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Abstract-In this paper we present a Time-Delay Neural Network 
(TDNN) approach to phoneme recognition which is characterized by 

two important propcrtics. I) Using a 3 laycr arrangemcnt of simple 
computing units, a hierarchy can be constructed that allows for the 

formation of arbitraQ' nonlinear decision surfaces. The TDNN learns 

these decision surfaces automatically using error backpropagation [IJ. 
2) The time-delay arrangement enables the network to discover acous­

tic-phonetic features and the temporal relationships between them in­

dependent of position in time and hence not blurred by temporal shifts 

in the input, 

As a rccognition task, the spcaker·depcndcnt rccognition nf the pho­

nemes "B," "D," and "G" in varying phonetic contexts was chosen. 

For comparison, se\·eral discrete Hidden Markov Models (HMM) were 
trained to perform the same task. Performance evaluation over 1946 
testing tokens from thrce speakers showed that the TDNN achieves a 

recognition rate of 98.5 percent correct while the rate obtained by the 

best of our HMM's was only 93.7 percent. Closer inspection reveals 

that the network "invented" well-known acoustic-phonetic f'eatures 

(e.g., F2-rise, F2-fall, vowel-onset) as useful abstractions. 1t also de­

veloped alternate internal representations to link diff�rent acoustic re­

alizations to the same concept. 

I. TNTRODUCTION 
TN recent years, the advent of new learning procedures 
l.and the availability of high speed parallel Supercom­
puters have given rise to a renewed interest in connec­
tionist models of intelligence [ 1). Someti mes also referred 
to as artificial neural networks or parallel distributed pro­
cessing models ,  these models are particularly interesting 
for cognitive tasks that require massive constraint satis­
faction, i .e., the parallel evaluation of many clues and 
facts and their interpretation in the light of numerous in­
terrelated constraints. Cognitive tasks, such as vision, 
speech, language processing, and motor control ,  are also 
characterized by a high degree of uncertainty and vari­
ability and it has proved difficult to achieve good perfor­
mance for these tasks using Standard serial programming 
methods. Complex networks composed of simple com­
puting units are attractive for these tasks not only because 
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of their "brain-like" appeal 1 but because they Qffer ways 
for automatically designing systems that can make use of 
multiple interacting constraints. In general, such con­
straints are too complex to be easily programmed and re­
quire the use of automatic learning strategies. Such learn­
ing algorithms now exist (for an excellent review, see 
Lippman [2)) and have been demonstrated to discover in­
teresting internal abstractions in their attempts to solve a 
given problern [1], [3]-[5]. Learning is most effective, 
however, when used in an architecture that is appropriate 
for the task. Indeed, applying one's prior knowledge of a 
task domain and its properties to the design of a suitable 
neural network model might weil prove to.be a key ele­
ment in the successful development of connectionist sys­
tems. 

Naturally, these techniques will have far-reaching im­
plications for the design of automatic speech recognition 
systems, if proven successful in comparison to already­
existing techniques. Lippmann [6) has compared several 
kinds of neural networks to other classifiers and evaluated 
their ability to create complex decision surfaces. Other 
studies have investigated actual speech recognition tasks 
and compared them to psychological evidence in speech 
perception [7] or to existing speech recognition tech­
niques [8], [9]. Speech recognition experiments using 
neural nets have so far mostly been aimed at isolated word 
recognition (mostly the digit recogniti0n task) [1 0J-ll3J 
or phonetic recognition with predefined constant [14), [15) 
or variable phonetic contexts [16], (14], (17]. 

A number of these studies report very encouraging rec­
ognition performance r 16]' but only few comparisons to 
existing recognition methods exist. Some of these com­
parisons found performance similar to existing methods 
[9], [11], but others found that networks perform worse 
than other techniques [8]. One might argue that this state 
of affairs is encouraging considering the amount of fine­
tuning that has gone into optimizing the more popular, 
established techniques. Nevertheless, better comparative 
performance figures are needed before neural networks 
can be considered as a viable alternative for speech rec­
ognition systems. 

1The uninitiated readcr should be cautioned not to overinterpret the now­
popular term "neural nctwork." A lthough these nerworks appear to mirnie 
certain properties of neural cells. no claim can be made that present ex­
ploratory attempts simulate the complcxities of the human brain. 
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One possible explanation for the mixed performance re­
sults obtained so far may be limitations in computing re­
sources leading to shortcuts that Iimit performance. An­
ether more serious Iimitation, however, is the inability of 
most neural network architectures to deal properly with 
the dynamic nature of speech. Two important aspects of 
this are for a network to represent temporal relationships 
between acoustic events, while at the sarne time providing 
for invariance under translation in time. The specific 
movement of a formant in time, for example, is an im­
portant cue to determining the identity of a voiced stop, 
but it is irrelevant whether the same set of events occurs 
a little sooner or later in the course of time. Without trans­
lation invariance, a neural net requires precise segmen­
tation to align the input pattern properly. Since this is not 
always possible in practice, leamed features tend to get 
blurred (in order to accommodate slight misalignments) 
and their performance deteriorates. In general, shift in­
variance has been recognized as a critically important 
property for connectionist systems and a m1mber of prom­
ising models have been proposed for speech and other do­
mains l18j-[21], [14], ll7j, [221. 

