IN DEPTH
NEURAL NETWORKS

Building Blocks
for Speech

Modular neural networks are a new approach
to high-performance speech recognition

Alex Waibel and John Hampshire

ome speech-recog-
nition abilities that
we take for grant-

.+ ed—understanding a
conversation involving sev-
eral different speakers over
lots of extraneous noise, for
instance—are still beyond the
reach of even the most power-
ful supercomputer. This may
seem strange, since the
human brain can’t hope to
match the arithmetical per-
formance of a pocket calcula-
tor, but it does indicate the
complexity of automatic
speech recognition. Modular
neural networks, however,

might hold the key to achiev-
ing rapid and more-reliable
machine-based speech recog-
nition.

We recognize speech by
applying an enormous body of
knowledge to rapidly inter-
pret the audio signals from the
world around us. This knowl-
edge ranges from low-level acoustic fea-
tures to high-level facts about the world
and the speaker’s intent. These features
and facts are heavily interrelated. No
piece of the speech-recognition puzzle
can be considered by itself, nor can
pieces be evaluated sequentially. Rather,
each provides a constraint that, together
with many other facts and constraints,
forms a total picture.
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rules to rapidly interpret the
spoken word. If speech-rec-
ognition systems could learn
important speech knowledge
automatically and represent
this knowledge in a parallel
distributed fashion for rapid
evaluation, they would then
be able to overcome the defi-
ciencies of current systems.

s

Neural Nets in Speech Recognition

The limited ability of current computer
models to absorb and apply a large body
of facts restricts efforts to achieve auto-
matic recognition of human speech. Ef-
fective models must determine, main-
tain, and program all necessary facts and
rules of speech into a system. They must
then integrate the massive number of in-
terrelationships between these facts and

Such a system would mimic
the functions of the human
brain, which consists of sev-
eral billion simple, inaccu-
rate, and slow processors that
perform reliable speech
recognition.

The development of paral-
lel distributed processing
(PDP) or neural-network
models and the development
of automatic learning algo-
rithms (see reference 1) are
two very important steps in
the development of reliable
speech-recognition systems.
You can implement algo-
rithms that simulate PDP learning
models on anything from a microcom-
puter to a supercomputer (see reference
2). These algorithms are even available
commercially.

Two major problems have to be ad-
dressed, however, before neural-network
models become useful for speech recog-
nition: time and scaling.
continued
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Figure 1: The left side (in red) shows the time-delay feature
create activations in the first hidden layer (a). Activations in

of the network. Three 10-millisecond input slices are combined to
the second hidden layer (b) are created by combining five slices

from the first hidden layer. The right side (in blue) shows the connections from the input layer to node 4 of the first hidden layer.

When an input (c) maiches the pattern of the connections (d

, the node is activated strongly (e).
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Speech and Time

Speech is a dynamic signal, and a
speech-recognition system must be able
to classify sounds without knowing when
a particular sound will occur. It must
also be able to capture the time-varying
properties—the signature—of speech in
feature space rather than simply taking
static “snapshots” of the signal. These
requirements are addressed by the Time-
Delay Neural Network (TDNN) (see ref-
erence 3).

Rather than trying to decide whether a
particular sound is, for example, a letter
b (the speech signal may not contain use-
ful information at certain points in
time), the TDNN scans the input for
clues that provide the evidence it needs to
construct an overall recognition deci-
sion. Using this method, the TDNN has
demonstrated performance superior to
that of other speech-recognition models
in small but difficult recognition tasks.

The TDNN shown in figure 1a is de-
signed to discriminate the voice-stop
_ consonants b, d, and g as they occur in a
“ large database of isolated spoken words.
At the output, three units represent each
of the three phoneme categories. (Pho-
nemes are the unique sounds of a spoken
language; they form the acoustic-phonet-
ic building blocks of speech.) The input
layer of the network consists of 15 time
slices of speech. Each one of these time
slices is a frequency spectrum represent-
ing 10 milliseconds of the speech wave-
form—a 10-ms voiceprint of the speaker.
Each spectrum, in turn, consists of 16
coefficients representing frequencies
ranging from the lower limit of hearing
(about 20 Hz) to over 5 kHz.

In many neural networks, each node
in a given layer is connected to all the
nodes in the next layer. This is not the
case, however, for the TDNN. The rea-
sons for this are related to the temporal
‘complexity of human speech.

Windows to the Spoken Word

Rapid changes in human speech occur
over several tens of milliseconds. There-
fore, a 30-ms “window” of speech (or an
overlapping series of such windows) can
capture the local acoustic-phonetic
events that act as identifying features of a
- particular phoneme. The TDNN groups
three 10-ms time slices from the input
layer into a 30-ms window. Each coeffi-
cient in this window connects to eight
nodes in the first hidden layer of the
TDNN. Each of these nodes forms a con-
densed feature representing important
cues that the network looks for in the in-
put. The network shifts the window one
time slice at a time across the input (a

range of 150 ms of speech), creating 13
distinct firings at the eight nodes of the
first hidden layer.

