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ABSTRACT

Lip reading provides useful information in speech percep-
tion and language understanding, especially when the audi-
tory speech is degraded. However, many current automatic
lip reading systems impose some restrictions on users. In
this paper, we present our research e�orts, in the Interactive
System Laboratory, towards unrestricted lip reading. We
�rst introduce a top-down approach to automatically track
and extract lip regions. This technique makes it possible
to acquire visual information in real-time without limiting
user's freedom of movement. We then discuss normaliza-
tion algorithms to preprocess images for di�erent lightning
conditions (global illumination and side illumination). We
also compare di�erent visual preprocessing methods such
as raw image, Linear Discriminant Analysis (LDA), and
Principle Component Analysis (PCA). We demonstrate the
feasibility of the proposed methods by development of a
modular system for exible human-computer interaction via
both visual and acoustic speech. The system is based on
an extension of an existing state-of-the-art speech recogni-
tion system, a modular Multiple State-Time Delayed Neural
Network (MS-TDNN) system. We have developed adap-
tive combination methods at several di�erent levels of the
recognition network. The system can automatically track
a speaker and extract his/her lip region in real-time. The
system has been evaluated under di�erent noisy conditions
such as white noise, music, and mechanical noise. The ex-
perimental results indicate that the system can achieve up
to 55% error reduction using additional visual information.

1. INTRODUCTION

The visual information is complementary to the acoustic in-
formation complementary in human speech perception, es-
pecially in noisy environments. Humans can determine a
confused phoneme using both acoustic and visual informa-
tion because many of the phonemes, which are close to each
other acoustically, might be very di�erent from each other
visually. The connection between visual and acoustic infor-
mation in speech perception was shown by McGurk with the
so-called McGurk E�ect [1]. Visual information from the fa-
cial region, such as gestures, expressions, head-position, eye-
brows, eyes, ears, mouth, teeth, tongue, cheeks, jaw, neck,
and hair, could improve the performance of machine recog-
nition [2]. Much research has been directed to developing
systems that combine the acoustic and visual information
to improve accuracy of speech recognition. These systems
mainly focus on integrating acoustic and visual information
from the oral-cavity region of a speaker with acoustic in-

formation. Two basic approaches have been used in these
systems to combine acoustic and visual information. The
�rst approach uses a comparator to merge the results ob-
tained independently from acoustic and visual sources. The
second approach performs recognition using a vector that
contains both acoustic and visual information. Most sys-
tems reported better performances using both acoustic and
visual information than using only one source of information
[3, 4, 5, 6, 7, 8, 9, 10].
Most current systems, however, impose certain con-

straints on users, such as using a head-mounted camera or
pacing reective markers on a user's lips. It is our goal to
remove these constraints. In this paper, we present our re-
search e�orts towards unrestricted lip reading. Two major
reasons cause low quality of visual data in lip-reading: user
movement and environment change. We present a top-down
approach to automatically track and extract lip regions. We
use a real-time face tracker to locate a user while the user
moves freely. The lip-�nder module locates the lips within
the found face and provides the coordinates of the mouth
corners to lip/speech-recognition subsystem, which extracts
the relevant information from the image. This technique
makes it possible to acquire visual information in real-time
without limiting user's freedom of movement. We then
discuss normalization algorithms to preprocess images for
di�erent lightning conditions (global illumination and side
illumination) by comparing di�erent visual preprocessing
methods such as raw image, LDA, and PCA. We show that
an adaptive method can automatically adjust parameters to
di�erent noise conditions. We demonstrate the feasibility
of the proposed methods by development of a modular sys-
tem for exible human-computer interaction via both visual
and acoustic speech. The system is based on an extension
of an existing state-of-the-art speech recognition system,
a modular MS-TDNN system. We have developed adap-
tive combination methods at several di�erent levels of the
recognition network. The system can automatically track a
user and extract his/her lip region in real-time. The system
has been evaluated under di�erent noisy conditions such as
white noise, music, and mechanical noise. The experimen-
tal results indicate that the system can achieve up to 55%
error reduction using additional visual information.

