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Abstract 

The Multi-State Time Delay Neural Network (MS-TDNN) inte­
grates a nonlinear time alignment procedure (DTW) and the high­
accuracy phoneme spotting capabilities of a TDNN into a connec­
tionist speech recognition system with word-level classification and 
error backpropagation. We present an MS-TDNN for recognizing 
continuously spelled letters, a task characterized by a small but 
highly confusable vocabulary. Our MS-TDNN achieves 98.5/92.0% 
word accuracy on speaker dependent/independent tasks, outper­
forming previously reported results on the same databases. We pro­
pose training techniques aimed at improving sentence level perfor­
mance, including free alignment across word boundaries, word du­
ration modeling and error backpropagation on the sentence rather 
than the word level. Architectures integrating submodules special­
ized on a subset of speakers achieved further improvements. 

1 INTRODUCTION 

The recognition of spelled strings of letters is essential for all applications involving 
proper names, addresses or other large sets of special words which due to their sheer 
size can not be in the basic vocabulary of a recognizer. The high confusability of the 
English letters makes the seemingly easy task a very challenging one, currently only 
addressed by a few systems, e.g. those of R. Cole et. al. [JFC90, FC90, CFGJ91] 
for isolated spoken letter recognition. Their connectionist systems first find a broad 
phonetic segmentation, from which a letter segmentation is derived, which is then 
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Figure 1: The MS-TDNN recognizing the excerpted word 'B'. Only the activations 
for the words 'SIL', 'A', 'B', and 'c' are shown. 

classified by another network. In this paper, we present the MS-TDNN as a 
connectionist speech recognition system for connected letter recognition. After de­
scribing the baseline architecture, training techniques aimed at improving sentence 
level performance and architectures with gender-specific sub nets are introduced. 

Baseline Architecture. Time Delay Neural Networks (TDNNs) can combine the 
robustness and discriminative power of Neural Nets with a time-shift invariant ar­
chitecture to form high accuracy phoneme classifiers [WHH+S9]. The Multi-State 
TDNN (MS-TDNN) [HFW91, Haf92, HW92], an extension of the TDNN, is capable 
of classifying words (represen ted as sequences of phonemes) by integrating a nonlin­
ear time alignment procedure (DTW) into the TDNN architecture. Figure 1 shows 
an MS-TDNN in the process of recognizing the excerpted word 'B', represented by 
16 melscale FFT coefficients at a 10-msec frame rate. The first three layers consti­
tute a standard TDNN, which uses sliding windows with time delayed connections 
to compute a score for each phoneme (state) for every frame, these are the activa­
tions in the "Phoneme Layer". In the "DTW Layer" , each word to be recognized 
is modeled by a sequence of phonemes. The corresponding activations are simply 
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copied from the Phoneme Layer into the word models of the DTW Layer, where an 
optimal alignment path is found for each word. The activations along these paths 
are then collected in the word output units. All units in the DTW and Word Layer 
are linear and have no biases. 15 (25 to 100) hidden units per frame were used 
for speaker-dependent (-independent) experiments, the entire 26 letter network has 
approximately 5200 (8600 to 34500) parameters. 

Training starts with "bootstrapping", during which only the front-end TDNN is 
used with fixed phoneme boundaries as targets. In a second phase, training is per­
formed with word level targets. Phoneme boundaries are freely aligned within given 
word boundaries in the DTW layer. The error derivatives are backpropagated from 
the word units through the alignment path and the front-end TDNN. 
The choice of sensible objective functions is of great importance. Let Y = 
(Yl, ... ,Yn) the output and T = (tl, ... , tn ) the target vector. For training on 
the phoneme level (bootstrapping), there is a target vector T for each frame in 
time, representing the correct phoneme j in a "1-out-of-n" coding, i.e. ti = Dij. To 
see why the standard Mean Square Error (MSE = l:?:l (Yi - ti)2) is problematic 
for "1-out-of-n" codings for large n (n = 59 in our case), consider for example that 
for a target (1.0,0.0, ... ,0.0) the output vector (0.0, ... ,0.0) has only half the error 
than the more desirable output (1.0,0.2, ... ,0.2). To avoid this problem, we are 
usmg 

n 

i=1 

which (like cross entropy) punishes "outliers" with an error approaching infinity for 
Iti - yd approaching 1.0. For the word level training, we have achieved best results 
with an objective function similar to the "Classification Figure of Merit (CFM)" 
[HW90], which tries to maximize the distance d = Yc - Yhi between the correct score 
Yc and the highest incorrect score Yhi instead of using absolute target values of 1.0 
and 0.0 for correct and incorrect word units: 

ECFM(T, Y) = f(yc - Yhd = f(d) = (1 - d)2 

The philosophy here is not to "touch" any output unit not directly related to correct 
classification. We found it even useful to apply error backpropagation only in the 
case of a wrong or too narrow classification, i.e. if Yc - Yhi < DllaJety...margin. 

2 IMPROVING CONTINUOUS RECOGNITION 

2.1 TRAINING ACROSS WORD BOUNDARIES 

A proper treatment of word1 boundaries is especially important for a short word 
vocabulary, since most phones are at word boundaries. While the phoneme bound­
aries within a word are freely aligned by the DTW during "word level training" , the 
word boundaries are fixed and might be error prone or suboptimal. By extending 
the alignment one phoneme to the left (last phoneme of previous word) and the 
right (first phoneme of next word), the word boundaries can be optimally adjusted 

1 In our context, a "word" consists of one spelled letter, and a "sentence" is a continu­
ously spelled string of letters. 
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Figure 2: Various techniques to improve sentence level recognition performance 
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in the same way as the phoneme boundaries within a word. Figure 2(a) shows an 
example in which the word to recognize is surrounded by a silence and a 'B', thus 
the left and right context (for all words to be recognized) is the phoneme 'sil' and 
'b', respectively. The gray shaded area indicates the extension necessary to the 
DTW alignment. The diagram shows how a new boundary for the beginning of 
the word 'A' is found. As indicated in figure 3, this techniques improves continuous 
recognition significantly, but it doesn't help for excerpted words. 

