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Abstract. In this paper, we present an overview of research in our laboratories on 
Multimodal Human Computer Interfaces. The goal for such interfaces is to free 
human computer interaction from the limitations and acceptance barriers due to rigid 
operating commands and keyboards as the only/main I/O-device. Instead we move 
to involve all available human communication modalities. These human modalities 
include Speech, Gesture and Pointing, Eye-Gaze, Lip Motion and Facial Expression, 
Handwriting, Face Recognition, Face Tracking, and Sound Localization. 

Key words: multimodal interfaces, speech recognition, lip-reading, gesture recogni- 
tion, handwriting recognition, neural networks. 

1. INTRODUCTION 

Recent developments in the computer and communication industries are accel- 
erating the pace and variety of forms in which information is delivered to users 
worldwide. This, in turn, multiplies the problems associated with managing and 
interacting with the new wealth of data and information. The combination of 
sound, images, and text is already available on Multimedia PC's and publishing 
companies are advancing their goal of delivering multimedia information to 
everyone as the "Information Super-Highway" unfolds. While the multiplicity 
and amount of information expands, ways to access it or communicate with it 
remain limited. Relatively primitive input devices and interfaces, such as keyboard 
and mouse still dominate as interfaces. In contrast, human-to-human communi- 
cation takes advantage of a wealth of hints and signals, explicit or implicit, that 
are lost in human-computer interaction. Meeting "face-to-face', having "eye- 
contact", "reading one's lips", "handwaving", "pointing one's finger at someone 
or something", as well as "plain talk" make human communication richer than 
simple text transmittal. Speech and writing represent perhaps the most direct 
expressions of language, but are routinely complemented by other mostly visual 
modalities (e.g., "body-language"). These will need to be processed also if one 
hopes to achieve truly natural human-computer interaction. To increase their 
effectiveness, human-computer interfaces should, therefore, include and combine 
visual as well as spoken or textual language to represent the full spectrum of 
human communication. 
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In this paper, we present our efforts toward developing richer human-computer 
and computer mediated human-human interfaces that attempt to embrace and 
take advantage of all  communication modalities. The INTERACT project involves 
a number of research projects in progress at our labs at Carnegie Mellon 
University in Pittsburgh, U.S.A., and University of Karlsruhe, Germany. They are 
aimed at interpreting the visual and acoustic instantiations of language as we 
use them to communicate day to day. The modalities of interest in our work at 
both labs are: speech understanding (and translation), sound source localiza- 
tion, gesture recognition, lipreading, handwriting recognition, eye- and face 
tracking. Our research involves improving recognition accuracies of the modality 
specific component processors, as well as development of optimal combination 
of multiple input signals to deduce user intent more reliably in cross-modal 
"speech"-acts. More specifically, we aim to combine visual, acoustic and textual 
cues, including: 
• Speech recognition with lipreading for more robust recognition 
• Gesture with speech for multimodal interpretation 
• Speech with Handwriting for more flexible, redundant input 
• Face- and eyetracking with sound source localization for robust speech extrac- 

tion in adverse acoustic environments (the cocktail-party effect) 
• Face- and eyetracking with speech recognition for focus of attention (who is 

the user talking to? What is he/she referring to?) 
We have begun attacking these advanced goals along a rather broad front of 

activity. The present paper reviews where we currently stand in three of these 
subtopics: lipreading (as a complement to speech recognition), gesture recogni- 
tion (as a complement to speech) and on-line handwriting character recognition. 
Wherever possible, we develop learning strategies (mostly connectionist and 
statistical), to ensure scalability and portability to larger and different applica- 
tion domains. In the following we discuss these three efforts and report on 
initial results of cross-modal integration. 

2. AUTOMATIC LIP-READING AND SPEECH RECOGNITION 

Lip movement is a visual information source tightly and synchronously coupled 
to the acoustic speech act and hence can be naturally viewed as an integral part 
of a speech recognition effort. This is in contrast to other communication modal- 
ities described later in this article, such as gestures or handwriting, which may 
be invoked independently of speech. 

Most approaches to automated speech recognition (ASR) that consider solely 
acoustic information are very sensitive to background noise or fail totally when 
two or more voices are present simultaneously (cocktail-party effect), as often 
happens in offices, conference rooms, outdoors, and other real-world environ- 
ments. Humans deal with these distortions by considering additional sources such 
as directional, contextual, and visual information, primarily lip movements. This 
latter source is subconsciously involved in the recognition process and is used 
extensively by hearing-impaired individuals, but also contributes significantly 
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to normal hearing recognition. The usefulness of lip movement stems in large 
part from its rough complementariness to the acoustic signal: the former is most 
reliable for distinguishing the place of articulation (ex. Jackson 1993), the latter 
conveys most robustly manner and voicing information (ex. Miller and Nicely 
1955). 

The task of exploiting lip-reading in an automatic speech recognition system 
requires the solution of two conceptually distinct but not independent problems: 
suitable representation and recognition of the visual signal and the integration 
of thus obtained visual evidence with the acoustic side. Clearly, a given type of 
visual pre-processing will constrain the options available for further combina- 
tion of the two sources. 