2. SYSTEM DESCRIPTION

Figure 1 gives an overview on the subsystems and their com-
munication of our Lip-reading system. We use a Canon
VC-C1 Camera with integrated pan-tilt unit. This unit is
controlled by the Face-Tracker module. The Face-Tracker



Figure 1. NLIPS - system overview

module sends the position of the face to the Lip-Finder mod-
ule, which records the acoustic and visual data parallel and
stores the position of the mouth-corners for every frame.
Tracking of the face and the lip corners is done in real-
time during the recording of the data. After that some
visual �ne-tuning is done to eliminate di�erent illumination
conditions from the images. The data is then feeded in a
MS-TDNN recognizer [11, 12]. All those submodules are
described in more detail in the following sections.
For performance measure we use speaker-dependent con-

tinuous spelling of German letter strings (26 letter alphabet)
as our task. Words in our database are 8 letters long on av-
erage. The acoustic signal is sampled at 16 kHz. The visual
data is grabbed at 20-30 frames/sec with 24-bit RGB reso-
lution. The color images are used for the Face-Tracker and
Lip-Finder Modules, for the lip-reading Module gray-level
images are used.

3. VISUAL FEATURE EXTRACTION

In our speech reading system we use a top-down approach to
automatically track and extract lip regions. This technique
makes it possible to acquire visual information in real-time
without limiting user's freedom of movement.
To �nd and track the face, a statistical skin color-model

consisting of a two-dimensional Gaussian distribution of
normalized skin colors used. The input image is searched
for pixels with skin colors and the largest connected region
of skin-colored pixels in the camera-image is considered as
the region of the face. The color-distribution is initialized so
as to �nd a variety of skin-colors and is gradually adapted
to the actual found face [13].
To �nd the lips a feature based gaze-tracking module is

used, which is able to �nd and track lip-corners in real time.
Moreover, the module is able to detect lip localization fail-
ures and to automatically recover from failures. Instead of
tracking only the lip corners, we also track other facial fea-
tures such as pupils and nostrils along with them. Tracking
all these facial features and using a simple 3D head model,
e.g. we know the relative positions of each of the used facial
features, outliers in the set of found feature points can be
detected and their true positions can be predicted [14].

4. VISUAL PREPROCESSING

In real world applications the conditions like light or size and
position of the speaker can change. It was shown [15] that
the recognition results decrease drastically if those condi-
tions change within a small range. Therefor the visual data
must be preprocessed to eliminate these real-world problems
[16, 17].
From the Lip Finder module we get the coordinates of the

mouth corners. Using these corners we can cut the lips out

of the face image and rescaled to a constant size. Because
the Lip Tracking is good enough, no further preprocessing
is needed to get constant size and position of the lips in
the lip-sequence. In our earlier system we have used frame-
correlation with a so-called master-lip to get constant size
and position of the lip-images.
For illumination invariance we use an adaptive grayvalue

modi�cation. The Normalization of grayvalues is done by
using a distribution function of grayvalues, �gure 2 shows
two possible optimal distributions. Given some images un-
der di�erent lightning conditions, we have to adjust the
gray-values in a way, which the distribution matches with
an optimal distribution function. Figure 3 gives an example
of images in our database, �gure 4 shows the distributions
before and after the gray-value modi�cation.
In a �rst approach we used for the adjustment a method

(gray-value modi�cation) that is described in [18] in detail:
The gray-value distribution is computed, using the accumu-
lated gray-values, it is easy to adjust the gray-values in a
way, that the accumulated function is the same as from the
target function:

f
0(p) = T (f(p))

where f(p) is the original gray-value, T the modi�cation
function and f 0(p) the new gray-value.
In this method only global histogram of the images is

adapted. The method gives not the desired result if side-
illumination occurs in the image. We solved this problem by
developing an adaptive gray-value modi�cation: The image
is divided in 4 parts Qk (�gure 5). Now we can compute
the gray-value modi�cation T1; T2; T3 and T4 for each part
separate. The adaptive gray-value modi�cation is a linear
combination of these gray-value modi�cations:

T (f(p)) =

4X
i+1

wiTi(f(p))

To compute the wi each of the 4 parts is separated again
in 4 parts (qij). There are 3 kinds of neighborhood (Region
A, B and C in �gure 5): qij has no, one or three Qk neigh-
bors. On the example of the points P1; P2 and P3 in �gure
5 we show how to compute the transformation:
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5. VISUAL DATA REPRESENTATION

The dimensionality of the normalized pixel vector is quite
high (24x18pixel = 384), especially when compared with the
acoustic input vector. Unlike for acoustic speech data, there
are no generally agreed-upon parameterization strategies for
the visual lip image. Since we are using a connectionist al-
gorithm for recognition we have followed the philosophy of
avoiding explicit feature extraction and segmentation of the
image. Instead, we rely on the network to develop appro-
priate internal representations of higher level features. We
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Figure 2. gray-value modi�cation: target distributions

original
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Figure 3. gray-value modi�cation: example

have been investigating several alternative visual data rep-
resentations consistent with this strategy. There is clearly
much that changes little from image to image, for instance
the appearance of the cheek area around the lips. While
it is possible that the network will learn to ignore such re-
dundant information, it was hypothesized that reducing the
dimensionality of the input would be advantageous to gen-
eralization performance, especially under limited training
data [19]. Besides the gray-level images we made experi-
ments with PDA and LDA to reduce the input vector to 16
Coe�cients.

6. COMBINATION ALTERNATIVES

A modular MS-TDNN [11, 20] is used to perform the recog-
nition. Figure 7 schematically shows the architecture of the
MS-TDNN used for acoustic recognition. Combining visual
and acoustic data is done on the phonetic layer (Fig. 8) or
on lower levels (Fig. 9) [21, 22].
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Figure 4. gray-value modi�cation: example histograms
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6.1. Phonetic Layer Combination

In the basic system (Fig. 8) an acoustic and a visual TDNN
are trained separately. The acoustic net is trained on 63
phonemes, the visual on 42 visemes1.
The combined activation (hypAV ) for a given phoneme is

expressed as a weighted summation of the phoneme layer
activation's of this phoneme and the corresponding viseme
unit:

hypAV = �AhypA + �V hypV and �A + �V = 1 (1)

The weights �A and �V for this combination are depen-
dent on the quality of the acoustic data. If the quality is
high, i.e. no noise exists, the weight �A should be high. In
the case of signi�cant acoustic noise, a higher weight �V for
the visual side has been found to give better results.

6.1.1. Entropy Weights

One way to determine the weights for the combination
(1) is to compute the entropy of the phoneme/viseme layer.
The 'entropy weights' �A for the acoustic and �V for the
visual side are given by:

�A = b+
SV � SA

�Smax�over�data

; and �V = 1 � �A (2)

The entropy quantities SA and SV are computed for the
acoustic and visual activations by normalizing these to sum
to one (over all phonemes or visemes, respectively) and
treating them as probability mass functions. High entropy
is found when activations are evenly spread over the units
which indicates high ambiguity of the decision from that

1viseme = visual phoneme, smallest part of lip-movement that
can be distinguished. Several phonemes are usually mapped to
each viseme.



Figure 7. MS-TDNN Architecture
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Figure 8. Combination on the phonetic layer.

particular modality. The bias b pre-skews the weights to fa-
vor one of the modalities. In the results shown here, we have
optimized this parameter by setting it by hand, depending
on the quality of the actually tested acoustic data.

6.1.2. SNR Weights

The quality of the speech data is generally well de-
scribed by the signal-to-noise-ratio (SNR). Higher SNR
means higher quality of the acoustic data and therefore the
consideration of the acoustic side should increase for higher
and decrease for smaller SNR-values.
We used a piecewise-linear mapping to adjust the acoustic

and visual weights as a function of the SNR. The SNR itself
is estimated automatically every 500 ms from the acoustic
signal. Linear interpolation is used to get an SNR value for
each frame (i.e. every 10 ms). In several experiments we ob-
tained best results with a maximum and a minimum weight
�Amax = 0:75 and �Amin = 0:5 for high (33dB) and low
(0dB) SNR respectively and a linear interpolation between
them. For more information about the SNR algorithm sees

[23, 24].