The grouping scheme in the first hid-
den layer and its connections to the sec-
ond hidden layer are analogous to the in-
put layer’s groupings and connections to
the first hidden layer. The firing patterns
of the eight nodes in the first hidden layer
over a five-time-slice window form the

has learned—without
any supervision—
the importance of
rising and falling
Jformant transitions in
discriminating between
similar sounds.

input to each of three nodes in the second
hidden layer. As this window sweeps
over the activation patterns in hidden
layer 1, it generates activations at the
three nodes in hidden layer 2. These
form preliminary votes for one of the
output’s three phoneme categories.

Because their weights are fixed across
time shifts, the connections between the
layers allow the network to find key fea-
tures of the speech waveform despite the
fact that these features may be spread
across time or shifted along the time
axis. Figure la illustrates the activation
of a TDNN when given the voiced conso-
nant d in the syllable do. In this figure,
negative node activations in the input
layer are gray, and positive node activa-
tions throughout the network are black.
The degree of node activation is propor-
tional to the size of the rectangle depict-
ing a given node.

In figure 1c, connections from the in-
put-layer window to node 4 of the first
hidden-layer time slice are shown to the
side of the TDNN. (Unlike activations,
positive connections are white and nega-
tive connections are black; the back-
ground is gray.) The activation level of
node 4 in the first hidden layer at a given
time slice is obtained by taking the acti-
vation of each of the 48 nodes in the input

layer window, multiplying this node acti-
vation by the strength of its connection to
node 4, and adding up these 48 products.
This sum forms the input to node 4,
which uses a thresholding (or “squash-
ing”’) function to produce the output acti-
vation shown.

Note that the connections from the in-
put layer to node 4 of the first hidden
layer are positive for midrange frequen-
cies in the input that rise or fall over
time. The positive (white) connections
that slope downward over time provide a
strong input stimulus to node 4 when
they detect a downward-sloping spec-
trum over time in the input layer. The ar-
row in figure 3 marks the onset of the u
sound in do. Beginning at this point, the
nodes in the input layer corresponding to
frequencies from 800 Hz to 1600 Hz
show the downward-sloping activation
pattern over time indicative of a falling
Sformant. (A formant is a quality of sound
representative of vowels.) This results in
a strong firing of node 4 in the first hid-

" den layer.

Falling midrange frequencies are
characteristic of the utterance do shown
in figure 1c. There is a great deal of ex-
perimental evidence showing that
humans rely heavily on the perception of
this acoustic event (a formant transition)
for accurate speech recognition. The
positive connections in the figure that
slope upward over time detect rising for-
mant transitions, which are also vital to
understanding human speech. Clearly,
the TDNN has learned—without any ex-
plicit supervision—the importance of
both rising and falling formant transi-
tions for accurate discrimination of the b,
d, and g phonemes.

Because the TDNN scans across the
input speech signal, it is relatively insen-
sitive to the timing of vowel onset for the
voice stops b, d, and g. A version of the
same utterance shown in figure lc
shifted forward in time results in the
same strong output activation indicating
the detection of the d phoneme. The ad-
vance of vowel onset merely causes the
hidden units to fire earlier, in synchrony
with events in the input. The combined
accumulated evidence from these firings
still allows the network to recognize the
utterance as a d, as opposedtoaborag.

The TDNN has been experimentally
evaluated on a number of small pho-
nemic discrimination tasks and has
achieved excellent recognition perfor-
mance. The voiced consonants b, d, and
g, for example, can be detected in more
than 98 percent of the trials with a
TDNN trained on data from a single

continued
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Accelerated Learning

Coincident with the development of mod-
ular design techniques, recent advances
in neural-network learning strategies and
hardware and software implementations
have led to dramatic improvements in

seemed impossible
a short time ago
will soon be done on
a personal computer.

network processing speeds. Learning
speeds are also accelerating. These can
be increased by improving the metrics
that a network uses to measure how well
it classifies training data.

Speed can also be increased signifi-
cantly by improving the numerical
search techniques that form the basis of
network learning. Research in this area
has resulted in learning procedures that
converge to near-optimal results much
more rapidly than before (see references
4, 5, and 6). Indeed, improvements in
learning algorithms have brought the
training time for a typical TDNN task
down from three days of run time on a
supercomputer to 8 minutes of CPU time

on a high-end engineering workstation.

High-speed computing capabilities for
neural-network training are becoming
more accessible to personal computer
and workstation users. Several manufac-
turers now offer plug-in floating-point
accelerator boards for microcomputers
that yield speeds of more than one mil-
lion floating-point operations per sec-
ond, while workstation manufacturers
are producing desktop machines that
rival super-minicomputers produced just
a few years ago. Massively parallel con-
nectionist hardware designs are also
under development in various laborato-
ries (see reference 7).

Speech recognition using modular
neural networks is progressing rapidly.
What seemed impossible a short time
ago will soon be done on a personal com-
puter. Advances in system-design tech-
niques, learning software, and underly-
ing hardware are creating the computing
power required for very-large-scale neu-
ral-network tasks. All these advances
bring connectionist design for speech
and signal interpretation within reach of
commonly available and affordable
technology. ®
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