2.2 WORD DURATION DEPENDENT PENALIZING OF 
INSERTION AND DELETION ERRORS 

In "continuous testing mode" , instead of looking at word units the well-known "One 
Stage DTW" algorithm [Ney84) is used to find an optimal path through an unspec­
ified sequence of words. The short and confusable English letters cause many word 
insertion and deletion errors, such as "T E" vs. ''T'' or "0" vs. "0 0", therefore 
proper duration modeling is essential. 
As suggested in [HW92], minimum phoneme duration can be enforced by "state 
duplication". In addition, we are modeling a duration and word dependent penalty 
Penw(d) = log(k + probw(d», where the pdf probw(d) is approximated from the 
training data and k is a small constant to avoid zero probabilities. Penw (d) is 
added to the accumulated score AS of the search path, AS = AS + Aw * Penw (d), 
whenever it crosses the boundary of a word w in Ney's "One Stage DTW" algo­
rithm, as indicated in figure 2(b). The ratio Aw , which determines the degree of 
influence of the duration penalty, is another important degree of freedom. There 
is no straightforward mathematically exact way to compute the effect of a change 
of the "weight" Aw to the insertion and deletion rate. Our approach is a (pseudo) 
gradient descent, which changes Aw proportional to E(w) = (#insw - #delw)/#w, 
i.e. we are trying to maximize the relative balance of insertion and deletion errors. 

2.3 ERROR BACKPOPAGATION AT THE SENTENCE LEVEL 

Usually the MS-TDNN is trained to classify excerpted words, but evaluated on con­
tinuously spoken sentences. We propose a simple but effective method to extend 
training on the sentence level. Figure 2( c) shows the alignment path of the sentence 
"e A B", in which a typical error, the insertion of an 'A', occurred. In a forced 
alignment mode (i.e. the correct sequence of words is enforced), positive training is 
applied along the correct path, while the units along the incorrect path receive neg­
ative training . Note that the effect of positive and negative training is neutralized if 
the paths are the same, only differing parts receive non-zero error backpropagation. 

2.4 LEARNING CURVES 

Figure 3 demonstrates the effect of the various training phases. The system is 
bootstrapped (a) during iteration 1 to 130. Word level training starts (b) at iteration 
110. Word level training with additional "training across word boundaries" (c) is 
started at iteration 260. Excerpted word performance is not improved after (c), but 
continuous recognition becomes significantly better, compare (d) and (e). In (d), 
sentence level training is started directly after iteration 260, while in (e) sentence 
level training is started after additional "across boundaries (word level) training". 
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Figure 3: Learning curves (a = bootstrapping, b,c = word level (excerpted words), 
d,e = sentence level training (continuous speech)) on the training (0), crossvalida­
tion (-) and test set (x) for the speaker-independent RM Spell-Mode data. 

3 GENDER SPECIFIC SUBNETS 

A straightforward approach to building a more specialized system is simply to train 
two entirely individual networks for male and female speakers only. During training, 
the gender of a speaker is known, during testing it is determined by an additional 
"gender identification network" , which is simply another MS-TDNN with two out­
put units representing male and female speakers. Given a sentence as input, this 
network classifies the speaker's gender with approx. 99% correct. The overall mod­
ularized network improved the word accuracy from 90.8% (for the "pooled" net, 
see table 1) to 91.3%. However, a hybrid approach with specialized gender-specific 
connections at the lower, input level and shared connections for the remaining net 
worked even better. As depicted in figure 4, in this architecture the gender identifi­
cation network selects one of the two gender-specific bundles of connections between 
the input and hidden layer. This technique improved the word accuracy to 92.0%. 
More experiments with speaker-specific subnetworks are reported in [HW93] . 

4 EXPERIMENTAL RESULTS 

Our MS-TDNN achieved excellent performance on both speaker dependent and 
independent tasks. For speaker dependent testing, we used the "eMU Alph­
Data", with 1000 sentences (Le. a continuously spelled string of letters) from each 
of 3 male and 3 female speakers. 500, 100, and 400 sentences were used as train-
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Figure 4: A network architecture with gender-sp ecific and shared connections. Only 
the front-end TDNN is shown. 

ing, cross-validation and test set, respectively. The DARPA Resource Management 
Spell-Mode Data were used for speaker independent testing. This data base 
contains about 1700 sentences, spelled by 85 male and 35 female speakers. The 
speech of 7 male and 4 female speakers was set aside for the test set, one sentence 
from all 109 and all sentences from 6 training speakers were used for crossvalidation. 
Table 1 summarizes our results. With the help of the training techniques described 
above we were able to outperform previously reported [HFW91] speaker dependent 
results as well as the HMM-based SPHINX System. 

5 SUMMARY AND FUTURE WORK 

We have presented a connectionist speech recognition system for high accuracy 
connected letter recognition. New training techniques aimed at improving sentence 
level recognition enabled our MS-TDNN to outperform previous systems of its own 
kind as well as a state-of-the art HMM-based system (SPHINX). Beyond the gender 
specific subnets, we are experimenting with an MS-TDNN which maintains several 
"internal speaker models" for a more sophisticated speaker-independent system. In 
the future we will also experiment with context dependent phoneme models. 
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