In the present paper, we describe a Time-Delay Neural 
Network (TDNN) which addresses both of these aspects 
of speech and demonstrate through extensive performance 
evaluation that superior recognition results can be 
achieved using this approach. In the following section, 
we begirr by introducing the architecture and leaming 
strategy of a TDNN aimcd at phoneme recognition. Next, 
we compare the performance of our TDNN 's to one of the 
morc popular current recognition techniques: Hidden 
Markov Models (HMM). In Section IIT, we start by dc­
scribing an HMM, under development at ATR [23], [24]. 

Both techniques, the TDNN and the HMM, are then eval­
uated over a testing database and wc report the results. 
We show that substantially higher recognition perfor­
mance is achieved by the TDNN than by the best of our 
HMM's. In Section IV, we then take a closer Iook at the 
intemal representation that the TDNN leams for this task. 
It discovers a number of interesting linguistic abstractions 
which we show by way of examples. The implications of 
these results are then discussed and summarized in the 
final section of this paper. 

Il. TIME-DELAY NEURAL NETWORKS (TDNN) 

To be useful for speech recognition, a layered fccdfor­
ward neural network must have a number of properties. 
First, it should have multiple layers and sufficient inter­
connections between units in each of these layers. This is 
to ensure.that the network will have thc ability to leam 
complex nonlinear decision surfaces [21, [6]. Second, the 
network should have the ability to represent relationships 
between events in time. These events could be spectral 
coeliil.:.icnl1>, bul might aiso be the output of higher ievei 
feature detectors. Third, the actual featurcs or abstrac­
tions learned by the network should bc invariant under 
translation in time. Fourth, the learning procedure should 
not require precise temporal alignment of thc Iabels that 

are to be learned. Fifth, the nurober of weights in the net­
work should be sufficiently small compared to the amount 
of training data so that the network is forced to encode 
the training data by extracting regularity. In the follo\\­
ing, we dcscribe a TDNN architecture that sarisfies all of 
these criteria and is designed explicitly for the recognition 
of phonemes, in particular, the voiced stops '·B.·· .. o.·· 
and "G. '' 

A. A TDNN Architecture for Phoneme Recognirion 

The basic unit used in many neural networks computes 
the weighted sum of its inputs and then passes this surr. 
through a nonlinear function, most commonly a thre�hold 
or sigmoid function [2], [ 1). In our TDNN, this basic unit 
is modified by introducing delays D1 through D,, as shO\\ n 
in Fig. 1. The 1 inputs of such a unit now will be multi­
plied by several weights, one for each delay and one for 
the undelayed input. For N = 2, and J = 16, for example. 
48 weights will be needed to compute the weighted sum 
of the 16 inputs, with each input now measured at three 
different points in time. In this way, a TDNN unit has the 
ability to relate and compare current input to the past his­
tory of events. The sigmoid function was chosen as the 
nonlinear outpur function F due to its convenient mathe­
matical properties [18], [5]. 

For the recognition of phonemes, a three layer net is 
constructed. 2 Its overall architecture and a typical set of 
activities in the units are shown in Fig. 2. 

At thc lowest Ievel, 16 normalized melscale spectral 
coefficients serve as input to the network. Input speech. 
sampled at 12 kHz, was Hamming windowed and a 256-
point FFT computed every 5 ms. Meiseale coefficient� 
were computed from the power speerrum by computing 
log energies in each melscale energy band [25), where 
adjacent coefficients in frequency overlap by one spectral 
sample and are smoothed by reducing the shared sample 
by 50 percent L25]. 3 Adjacent coefficients in time were 
collapsed for further data reduction resulting in an overall 
10 ms frame rate. All coefficients of an input token (in 
this case, 15 frames of spcech centered around the hand­
labeled vowel onset) were then normalized. This was ac­
complished by subtracting from each coefficient the aver­
age coefficient energy computed over all 15 frames of an 
input token and then normalizing each coefficient to lie 
between - I and + 1. All tokens in our database were pre­
processed in the same fashion. Fig. 2 shows the resulting 
coefficients for the speech token ''BA'' as input to the 

2Lippmann [2J, [6] dcmonstrated rccently thai lhree layers can encode 
arbitrary pattern recognition decision surfaces. We believc that complex 
nonlinear decision surfaces are neccssary Io propcrly perform classification 
in the light of considerable acou,tic variabilily as rcported in the expcri­
ments below. 