6.1.3. Learning Weights

Another approach is to use a neural network to compute
the combination weights at the phoneme level. This method
di�ers form the previous in two ways. First the combination
weights are learned from training data and not calculated
during the recognition progress. Second, di�erent weights
�A and �V are computed for di�erent features, i.e. for ev-
ery phoneme/viseme, instead of a weighting common to all
phoneme/viseme pairs for a given time-frame as it is in the
entropy and SNR-weight cases. The motivation behind this
lies in the complementariness of the acoustic and the visual
signal: some phonemes which are high confusable even in
quiet have corresponding visemes that can be distinguished
reliably. So it is only natural to prefer the visual classi�ca-
tion for phonemes unclear acoustically and vice versa.
We have used a simple back-prop net with two input lay-

ers (phonemes and visemes), one output layer (phonemes),
and no hidden layer. Each unit of the combination layer is
fully connected with the corresponding acoustic and visual
frame.

6.2. Lower Level Combination

The combination of acoustic and visual information on the
phoneme/viseme layer o�ers several advantages. There is
independent control of two modality networks, allowing for
separate training rates and number of training epochs. It
is also easy to test uni-modal performance simply by set-
ting �A and �V to zero or one. On the other hand, this
method forces us to develop a viseme alphabet for the visual
signal, as well as a one-to-many correspondence between
the visemes and phonemes. Unlike phonemes, visemes have
proven much more di�cult to de�ne consistently except for
a few fairly constant sets. Combination of phonemes and
visemes further prevents the recognizer from taking advan-
tage of lower level correlation between acoustic and visual
events such as inter-modal timing relationships.
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output layer

DTW

hidden layer

input layer

(c)

acoustic input visual input

(a)

acoustic input visual input

phoneme layer

output layer

DTW

hidden layer

input layer

(d)

acoustic input visual input

SNR

(b)

acoustic input

SNR

visual input

           

           

Figure 9. Lower level combination: (a) hidden layer (b) hidden
layer and SNR (c) input layer (d) input layer and SNR.

Two alternatives are to combine visual and acoustic in-
formation on the input or on the hidden layer (see Fig 9 (a)
and (c)). In another approach, we have used the estimated
SNR of the acoustic data as an additional input to both
networks (see Fig 9 (b) and (d)).



6.3. Performance

We have tested the recognizer on datasets 200 letters se-
quences (continuous spelling) from one single speaker. As
performance measure we used the Word Accuracy (where
each letter is seen as a word):

WA = 100%(1�
#SubError +#InsError+#DelError

#Letter

Visual Data Representation Figure 10 shows the com-
bined word accuracy on test-set 1 with di�erent preprocess-
ing methods. We show the scores for clean acoustic data
and for two cases where increasing amounts of white noise
were arti�cially added to degrade the acoustic-only recogni-
tion rates. In general, best performance was achieved with
gray level and LDA input. The results indicate that of the
tested visual input representations, the gray-level and LDA
gave very similar performance under most conditions. Thus
with a proper choice of transformation we can signi�cantly
(factor 12) reduce the dimensionality of the input without
sacri�ng performance. Note that the reduction is done with-
out any heuristic feature extraction. One disadvantage of
PCA and LDA preprocessing is, that they are more sensible
against online conditions (size, illumination) than the raw
gray-level image.