2.1. Related Research 

The first significant attempt to supplement acoustic ASR with lip-reading was the 
system built by Petajan and applied to a speaker-dependent isolated-word (vocab- 
ulary of 100 words) recognition task (Petajan 1984). Four static features were 
extracted from each image frame and a linear time-warping procedure was used 
to identify the most probable word. By combining the output of the optical 
recognizer with that of a commercial ASR system the recognition rate was 
improved from 65 to 78%. In a follow-up effort (Petajan et al. 1988) simpli- 
fied optical processing was used to achieve near real-time performance. The image 
of the speaker's mouth area was captured by a camera and lighting system 
installed in a head-mounted harness, circumventing some image-processing 
problems. The combination of optical and acoustic decisions was achieved via 
a set of 30 heuristic rules. The overall performance was similar to the earlier 
system. 

Mase and Pentland (1991) chose to parameterize the oral cavity image by 
computing average optical flow vectors in four regions of the picture designed 
to capture the movement of particular facial muscles. The regions were selected 
manually by the experimenters. They used template matching (on optical data 
alone) to recognize strings of three to five digits from three speakers. Average 
word recognition rate was roughly 75%. 

Neural networks were used by Yuhas et al. (1989) with both optical and 
acoustic input to distinguish among 9 vowel phonemes under varying acoustic 
signal-to-noise ratio (SNR). Only static images (not sequences) were used as 
the optical input. Furthermore, the relative contribution of visual and acoustic 
information was adjusted according to the SNR by an "omniscient controller" 
(i.e., the value of the SNR is explicitly given). The visual input was shown to 
compensate for noise-induced performance drop in purely acoustic recognition. 

Stork et al. (1992) measured the position of ten reflective markers placed on 
the lips of the talker thus significantly simplifying the issue of optical data capture. 
From these measurements they derived five parameters as the visual input. 
Separate Time Delay Neural Networks (TDNN) processed acoustic and optical 
data to render a decision on one of 10 English letters spoken in isolation. Visual 
and acoustic-alone recognition was 51% and 64%, respectively. By combining 
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the outputs in a Bayesian framework, they achieved overall performance of 
91%. 

Goldschen (1993) used 13 visual features extracted from processed image 
frames acquired with a head-mounted camera as in (Petajan et al. 1988) to identify 
one out of 150 possible TIMIT sentences spoken by a single talker. It appears 
that the sentences were treated essentially as very long words in this setup. Vector 
quantization of the input allowed the use of discrete Hidden Markov Models 
(HMM) in the recognition process. The system using generalized "triseme" 
models achieved 25% recognition rate (visual information only). 

2.2. Initial System 

Our integrated acoustic/visuai continuous-speech ASR system was first reported 
in (Bregler et al. 1993). It was developed for a spelling task using the German 
alphabet. Training and test utterances comprise spelled (without pauses) names 
and nonsense letter sequences of arbitrary and unknown to the recognizer lengths. 
The task is thus equivalent to continuous recognition with a small but highly 
confusable vocabulary. 

2.2.1. System Description 
We record acoustic and visual data in parallel and pre-process them as illus- 
trated in Figure 1. The acoustic signal is sampled at 16 kHz with 12-bit resolution. 
A fairly standard front-end then divides the data stream into overlapping windows 
(Hamming windows) at 10-msec frame rate and transforms the data to frequency 
domain by computing 16 numbers (the so-called Melscale Fourier coefficients) 
for each frame. 

Fig. 1. Bimodal Data Acquisition for Speech Recognition and Lip-reading. 
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Visual data was initially captured as 256 x 256 pixel images with 8-bit gray 
level resolution per pixel. A smaller area of 144 x 80 pixels centered on the mouth 
was then manually extracted and, after low-pass filtering, downsampled to a 
24 x 16 pixel image. The resulting 384 gray level values were then normalized 
for each frame to lie between -1.0 and 1.0 and constituted the visual evidence 
available to the classification algorithms. 

We make use of a concept called "viseme" in our system. A "viseme" is the 
rough correlate of the phoneme, i.e., the smallest visually distinguishable unit 
of speech. In general, and for our purposes, visemes are defined by a many-to- 
one mapping from the set of phonemes. This reflects the fact that many phonemes 
(for instance: /p/ , /b/ , /m/)  are essentially indistinguishable from visual infor- 
mation alone. 

We use a modular Multi-State Time Delay Neural Network (MS-TDNN) 
(Hild and Waibel 1993) to perform the actual recognition. Figure 2 shows the 
architecture. Through the first three layers (input-hidden-phoneme/viseme) the 
acoustic and visual inputs are processed separately. The third of these layers 
produces activations for 65 phoneme states on the acoustic side and 42 viseme 
states on the visual side. In our system phoneme-to-phoneme (and thus viseme- 
to-viseme) transitions were included as separate phone (viseme) states. 

