collec-
tion. We configured Indri to retrieve individual para-
graphs rather than documents. Before indexing the cor-
pus, we ensured that all paragraphs are properly tagged.
The question reformulations are only used for the Web
search since they require a redundant data source.

3.4. Answer Extraction by Answer Types

We analyzed the TREC questions from previous years
and devised a hierarchy of named entity (NE) types that
factoid questions frequently ask for. Our hierarchy com-
prises about 70 NE types such as Date, Location, Color,
Person, Size or Number on the top level and Length,
Area or Volume as subtypes of Size. For each of the
types, we specified one or more type patterns, i.e. regu-
lar expressions that match questions asking for that par-
ticular type. Table 1 shows an extract of our NE hier-

NE type Type pattern

Date when

Date — Weekday (what|which|name) (.*)?(day of (the)?week|weekday)
Location where

Location — Country | (what|which|name) (.*)?(colony|country|nation)

Size how (big|large)

Size — Length how (deep|far|high|long|tall|wide)

Size — Length (how large in|how many) (foot|inch|.*meter|mile|yard)

Table 1. NE hierarchy and type patterns.

archy. In the question analysis phase, we try to match
the question string with each of the type patterns to de-
termine potential answer types. If a question matches
more than one pattern, we use a couple of tie-braking
rules to select the most likely NE type, e.g. we prefer
longer and thus more specific patterns over shorter ones.

During answer extraction, the Answer Type Filter
applies a NE tagger which is appropriate for the ex-
pected type to the text snippets retrieved by Yahoo or
Indri. For NEs of type Person, Organization or Loca-
tion, we use the taggers from the OpenNLP toolkit [4].
For the other types, we devised our own taggers which
are either rule-based (e.g. Number, Acronym) or list-
based (e.g. Language, Color). The filter first tries to ex-
tract entities of the most specific type and if no entities
could be tagged, it moves upwards in the hierarchy. For
instance, when looking for a country name, it first tries
the Country tagger, followed by the tagger for Location.
The extracted NEs are normalized (i.e. tokenized and
stemmed) to identify similar NEs. One representative
is chosen for each cluster of similar entities, and it is
assigned a score equal to the number of entities in the
cluster.

3.5. Answer Extraction by Pattern Matching

Our pattern matching approach uses textual patterns to
classify and interpret questions and to extract answers
from text snippets. The interpretation of a question ab-
stracts from the original question string while preserving
its semantics and allows forming a query that is largely
formulation-independent. The patterns for answer ex-
traction are learned automatically using question-answer
pairs as training data. In [1], we discussed our pat-
tern matching approach in detail. This subsection gives
an overview of the basic ideas and describes recent en-
hancements to improve the recall of answer extraction.

We assume that a question is fully specified by three
components: A question asks for a property of a target
in a specific context. For instance, the question ~What
is the job of Mel Gibson in Conspiracy Theory?” asks
for the profession (property) of Mel Gibson (target) in
the movie Conspiracy Theory (context). In the ques-
tion analysis phase, a set of manually defined question
patterns is applied to the question string to extract these
components. The Question Interpretation Generator then
transforms the interpretation into a query string, which
is submitted to the search component to retrieve relevant
text snippets.

A second set of patterns is used to extract answers
from text snippets comprising both the target object and
the desired property of the target, in our example the
profession faxi driver. For instance, the following is an
answer pattern for the property profession:

<Target> works as a <Property>.

Our system learns the answer patterns from question-
answer pairs, e.g. using data from former TREC eval-
uations. Each question is interpreted and a query string
is formed, comprising the interpretation of the question
and its answer, which is known from the training data.
The query string allows to fetch text snippets from a Web
search engine that contain answer patterns for a specific
property, in our example patterns that relate working
people to their jobs. An answer pattern covers the target,
the property, an arbitrary string in between these objects
plus one token preceding or following the property to
indicate where it starts or ends.

In [1], we came to the conclusion that the pattern
matching approach suffers from a relatively low recall
because the answer patterns are often too specific. Thus,
we extended our approach to derive generic answer pat-
terns from the patterns returned by the learning algo-
rithm. At first, we replace all named entities by their

Original pattern: | <Target>,

who was born in 1879 in <Property> and

Generic pattern:
Illustration:

<Target> ["<]xborn

["<]* (<NEdate>)?["<]*<Property_NElocation>
We are looking for a location name. The string in between the given person’s name and the
location must contain the word “born” and it may also include a named entity of type date.
In addition, it may comprise any other tokens but no further named entities.