Figure 10. visual audio combined recognition rates for di�erent
data representations

Combination Alternatives We have trained the recog-
nizer on 170 sequences of acoustic/visual data from one
speaker and tested on 30 sequences of the same person. For
each combination method below we have trained the nets
on clean acoustic data. We separately trained an acoustic
TDNN on the same sequences of clean and corrupted data
with white noise at 16 dB SNR. For testing we also added
di�erent types of arti�cial noise to the test-set of clean data:
white noise (16 and 8 dB), music (20 and 8 dB), and me-
chanical noise (25 and 10 dB).
Figure 11 shows the results for the three combination

methods on the phonetic layer and on the input and hid-
den layer in comparison to the acoustic recognition rate in
di�erent noise environments. All the nets were trained on
clean acoustic data. The recognition rate on the visual data
(without acoustic information) was 55%. The architectures
in Fig. 9 (b) and (d) were not trained with the clean dataset
because the additional information (SNR) does not appear
in this training set (e.g. the SNR is approximately constant
for all the words in this database). So recognition improve-
ments from this kind of architecture could not be expected
in this case of training data.

With all combination methods we get an improvement
compared to the single acoustic recognition, especially in
the case of high background noise. We obtain the best re-
sults using the combination on the phonetic layer. Using
the entropy weights yields good recognition results but has
a great disadvantage: a bias b which is necessary to pre-skew
the weights is needed and has to be optimized by hand. In
contrast, the SNR weights were determined automatically.
They result in roughly the same performance without hav-
ing to 'hand-optimize' any parameters during the recogni-
tion progress. We have also tested a combination of this two
methods, i.e. computing the bias b of the entropy weight
from the SNR instead of setting it by hand. The results
were approximately the same as with hand-optimized en-
tropy weights.
Both combination methods have the disadvantage that

they do not take into consideration the inherent confusabil-
ity of some phonemes and visemes, but use a single weight
in each acoustic/visual time frame depending only on the
quality of the acoustic data. The approach that uses a neu-
ral network for combination relies on the fact that some
phonemes are easier to recognize acoustically while some
can be more reliably distinguished from the visual input,
by using di�erent weights for each phoneme/viseme pair.
As expected, this method delivers the best results except in
the case of high background noise (i.e. motor 10 dB and
white noise 8 dB).
Similarly, the hidden- and input-combination recognition

performance su�ers more in these cases. However, when
evaluating the di�erent approaches one has to remember
that the neural net combination, just as the hidden- and
input-combination, has no explicit information about the
quality of the acoustic input data which can be used during
the recognition progress as it is done by the combination at
the phonetic level with the entropy- and the SNR-weights.
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Figure 11. Combination on input, hidden, and phone layer;
trained with clean data.

Motivated by this we have trained the net on a set of
clean and noisy data, i.e. the 170 sequences used before
and with the same sequences with 16 dB white noise. Here
we also trained the architectures from Fig. 9 (b) and (d),
i.e. hidden and input combination with additional input of
the SNR. In some cases we get small improvements with
that kind of combination.
On the slightly noisy data we get improvements in com-

parison to the results achieved with the clean training data



set. The improvements in the case of white noise are pre-
dictable since the training data contains utterances contam-
inated with 16 dB SNR white noise. The improvements ob-
tained with the motor 10 dB SNR test set are most remark-
able. Here an error reduction of about 50% was found in
the case of phonetic combination with entropy- and SNR-
weights compared to the results obtained with the exclu-
sively clean training data set. Unfortunately the combina-
tion with a neural network did not lead to such a good error
reduction in this case.
Under both, clean and noisy, conditions we get the best

performance with combining on the phonetic level. The
advantage in doing this is, that the acoustic and visual net
are trained separately. This means that the parameters for
training can be optimized separately, i.e. the epochs for
training the visual nets are three times higher than for the
acoustic net.

7. CONCLUSION

We have summarized our e�orts towards unrestricted lip-
reading in this paper. Using a top-down approach, a ro-
bust real-time tracking system can extract a user lip region
while the user moves freely. The illumination changes can
be handled e�ectively by the adaptation method. We have
demonstrated the proposed methods by the continuously
spelling task of German letters. The system can achieve up
to 55% error reduction using additional visual information
under noisy conditions. We are currently developing a user
independent system for language training applications.
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