The outputs of the phoneme and viseme layers are integrated in the units of 
the combined layer (this layer does not exist in the basic MS-TDNN). The acti- 
vation of each combined phone-state is the weighted sum of the activations of 
the corresponding phoneme-state and viseme-state units. Some visemes will there- 
fore influence more than one of the combined layer units. In the final layer (which 
copies the activations from the combined layer) a one stage Dynamic Time 

Output: Letter Hypotheses (26 German Letters) 

DTWLayer 

. . . . . . . . . . . . . . . . . . .  . I  

Phoneme/Viseme 
State Layer 

Hidden Layer 

Input Layer 
(acoustic/visual data) 

Fig. 2. Network Architecture for the Audio/Visual ASR System. 
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Warping algorithm (Ney 1984) is applied to find the optimal path through the 
phone-hypotheses that corresponds to a sequence of letter models. 

Network training is done in two phases. First, the acoustic and visual sub- 
nets are trained separately to fit phoneme/viseme targets. Second, the complete 
network is trained to fit letter targets. Error backpropagation is used to find the 
connection weights resulting in optimal recognition of the training data. The 
weights determining the combination of the two sub-nets are not trained this way, 
rather they are computed dynamically during recognition to reflect the apparent 
reliability of the sub-net outputs. Specifically, the activations of the phoneme 
and viseme layers are normalized to represent probabilities and the entropy of 
each sub-net's output is computed. Low entropy signifies probability concentrated 
in a few units, i.e., relative confidence in the respective sub-net's identifica- 
tion. Conversely, high entropy corresponds to near equal probability of most 
phonemes or visemes. Accordingly, we symmetrically weight the acoustic and 
visual contributions to the combined layer in inverse proportion to their respec- 
tive entropies. 

2.2.2. Resul t s  

Table 1 shows recognition performance originally achieved on a speaker-depen- 
dent task (Bregler et al. 1993). Training data consisted of 75/200 training and 
39/150 testing sequences for two speakers (identified by their initials msm and 
mcb in Table 1). Misclassified, omitted and inserted letters were counted as errors. 
The rows marked with "noisy" correspond to experiments in which the acoustic 
data was corrupted with broadband noise until the acoustic-alone performance 
was significantly reduced. 

Table 1. Word accuracy (in %) of Speech/Lip System. 

Speaker Acoustic Visual Combined 

msrn/clean 89 32 93 
msm/noisy 47 32 76 
mcb/clean 97 47 97 
mcb/noisy 59 47 70 

The results show that adding visual information can significantly boost overall 
recognition rate despite the relatively poor performance on visual input alone. 
The improvement is naturally most evident when the acoustic speech is noisy. 

Further experiments were carried out on a database of 6 speakers (2 female, 
4 male) to test the performance on a multispeaker task (Bregler 1993). 80 
sequences per speaker were used for training and 10 for testing. Visual-alone 
mode achieved only 12% word accuracy. Nonetheless, by adding it to the acoustic- 
mode we reduced the error rate by almost 9% for clean speech and 29% for 30 
dB SNR. 
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2.3. Current Development Directions 

At present we are seeking to improve the performance of the system on the 
letter spelling task, with the view of extending it to continuous speech recogni- 
tion. We have been concentrating on the visual side of the system since the 
acoustic technology is much more mature at this point. 

2.3.1. Robustness 
In a practical system, manual extraction of the mouth region from the face 
image is not acceptable. As a first step away from this method we have recorded 
new data where the speaker is asked to position himself such that his lips are 
visible within a rectangle shown on the workstation screen. The image in that 
frame is then used directly. 

We have been experimenting with this system to understand the principal 
weaknesses and sources of "fragility". Contrary to initial suspicion, the processing 
appears relatively insensitive to reasonable variation in lighting conditions. We 
have implemented a different version of the gray-level normalization procedure 
that further protects the performance under varying average image brightness. 
Severe illumination gradients would still pose a problem and might be allevi- 
ated through adaptive histogram equalization. However, this would significantly 
increase the computational load. 

The shift of the lip image within the frame has been found to cause a more 
serious degradation as shown in the following experiment. We trained the network 
on 180 newly recorded sequences from one speaker. The images in the training 
sequences that the network recognizes perfectly were then diagonally shifted 
within the frame by three pixels. The direction of shift was chosen at random 
for each successive image (even in the same sequence). This shift is equivalent 
to the speaker moving his face by only about 2 millimeters. Yet the word accuracy 
dropped to 87%. With a six-pixel shift the recognition was 66%. Even more 
severe losses were observed when the shift was effected in a constant direc- 
tion. 

We are investigating several approaches to counteract this effect. First, we 
are designing a detector to automatically and precisely locate the lips within a 
picture. In addition to compensating for the likely shifts, this would obviate the 
need for the speaker to hold his head in a constant orientation. Initial, speaker- 
dependent results indicate that a neural network detector can reliably locate the 
lip region under varying image size, lighting and backgrounds. 