Table 2. Answer pattern for the property birthplace and its generalization.

types, reusing the taggers that we devised for our NE hi-
erarchy described in the previous section. We also try
to associate the property with a NE type for two rea-
sons: (1) If the NE type of the property is known, we
do not need the tokens adjacent to the property as de-
limiters, thus we can drop them to create a more general
pattern. (2) We can ensure that only entities of the de-
sired type are extracted with that pattern. Furthermore,
we make all tokens which are not NEs optional, except
for words that express the desired relationship between
the target and the answer (e.g. the verb ”works” in pat-
terns for the property profession). A keyword is consid-
ered important if it occurs in one of the question patterns
for the respective property, regardless of its grammatical
form. Table 2 gives an example of a very specific pat-
tern and its generalization, along with a description in
natural language to illustrate its meaning. The extracted
property is the birthplace of a person.

The generic patterns greatly improved the recall of
our pattern matching approach, allowing us to adapt it
to little redundant sources such as the AQUAINT doc-
ument collection. However, our ranking mechanism for
the extracted answers turned out to be more stable when
using a large, redundant knowledge source. We apply
a statistical approach that calculates scores for the ex-
tracted answers by cumulating the confidence measures
of the answer patterns used to extract them (see [1]).
Thus, we decided to extract answers from the Web first
and then project them onto the corpus.

3.6. Answer Projection

We reapply the previously described extraction strate-
gies to the corpus to determine supporting documents
for the answers extracted from the Web. To minimize
the number of unsupported answers, we decided to al-
ways prefer documents identified with pattern matching
over those found by the answer type approach. We as-
sume that the answer patterns in our pattern matching
approach express the desired semantic relationship be-

tween the question and the answer and thus a document
that matches one of the patterns is likely to be support-
ive. In case neither approach detects the Web answer
in the corpus, we simply browse through the paragraphs
returned by the Indri IR system in the order of their rele-
vance and select the first hit as the supporting document.
Answers which cannot be found in the corpus are elim-
inated from the ranked list of answer candidates. To as-
sess the performance of this answer projection strategy,
we calculated its accuracy as follows:

. # globally right
ACCUT‘CLCyAP ~ # globally right + # unsupported

Our best run achieved an accuracy of 0.877, while the
average over all 59 runs is 0.855.

3.7. Answer Selection

Given the answer candidates from the document collec-
tion, the Sorter Filter arranges them according to their
score. The Duplicate Filter then compares the answers
pairwise. Whenever it detects two similar answers, it
drops the lower ranked answer and adds its score to the
score of the higher ranked one. Answers are considered
similar, if they contain content words that have the same
stem, e.g. “Americans” and ”American people”. This
aggressive strategy did a good job on the TREC ques-
tions, but we are aware that it would fail for list questions
like ”What are the members of the Kennedy clan?”.

The Stopword Filter drops malformatted answers,
e.g. ones that contain a single bracket, answers that re-
peat information from the question string and ones that
do not provide any information, i.e. concatenations of
function words and special characters.

Finally, the Result Length Filter ensures that the list
of answers does not exceed the maximum number of
7000 non-whitespace characters. In addition, we cut off
all answers with scores below an absolute threshold. If
the final list of answers is empty, we return “NIL” to
indicate that we could not find an answer in the docu-
ment collection. We submitted three runs, using differ-

ent thresholds that resulted in a high accuracy on past
TREC questions.

We did not take any action to address time dependent
questions. Still, only two of our responses were judged
locally correct, which indicates that time dependencies
were not yet in the focus of this year’s track.

3.8. Integration of Answer Extraction Approaches

The answer type approach turned out to have the higher
precision, but it fails if the answer type cannot be de-
termined or the answer cannot be tagged. Thus we al-
ways prefer its answers over results obtained with pat-
tern matching, which we use as a backup for the remain-
ing questions. On the other hand, our pattern match-
ing approach is more suitable for determining support-
ing documents and is therefore the preferable approach
for answer projection.

4. LIST COMPONENT

The component for list questions is built on top of the
factoid component. Initially, we transform a list ques-
tion into a factoid question asking for a single instance
by replacing formulations such as “what are the names
of all” or ”list some of” with the string "name”. The re-
sulting question string can be handled in the same way
as a factoid question, except that a list of factoid answers
is returned rather than a single answer. We do not need
to care about plural forms because all verbs and nouns
are stemmed by the question normalizer in our factoid
pipeline before pattern matching.

We do not apply an absolute threshold to the answers
since the list questions are guaranteed to have a correct
answer in the document collection. Instead, we use a
threshold relative to the score of the top answer. For
instance, a relative threshold of 10% cuts off answers
with a score of less than 10% of the top score. Again, we
tried out different thresholds that produced good results
on past TREC data.

5. ’OTHER’ COMPONENT

Our approach for the *other’ questions is based on a se-
quence of filters that gradually eliminate redundant and
little relevant information, text snippets that do not re-
fer to the target object, and ones that do not provide

sensible information at all. The evidence used for de-
termining redundancy ranges from above noun phrase
level down to the individual terms. We assume relevance
as closely related to redundancy, thus we aggregate the
former when eliminating the latter. The modular archi-
tecture of Ephyra enabled us to evaluate various feature
combinations and to arrange the features in an optimal
manner. In the following subsections, we point out our
key ideas and how we implemented them. Finally, we
explain the order in which we apply the different filters.

5.1. Snippet Retrieval

The starting point is a set of paragraphs retrieved from
the AQUAINT corpus using the Indri IR engine. As op-
posed to the factoid and list questions, we do not use an-
swer projection for the other’ questions, but retrieve the
snippets directly from the document collection. Snippets
returned by a Web search engine often contain noise and
incomplete sentences and the projection of an informa-
tion nugget would require a deep semantic analysis of
the nugget.

5.2. Reduction of Answer Nugget Size

In order to increase precision, or to pack as many snip-
pets as possible in the maximum answer size in favor of
recall, one of our goals was to reduce the size of individ-
ual snippets as far as possible. Looking at the nuggets
declared vital or OK in the TREC 13 and TREC 14 tasks,
and investigating the snippets that were rated as cover-
ing them, we decided to return sentence-level nuggets as
answers to the ’other’ questions. The assumption of us-
ing sentences proved sensible in other recent systems as
well [3]. We apply the sentence splitter from OpenNLP
to split the paragraphs returned by Indri.

Further investigation of results from the recent years
revealed that sentences often include unnecessary pre-
fixes that can be cut. In particular, we cut leading news
agency acronyms and locations (e.g. "PARIS (France)
AFP _ ..”), and leading introductions of indirect speech
(e.g. "Secretary of Foreign Affairs Condoleezza Rice
said that ...”). This is accomplished relatively straight-
forward with regular expressions.

5.3. Elimination of Useless Snippets

An examination of the individual sentences yielded by
the splitter revealed two major categories of likely use-

less snippets, which frequently appear if the target is a
person or organization.

The first category of useless snippets subsumes enu-
merations of proper names. In case the target is an orga-
nization, this might be a list of stock prices, in case the
target is a singer or band, it might be a complete track list
of an album. To filter out such snippets, we exploit the
observation that almost all words in such a snippet are
either stopwords or part of a proper name, and conse-
quently capitalized. In particular, we eliminate all snip-
pets in which more than half of the non-stopwords are
capitalized. The risk of useful snippets falling to this
filter turned out to be very low.

The second category subsumes snippets that contain
both the first and the last name of a person target, but
as part of two different named entities. For the query
”George Bush”, the retrieval and splitting could also re-
turn a sentence like ”Kate Bush wrote a song on the
life of George Foreman”, which well contains both of
the query terms, but is not related to the target in any
sense. Thus, for proper name targets, we aim to rate
down sentences that do not contain the target name as
a whole. On the other hand, we decided not to elim-
inate such sentences completely, since a sentence like
”US President Bush often refers to George Washington
in his speeches” would fall to this filter, but it might well
cover a vital nugget. Therefore, we score up all snippets
with the square of the number of subsequent, correctly
ordered target terms, which we call keyword score.

It also occurs that a sentence does not contain a key-
word from the target at all, since the Indri engine re-
turns complete paragraphs in our setting. In this case, we
do not immediately eliminate the sentence anyway, but
first check the keyword score of the previous sentence.
The idea is that if the latter is high, the current sentence
might well contain a coreference to the target. In this
case, we retain it in the set of possible result nuggets. If
the keyword score of the previous sentence is low, we
eliminate the sentence.

5.4. Step-by-Step Elimination of Redundancy

First we drop snippets that are exact duplicates or parts
of other snippets, for each elimination cumulating the
score in the snippet we retain.

The results of Roussinov et al. [6] have shown that
redundancy elimination based on NP-VP-NP triplets is a
promising approach to answering the *other’ questions.

However, it does not properly eliminate reformulations
of the same information. To overcome this problem, we
extended Roussinov’s idea and created an iterative ap-
proach for redundancy elimination, which starts with the
triplets, but also contemplates smaller units of text.