To further increase robustness, we are training the visual TDNN on several 
copies of the training images artificially shifted and scaled. The idea is to let 
the network learn the patterns as they may occur in different locations and sizes 
within the frame. With 600 training sequences (created with artificial image trans- 
lation but at constant size) the system already shows insensitivity to image 
shifts, approaching the performance levels observed on originally hand-excised 
frames. Finally, we are investigating different parameterizations of the input 
that might already exhibit shift invariance. The magnitude of the Fourier 
Transform of the image is one such representation. 

151 



306 ALEX WAIBEL ET AL. 

2.3.2. Parameterization 
There is almost certainly much irrelevant and/or redundant information in the 384 
gray level values currently used as the visual input. Also, such a large para- 
meter count increases significantly the number of network weights that need to 
be estimated. A smaller parameter set should lead to better generalization 
(particularly for speaker-independent recognition) and computational load reduc- 
tion. We would like to reduce the number of visual parameters without invoking 
heuristics for image segmentation or feature extraction; the TDNN is expected 
to form its own internal representation of the relevant features. 

Preliminary experiments show that we can represent the images by their first 
32 principal components, thus reducing the data by a factor of 6, without visibly 
undermining performance. It should be noted that this representation (relying 
as it does on the correlations among the original data points) is sensitive to 
image shifts, as also found in other studies (ex. Turk and Pentland 1991). We 
are also investigating linear discriminant analysis, a related technique, which 
might prove better for image classification (as opposed to representation). 

2.3.3. Acoustic~Visual Integration 
There is evidence that humans combine acoustic and visual information before 
classification, i.e., without making separate decisions based on each modality 
(Summerfield 1983; Braida 1991). An automatic system should also benefit 
from integration at a low level, thanks to the availability of cross-modal features 
(for instance, temporal relationships between events in the two modalities). This 
is of course contingent on the availability of sufficient training data to robustly 
train the magnified network that results from increasing the size of the input 
vector. Preliminary experiments (Bregler 1993) suggest that this approach to 
modality integration is, in fact, not feasible without visual data reduction. This 
observation supplies more motivation still for the work described in Section 2.3.2. 

Low level modality integration allows us also to avoid the tricky problem of 
viseme specification. While it is reasonably straightforward to specify the 
phoneme-to-viseme mapping in discrete syllables, the same is not true for con- 
tinuous speech, especially when considering segmentation and coarticulation 
effects. However, if we are lead to maintain integration at the phoneme/viseme 
level, the combination scheme will be expanded. The units in the combined 
layer would likely benefit from drawing inputs from more than just the corre- 
sponding phoneme and viseme. For instance, the identity of the "second guess" 
of each sub-net should prove relevant. 

3. ON-LINE CURSIVE HANDWRITING RECOGNITION 

The recognition of cursive (or continuous) handwriting, as it is being written 
on a touch screen or graphics tablet, has not only scientific but also significant 
practical value, e.g. for note pad computers or for integration into multi-modal 
systems. Several different preprocessing and recognition approaches both for 
optical character recognition (OCR) and on-line character recognition (OLCR) 
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have been developed during the last decades. The main advantage of OLCR is 
the temporal information of handwriting, which can be recorded and used for 
recognition. In general this dynamic writing information (the coordinate sequence) 
is not available in OCR, where input consists of scanned text (bitmaps). By 
contrast, in OLCR systems, the spatial context and proximity of the strokes of 
characters are distorted or lost, when one merely retains and uses pen coordi- 
nates as a function of time. 

We have developed an input representation for OLCR, which combines the 
advantages of bitmaps used in OCR with the dynamic writing information of 
OLCR. In this input representation characters and words are represented as a 
sequence of so called context bitmaps, which are basically low resolution descrip- 
tions of the coordinate's neighborhood. 

This input representation is used with a connectionist recognizer, which is well 
suited for handling temporal sequences of patterns as provided by this kind of 
input representation. This recognizer, a Multi-State Time Delay Neural Network 
(MS-TDNN) (Haffner and Waibel 1991), integrates the segmentation and recog- 
nition of words into a single network architecture. The MS-TDNN, which was 
originally proposed for continuous speech recognition tasks (Hild and Waibel 
1993; Bregler et al. 1993), combines shift invariant high accuracy pattern 
recognition capabilities of a TDNN (Waibel et al. 1989; Guyon et al. 1991) 
with a non-linear time alignment procedure (dynamic time warping) (Ney 1984) 
for aligning strokes into character sequences. 

Figure 3a shows the basic architecture of our on-line handwriting recogni- 
tion system. This recognition system is integrated into the example application, 
which is shown in Figure 3b. The following sections describe the preprocessing 
techniques, the MS-TDNN architecture, and present recognition results for 

Digitizer 
(x, y, pressure) sequence 

IF Normalization.....~~ 
eature Ex t rac t i o~  Preprocessing 

I time-ordered sequence of 
13-dimensional feature vectors 

I k~ RecOgnitiOn Neural Networ and 
Segmentation 

recognized or word character 

"about" 

Th~rldly Ne~lber ~4lh 1995 ~ N o l a :  

2--2_ [ I  

Fig. 3a. System overview. Fig. 3b. Example application. 
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writer-independent, single-character recognition tasks and large-vocabulary, 
writer-dependent, cursive handwriting recognition tasks with vocabulary sizes 
from 400 up to 20000 words. 