The first step is close to the original method. We first
sort the snippets by their current scores in descending or-
der. Starting with the top one, we afterwards extract all
triplets from each snippet. We eliminate all snippets that
only contain triplets already covered by higher ranked
ones, transferring their scores to those snippets that were
the first ones to contain the triplets. In this way, we elim-
inate snippets that comprise only redundant associations
of noun phrases. We do not use an ontology for the iden-
tification of synonymous verbs at the moment.

After the triplet step, we re-sort the remaining snip-
pets according to their new scores and apply the same
elimination procedure based on individual noun phrases
instead of triplets. In this way, we eliminate snippets
that do not provide new terms associated with the target.

As the last step, we again re-sort the snippets, and
use individual terms as the criterion for the same pro-
cedure. Thus we eliminate snippets that do not contain
terms not covered by higher ranked ones. Again, the
score of eliminated snippets is transferred to the snip-
pets due to which they are eliminated. This step aims to
diversify the snippets as far as possible, increasing the
breadth of information covered in the answers.

In this last step, we also filter out a third category
of useless snippets, which is somewhat specific to the
TREC task. It subsumes snippets providing information
that was already the answer to one of the factoid or list
questions on the target. To eliminate such snippets, we
check which portion of the terms was part of a previous
answer. If this portion exceeds a threshold, we eliminate
the snippet. The threshold is not fixed, but depends on
the total number of available snippets.

5.5. Order of Filters

The order in which to apply the filters is all but straight-
forward. Since the filters exploit different types of evi-
dence, and serve different purposes, one might eliminate
the evidence a subsequent one builds on if the order is
unfavorable. Figure 2 displays the system setup for the
“other’ questions.

To facilitate the detection of redundancy, we first
apply the filter for splitting the snippets into sentences

]]] i
e . |
| | | Answer Filt Ranked |
i O l ' candidates il answers |
! uery < ! I |
| Generator | ! JAN |
| ! i |
|] |
! | | |
| Bag of Words | | ! ES;nte?ce Useless |
! . ! : raction . . |
i Queries Generator i i Filter Snippets Filter i
b sitoie s e estie siioie sead | !
- 1 i

Query generation D12 o Agency i

i E evmrords Duplicate :

S 1 v Filter !
! s : ! Filter |
| | ! i
! i | |
| i ! |
i DEarche g i i 3 7 Eedundancy i
i | ! Cut Statement . |
i i | Provider Filter | | | Red.uctlon i
! Tndri i ! Filter i
| Enowledge | | |
| Miner ! i 4 i g i
i i i I.?daptlv; Eesult Length i
! — itk Filter :
e ! Filter i
Search | |

Answer selection

Fig. 2. Pipeline for ’other’ questions.

(Sentence Extraction Filter, 1) and cut off unimportant
parts (Cut Agency Keywords Filter, 2, Cut Statement
Provider Filter, 3, and Adaptive Keywords Filter, 4).
The idea is that the shorter the snippets are, the eas-
ier it becomes to detect redundancy. We then elimi-
nate the snippets rated as useless due to one of the two
critera discussed previously (Useless Snippets Filter, 5).
This could not be done before the splitting and cutting
because the unimportant parts might veil the evidence
used. Now that we have made as sure as possible that
only snippets with sensible information remain, we elim-
inate redundant snippets (Duplicate Filter, 6, and Redun-
dancy Reduction Filter, 7). This could not be done be-
fore, since the useless or unimportant information could
influence the elimination process.

At last, we re-sort the snippets according to their
final scores, and return as many as (a) remain, or (b)
stay below the 7000 character limit, whichever number
is lower (Result Length Filter, 8).

6. EVALUATION RESULTS

We submitted three runs, differing only in the absolute
threshold for factoid questions and the relative thresh-

old for list questions. Table 3 shows the setup for each
run, the resulting factoid, list and ’other’ scores and the
average per-series score. The last column gives the me-
dian over all 59 runs from all groups. The differences
in the ’other’ scores are due to variations in the asses-
sors’ judgments; we submitted identical responses for
all three runs.

The results show that integrating different techniques
for query generation and answer extraction in a pipeline
of standardized components is a promising strategy. Our
modular approach allowed us to develop a QA system
from scratch in just a couple of months. Yet we had to
cut short on time intensive tasks such as the generation
of patterns for question analysis and the development of
suitable NE taggers for answer extraction. As a con-
sequence, our system often failed on manageable ques-
tions because of a limited coverage of our patterns or due
to missing or incomplete taggers. Also, for some ques-
tions our answer selection component failed to eliminate
obviously wrong answers, and thus the correct answer,
although extracted from the corpus, was not among the
top results.