3.1. Preprocessing 

Preprocessing of the time-ordered coordinate sequence provided by the digi- 
tizer is performed in two successive steps: normalization and feature extraction. 

3.1.1. Normalization 
Normalization is performed to remove irrelevant variability occurring in the 
raw coordinate sequence. To compensate for varying writing speeds of different 
writers and of a single writer within a single word or character, the coordinate 
sequence is resampled, so that all successive coordinates are equally spaced. Then 
the resampled coordinate sequence is smoothed, using a moving average window, 
which mainly removes undesired sampling noise. 

After that a baseline normalization of the word is performed. In a two stage 
process the word is first rotated according to the linear regression through all 
points, to get a rough correction of the word's orientation. Then, in a second 
fine adjustment the word is rotated according to the linear regression with respect 
to all local minima only. Finally, the word or character is linearly rescaled to a 
fixed height. 

3.1.2. Feature Extraction 
The second step of our preprocessing is the extraction of features along the pen 
trajectory yielding a sequence of time-ordered feature vectors. The basic idea 
of our feature extraction is to refer to low level topological features of the 
trajectory only and leave the extraction of high level features to the connec- 
tionist recognizer. 

We started with a set of strictly local features similar to those in (Schenkel 
et al. 1994) and (Guyon et al. 1991). Each frame consisted of information on 
the pen position (x, y coordinates), directional features (Ax, Ay), curvature, speed 
and pen-up/pen-down indicator. But an inspection of the confusion matrices of 
networks trained on these features revealed significant problems in discriminating 
between cursive letters like "a" and "u" or "g" and "y", which look very similar 
and differ only in small regions of the characters (see Figure 4 for examples). 
These problems arise due to the fact that the features are strictly local, which 

"'a . . . .  u . . . .  g . . . .  y "  

Fig. 4. Differences between cursive characters, which are hard to detect, if only local informa- 
tion is used. 
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means that they are local both in space and time. Therefore they are inadequate 
for modeling temporal long range context dependencies occurring in the pen 
trajectory. 

The basis for the new set of features is a bitmap representation of the digi- 
tizer input. After normalization of the input we map the sequence of points 
(x,, y,) to a grey scale bitmap B = {b(i, j)}, where b(i, j) indicates the number 
of points (x,, y,) falling into pixel (i, j). 

In contrast to the limitations of optical character recognition, where bitmaps 
are the only source of information, we also know the time sequence of the 
points. This leads to the following method of combining spatial and temporal 
sources: Assume (x,, y,) falls into bitmap pixel (i, j). Consider a local d x d section 
of bitmap B centered around (i,j) (Figure 5b) and derive a 3 x 3 grey scale bitmap 
L, by averaging this section (Figure 5c). That means, we derive a temporal 
sequence of low resolution bitmaps L, centered around (x,, y,) (Figure 5a). These 
bitmaps plus directional information (Ax, Ay) and the pen-up/pen-down feature 
form the new set of input features we use for recognition. 

These features are still local in space but no longer local in time. Each point 
of the trajectory is visible from each other point of the trajectory in a small 
neighborhood. Therefore, we call the local bitmaps L, context bitmaps. They seem 
to be appropriate for modeling temporal long range and spatial short range 
phenomena as observed in pen trajectories. 

a) 

c gm 

t F " 

N ' - ' '  "": ~ " ~  ; " '  ' , , ,~  i IFJ 

Fig. 5. Calculation of Context Bitmaps. 

3.2. The Multi-State Time-Delay Neural Network Architecture 

The input representation, which is described in the previous section, is used 
with a connectionist recognizer both for single character and cursive hand- 
writing recognition tasks. This recognizer integrates the recognition and 
segmentation of words into a single network architecture, the Multi-State Time 
Delay Neural Network (MS-TDNN). Words are represented as a sequence of char- 
acter, where each character is modeled by one or more states. For the results in 
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this paper, each character is modeled by 3 states, representing the initial, middle, 
and final sections of a character. 

The basic MS-TDNN architecture is shown in Figure 6. Only a brief descrip- 
tion of its operation with respect to handwriting recognition is given here; 
references (Haffner et al. 1991), (Haffner and Waibel I992), and (Hild and Walbel 
1993) describe in detail the MS-TDNN and its applications in continuous speech 
recognition. 

The first three layers constitute a standard TDNN with sliding input windows 
of certain sizes. This TDNN computes scores for each state and for each time 
frame in the states layer. In the dynamic time warping layer (DTW layer) each 
word of the vocabulary is modeled by a sequence of states, the corresponding 
scores are simply copied from the states layer into the word models of the DTW 
layer. An optimal alignment path is found by the DTW algorithm for each word 
and the sum of all activations along this optimal path is taken as the score for 
the word output unit. 

output 
scores 

layer 

• 

~ o2 

"zero"  

states 
_~ l aye r  *~ 

hidden 
"~ layer 

input 
layer 

\ 

"one"  

o0 
OI 
02 
nO 
ni 
n2 
eO 
el 
e2 

o v ~  n r .  e 

J 

• • • 

Q • Q 

Fig. 6. 

time 

} tel. x-y-changes 

} context bitmaps 

The Multi-State Time Delay Neural Network architecture. 
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Once the network is trained on a particular vocabulary other vocabularies of 
varying sizes can be used without retraining, just by replacing the word models 
in the DTW layer. 

All network parameters such as the number of states per character, the size 
of the input windows, or the number of hidden units are optimized manually 
for the results presented in this paper, but can also be optimized automatically 
by the Automatic Structure Optimization (ASO) algorithm that we have proposed 
elsewhere (Bodenhausen et al. 1993). By using the ASO algorithm, no time- 
consuming manual tuning of these network parameters for particular handwriting 
tasks and training set sizes is necessary while achieving optimal recognition 
performance. 

3.3. Experiments and Results 

We have tested the input representation together with the MS-TDNN architec- 
ture both on single character recognition tasks and cursive (continuous) 
handwriting recognition tasks. The handwriting databases used for training and 
testing of the MS-TDNN were collected at the University of Karlsruhe. All data 
is recorded on a pressure sensitive graphics tablet with a cordless stylus, which 
produces a sequence of time ordered 3-dimensional vectors (at a maximum report 
rate of 205 dots per second) consisting of the x-y-coordinates and a pressure value 
for each dot. All subjects had to write a set of single words from a 400 word 
vocabulary, covering all lower case letters, and at least one set of isolated lower 
case letters, upper case letters, and digit. For the continuous handwriting results 
presented in this paper only the data of one of the authors was used. All data 
is preprocessed as described before. 

Table 2 shows results for different writer independent, single character recog- 
nition tasks (isolated characters). Writer dependent recognition results for cursive 
handwriting (isolated words) can be found in Table 3. The network used for 
the results in Table 3 is trained with aprox. 2000 training patterns from a 400 

Table 2. Single character recognition results (writer independent). 

Task Training patterns Test patterns Recognition rate (%) 

0_9 1600 200 (20 writers) 99 
A Z 2000 520 (20 writers) 95 
a_z 2000 520 (20 writers) 93 

Table 3. Results for different writer dependent cursive handwriting tasks. 

Task Vocabulary size (words) Test patterns Recognition rate (%) 

msm 400 a 400 800 98 
msm 400 b 400 800 97 
msm_1000 1000 2000 95 
msm_ 10000 10000 2000 87 
rnsm_20000 20000 2000 83 

157 



312 ALEX WAIBEL ET AL. 

word vocabulary (msm_400_a) and tested without any retraining on different 
vocabularies with sizes from 400 up to 20000 words. Vocabularies msm_400_b, 
msm_1000, msm_10000, and msm_20000 are completely different from the 
vocabulary on which the network was trained and were selected randomly from 
a 100000 word vocabulary (Wall Street Journal Vocabulary). First experiments 
on writer independent, cursive handwriting databases have shown recognition 
rates of more than 76% on a 400 word vocabulary. 

These result show that the proposed input representation and MS-TDNN archi- 
tecture can be used both for single character recognition and cursive handwriting 
recognition tasks with high recognition performance. The MS-TDNN performs 
well not only on the vocabulary it was trained for (see task msm_4OO_a), but 
also for other vocabularies it has never seen before (see task msm4OO_b), even 
on much larger vocabularies (see tasks msm_lO00, msm_lO000, and msm_20000). 

4. GESTURE RECOGNITION 

We have been investigating pen-based gestures drawn using a stylus on a digi- 
tizing tablet. This kind of gesture is simpler to handle than hand gestures captured 
with a camera but still allows for rich and powerful expressions, as any editor 
who has to mark up manuscripts knows. Pen-based gestures are becoming popular 
on hand-held computers, but the focus of our research is mainly on how gestures 
can be effectively combined with other input modalities, because using gestures 
as the sole input channel seems to be a still clumsy way of issuing commands 
to computers. In order to pursue this direction of investigation, we developed a 
multimodal text editor capable of recognizing speech and gesture commands 
(Vo and Waibel 1993). 

The initial multimodal editor we developed currently uses 8 editing gestures 
(see Table 4). Some of these were inspired by standard mark-up symbols used 
by human editors. Others, such as the "delete" symbols, are what most people 
would automatically use when correcting written text with normal pencil and 
paper. 