We evaluated our ’other’ component on TREC 13
and TREC 14 with results above 25% F-Score. Our re-

ISL1 | ISL2 | ISL3 | Median

(59 runs)
Absolute factoid threshold 0 1 25 N/A
Relative list threshold 1% | 2.5% | 10% N/A
Unsupported (U) 18 18 11 N/A
Inexact (X) 26 26 23 N/A
Locally correct (L) 2 2 2 N/A
Factoid accuracy 0.196 | 0.196 | 0.196 0.186
List 0.092 | 0.096 | 0.097 0.087
Other F3 0.143 | 0.150 | 0.145 0.125
Other F3 (pyramid score) | 0.160 | 0.162 | 0.160 | 0.139
Average per-series score 0.139 | 0.143 | 0.141 0.134

Table 3. TREC15 results.

sult on TREC 15 (15% F-Score) is significantly above
the median (12.5%), but far from the best group (25%).
This relative regress emphasizes the positive develop-
ment in the ’other’ question discipline. Our approach
yielded rather good results for targets the corpus pro-
vides many snippets for. On the other hand, it did not
produce any result snippets for some questions, which
makes us think that our elimination techniques should
(a) be less aggressive, and (b) better adapt to the number
of available snippets.

7. CONCLUSION AND OUTLOOK

We deployed the Ephyra QA framework to build a QA
system from standardized components, integrating dif-
ferent approaches for query generation and answer ex-
traction. Individual techniques are often limited in the
types of questions they can handle or have a low pre-
cision and by combining them, a strong overall system
can be built. Our modular architecture facilitates the in-
tegration and improves the reusability of the individual
modules.

The component for factoid and list questions com-
bines pattern learning and matching techniques with an-
swer type analysis. We devised a hierarchy of frequent
answer types and associated each type with patterns for
question analysis and an appropriate tagger for answer
extraction. Our pattern matching approach interprets
a question by creating a concise representation of the
question string that preserves the semantics. Patterns
for answer extraction are learned from question-answer
pairs using the Web as a resource for pattern retrieval.
We showed how the answer patterns can be generalized

to allow answer extraction from little redundant knowl-
edge sources such as AQUAINT.

For the ’other’ questions, we focused on eliminating
redundant and irrelevant information, using a set of filter
components that are arranged in a pipeline. We returned
nuggets on the sentence level, trying to cover as much
relevant information on the target as possible.

For further work, we plan to deploy additional tech-
niques for answer selection from candidates provided by
our extraction strategies. By double-checking answers
with multiple semantic resources such as gazetteers or
WordNet, the accuracy of answer selection can be im-
proved as shown in [7]. Additional type-specific filters
could help to rule out non-responsive answers. Further-
more, we would like to incorporate semantic knowledge
from ontologies and shallow semantic parsing to im-
prove the capability of our system to extract answers
from resources that provide little redundancy.

Acknowledgment

This work was supported in part by the DFG as part of
the SFB 588 and by the European Commission under
project CHIL (contract #506909).

8. REFERENCES

[1] N. Schlaefer, P. Gieselmann, T. Schaaf, and
A. Waibel, “A pattern learning approach to question
answering within the Ephyra framework,” Proceed-
ings of the Ninth International Conference on TEXT,
SPEECH and DIALOGUE, 2006.

(2]

J. Chu-Carroll, K. Czuba, P. Duboue, and J. Prager,
“IBM’s PIQUANT II in TREC2005,” Proceedings
of the Fourteenth Text REtrieval Conference, 2005.

R. Gaizauskas, M. A. Greenwood, H. Harkema,
M. Hepple, H. Saggion, and A. Sanka, “The Univer-
sity of Sheffield’s TREC 2005 Q&A experiments,”
Proceedings of the Fourteenth Text REtrieval Con-
ference, 2005.

“OpenNLP,” http://opennlp.sourceforge.net/.
“Indri IR engine,” http://www.lemurproject.org/.

D. Roussinov, M. Chau, E. Filatova, and J. A.
Robles-Flores, “Building on redundancy: Fac-
toid question answering, robust retrieval, and the
“other”,” Proceedings of the Fourteenth Text RE-
trieval Conference, 2005.

J. Ko, L. Hiyakumoto, and E. Nyberg, “Exploiting
multiple semantic resources for answer selection,”
Proceedings of the Fifth International Conference
on Language Resources and Evaluation, 2006.