Table 4. Text-editing gestures, 

( 9  Select ( Begin selection 

X Delete ,~ End selection 

f Delete ~ Transpose 

A Paste ,...V" Split line 

We use a temporal representation of gestures. A gesture is captured as a 
sequence of coordinates tracking the stylus as it moves over the tablet's surface, 
as opposed to a static bitmapped representation of the shape of the gesture. 
This dynamic representation was motivated by its successful use in handwritten 
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character recognition (Section 3 and Guyon et al. 1991). Results of experiments 
described in (Guyon et al. 1991) suggest that the time-sequential signal contains 
more information relevant to classification than the static image, leading to 
better recognition performance. 

In our current implementation, the stream of data from the digitizing tablet 
goes through a preprocessing phase (Guyon et al. 1991). The coordinates are 
normalized and resampled at regular intervals to eliminate differences in size 
and drawing speed; from these resampled coordinates we extract local geo- 
metric information at each point, such as the direction of pen movement and 
the curvature of the trajectory. These features are believed to hold discrimina- 
tory information that could help in the recognition process and thus can give 
the neural network recognizer appropriate information to find temporal regular- 
ities in the input stream. 

4.2. Gesture Classification Using Neural Networks 

We use a TDNN (Waibel et al. 1989) (see Figure 7) to classify each preprocessed 
time-sequential signal as a gesture among the predefined set of 8 gestures. Each 
gesture in the set is represented by an output unit. Each data point in the input 
stream is represented by 8 input units corresponding to the 8 features extracted 
during the preprocessing phases; these include pen coordinates and pressure as 
well as local geometric information as mentioned above. The network is trained 
on a set of manually classified gestures using a modified backpropagation 
algorithm (Waibel et al. 1989). 

During training, the 10 units in the first hidden layer essentially become 
"feature detectors" that extract low-level patterns from the input, and the 8 hidden 
units in the next layer learn to spot those features that contribute to the 
recognition of each of the 8 gestures. Each output unit integrates over time the 
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Fig. 7. TDNN architecture for gesture recognition. 
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evidence from the corresponding unit in the second hidden layer. The output 
unit with the highest activation level determines the recognized gesture. 

The data samples used to train and evaluate the gesture recognizer were 
collected from a single "gesturer." Among the collected samples, 640 samples 
(80 per gesture) form the training set, and 160 samples (20 per gesture) form 
an independent test set which was never seen by the network during training. 
Our gesture recognizer achieves almost 99% recognition rate on both the training 
data and the test set. 

4.3. Learning in Gesture~Handwriting Recognition 

The usefulness of gesture and handwriting recognition depends largely on the 
ability to adapt to new users because of the great range of variability in the 
way individuals write or make gestures. No matter how many tokens we put in 
the training database to cover different gestures that mean "delete text", for 
example, there may always be totally different gestures that are not yet part of 
the gesture vocabulary. This is particularly troublesome for neural-network-based 
systems because usually the network has to be retrained using all the old training 
data mixed with a large number of new examples, in order to be able to recog- 
nize new patterns without catastrophically forgetting previously learned patterns. 
Because of the large number of examples needed and the long retraining time, 
this clearly cannot be done on-line in a way that would enable the user to continue 
to work productively. A good system should be able to query the user for cor- 
rection and remember the particular input pattern that caused the error in order 
to make intelligent guesses when similar inputs occur. Such a fallback method 
would offer a reasonable level of performance until the network can be retrained 
off-line. 

We have developed a method to accomplish this using an Incremental TDNN 
(ITDNN) architecture (Vo 1994). We start by training a regular TDNN using 
all the available data to obtain a base network. When a recognition error occurs 
during use, the system queries the user for the correct output and creates template- 
matching hidden units that influence the output units via excitatory or inhibitory 
connections (see Figure 8). Template matching is accomplished by making the 
weight matrix of the extra unit proportional to the activation matrix of the first 
hidden layer; this was deemed better than matching the input layer directly 
because during training by backpropagation the units of the first hidden layer 
have learned to spot input features relevant to classification. 

In order to retain the time-shift invariant property that makes the TDNN such 
a powerful classifier of time-sequential patterns, we assemble the extra units 
out of subunits, each one having weights matching a different section of the 
activation template, that is, the activation matrix of the first hidden layer. Thus 
the extra "units" can in fact be thought of as extra hidden layers. The purpose 
of this is to enable these subunits to slide along the time dimension just like 
the regular TDNN units. Since consecutive subunits (within the same extra unit) 
will tend to have high activations in consecutive time slices, we employ a time- 
warping technique to compute match scores (see Figure 9). If a subsequent 
input pattern is similar to the template used to create an extra unit, the extra 
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Fig. 9. Activation trace of an extra unit composed of four subunits. 

unit is turned on and thus able to influence the corresponding output unit. We 
use extra units to fix recognition errors by lowering outputs that are incorrectly 
high via inhibitory (negative weight) connections, and by boosting outputs that 
are incorrectly low via excitatory (positive weight) connections. 

We tested the incremental learning capability of the ITDNN in a series of 
experiments involving simple handwritten digit recognition (Vo 1994). This task 
was chosen because it is simple enough so that we can easily eliminate the 
influence of factors extraneous to what we want to measure: what is the degra- 
dation in performance on old input patterns when the ITDNN is trained on new 
input patterns. Although the development of the ITDNN was motivated by our 
gesture recognition research, handwriting recognition is very similar and poses 
the same problems as gesture recognition, hence the results of the experiments 
described here are still relevant. 
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We trained a base network with examples of handwritten digits, each written 
in a consistent way. We then tested the network on a different variation of one 
digit (namely the digit 6 written in a clockwise direction rather than counter- 
clockwise as in the training set). The base TDNN was unable to recognize any 
of the new examples. When a single extra unit was added, the resulting ITDNN 
was able to correctly classify 99% of the new examples while "forgetting" only 
0.6% of the old training examples. 

These experiments show that the ITDNN is capable of quickly adding coverage 
for a new input variation without forgetting previously learned information and 
thus is a good candidate for systems requiring on-line, immediate recognition 
improvements during use, such as gesture and handwriting recognizers for pen- 
based computers. Systems capable of incremental learning will be able to adapt 
quickly to a new user at a reasonable level of performance while allowing pro- 
ductive work to continue. During subsequent work sessions new data can be 
unobtrusively collected for off-line training of a full network with regular archi- 
tecture. This presumably superior network can then replace the patched one. 

4.4. The Language o f  Speech and Gesture 

Figure 10 shows a block diagram of the multimodal interpreter module in our 
speech- and gesture- based text editor. 

The TDNN-based gesture recognizer was described in Section 4.2. For the 
speech component we use many alternative speech recognition strategies; these 
include a keyword spotter developed by Zeppenfeld (1992, 1993) as well as 
full-scale continuous speech recognition modules such as Sphinx (Huang et al. 
1993) and Janus (Wosczyna et al, 1993). The speech recognition module is 
coupled with a Recursive Transition Network parser (Ward 1991) using a semantic 
grammar developed for the editing task. For the keyword-spotting version, the 
word spotter was trained to spot 11 keywords representing editing commands such 
as move, delete . . . .  and textual units such as character, word . . . .  The effect 
is to let the user speak naturally without having to worry about grammar and 
vocabulary, as long as the utterance contains the relevant keywords. For example, 
an utterance such as "Please delete this word for me" is equivalent to "Delete 
word". In the case of continuous speech recognition, the semantic-fragment parser 

Gesture / ~]esture 
recognizer I ~  

! Word spotter 
I & Parser I~ frameSpeech 

Frame 
merger 

unified 
frame _1 Commend 

-I interpreter 

Fig. 10, Joint interpretation of gesture and speech. 
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achieves essentially the same effect by matching fragments of the recognized 
speech against predefined templates to find semantically meaningful parts of 
the text. It then creates a frame consisting of slots representing various compo- 
nents of a plausible semantic interpretation, and fills in any slot it can using 
semantic fragments found in the hypothesized sentence. 

The interpretation of multimodal inputs was based on semantic frames and 
slots representing parts of an interpretation of user intent. The speech and gesture 
recognizers produce partial hypotheses in the form of partially filled frames. 
The output of the interpreter is obtained by unifying the information contained 
in the partial frames. 

In the system each frame has slots named action and scope (what to operate 
on.) Within scope there are subslots named type and textual-unit. The possible 
scope types include "point" and "box"; the textual units include "character," 
"word," " l i n e " . . .  

Consider an example in which a user draws a circle and says "Please delete 
this word". The gesture-processing subsystem recognizes the circle and fills in 
the coordinates of the "box" scope in the gesture frame as specified by the position 
and size of the circle. The word spotter produces "delete word", from which 
the parser fills in the action and textual unit slot in the speech frame. The frame 
merger then outputs a unified frame in which action ~- delete, scope.type = box, 
and scope.textual-unit = word. From this the command interpreter constructs 
an editing command to delete the word circled by the user. 

One important advantage of this frame-based approach is its flexibility, which 
will facilitate the integration of more than two modalities, and across acoustic, 
visual, and linguistic ones. All we have to do is define a general frame for 
interpretation and specify the ways in which slots can be filled by each input 
modality. 

5. CONCLUSIONS 

In this paper, we have presented research that is aimed at producing more natural, 
more robust (redundant) and more efficient human-computer interfaces, by 
exploring the combination of several different human communication modali- 
ties. Such combinations naturally involve acoustic but also visual and gestural 
expressions of human intent and form a multimodal "language" we seek to decode. 
We have shown that more robust recognition can indeed be achieved by com- 
bining speech with lipreading, i.e., visual and acoustic modalities. We have also 
shown an on-line handwritten character recognizer, that could be combined with 
speech and gesture. Finally, we have demonstrated that speech and gesture can 
be joined to provide more natural, robust interpretation of user intent, as speech 
and gesture both deliver complementary cues to complete the semantics of a mul- 
timodal "speech" act. Further research currently in progress includes exploring 
eye- and face- tracking and sound source localization, to deliver multimodal 
cues more accurately, even when a person is moving about the room, and to deter- 
mine focus of attention and reference of human interaction. 
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