'Naturally. a number nf alternative signal representations cnuld be used 
as input. but havc not heen rrierl in thi' st1.tdy. Filterbank �cV?ffkients were 
chosen as they are simple to compute and rcadily interprelablc in Ihc light 
of acoustic-phonctics. The mclscale is a physiologically motivaled frc­
quency scalc Ihat provides better relative frequency resolution for lnwer 
frcquency bands. Our implementatinn resulled in coeflicicnts with a band­
widrh of approximately 190Hz up ro 1400Hz. and with increasing band­
widlhs thcrcafter. 
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Fig. I. A Time-Delay Neural Network (TDNN) unit. 
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Fig. 2. The architecture of the TDNN. 

network, where positive values are shown as black squares 
and negative values as gray squares. 

This input layer is then fully interconnected to a layer 

of 8 time-delay hidden units, where 1 = 16 and N = 2 
(i. e., 16 coefficients over 3 frames with time delay 0, I ,  
and 2). A n  alternative way o f  seeing this i s  depicted in 
Fig. 2. lt shows the inputs to these time-delay units ex­
panded out spatially into a 3 frame window, which is 
passed over the input spectrogram. Each unit in  the first 
hidden layer now receives input (via 48 weighted connec­
tions) from the coefficients in the 3 frame window. The 
particular choice of 3 frames (30 ms) was motivated by 
earlier studies [26]-[29] that suggest that a 30 ms window 
might be sufficient to represent low Ievei acoustic-pho­
netic events for stop consonant recognition. It was also 
the optimal choice among a number of alternative designs 
evaluated by Lang [21] on a similar task. 

In the second hidden layer, each of 3 TDNN units Iooks 
at a 5 frame window of activity Ievels in hidden layer 1 
(i.e., 1 = 8, N = 4). The choice of a !arger 5 frame win­
dow in this layer was motivated by the intuition that higher 
Ievel units should leam to make decisions over a wider 
range in time based on more local abstractions at lower 
Ievels. 

Finally, the output is obtained by integrating (sum­
ming) the evidence from each of the 3 units in hidden 
layer 2 over time and connecting it to its pertinent output 
unit (shown in Fig. 2 ·over 9 frames for the "B" output 
unit). In practice, this summation is implemented simply 
as another nonlinear (sigmoid function is applied here as 
weil) TDNN unit which has fixed equal weights to a row 
of unit firings over time in hidden Iayer 2. 4 

When the TDNN has learned its internal representation, 
it performs recognition by passing input speech over the 
TDNN units. In terms of the illustration of Fig. 2, this is 
equivalent to passing the time-delay windows over the 
lower Ievei units' firing pattems.5 At the lowest Ievel, 
these firing pattems simply consist of the sensory irrput, 
i. e. , the spectral coefficients. 

Each TDNN unit outlined in this section has the ability 
to encode temporal relationships within the range of the 
N delays. Higher layers can attend to !arger time spans, 
so local short duration features will be formed at the lower 
layer and more complex Ionger duration features at the 
higher layer. The leaming procedure ensures that each of 
the units in each layer has its weights adjusted in a way 
that improves the network's overall performance. 

B. Learning in a TDNN 
Several learning techniques exist for opt1m1zation of 

neural networks [1], [21, [30 ]. F0r the present network, 
we adopt the Backpropagation Leaming Procedure [ 181, 

4Note, however, that as for all units in this network (except the input 
units), the outpul units are also connccted to a permanenlly active Ihreshold 
unit. In this way. both an outpul unit 's onc sharcd connection to a row in 
hidden layer 2 and its dc-bias are iearned and can be adjusted for optimal 
classitication. 

'Thus, 13 frames of activations in hidden layer l are generated when 
scanning thc 15 frames of input spccch with a 3 frame time delay window. 
Similarly, 9 frames are produced in hidden layer 2 from the 13 framcs of 
activation in the laycr bclow. 
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[5]. Mathematically, backpropagation is gradient descent 
of the mean-squared error as a function of the weights. 
The procedure performs two passes through the network. 
During the forward pass, an input pattem is applied to the 
network with its current connection strengths (initially 
small random weights). The outputs of all the units at each 
Ievel are computed starting at the input layer and working 
forward to the output layer. The output is then compared 
to the desired output and its error calculated. During the 
backward pass, the derivative of this error is then propa­
gated back through the network, and all the weights are 
adjusted so as to decrease the error [18], [5]. This is re­
peated many times for all the training tokens until the net­
work converges to producing the desired output. 

In the previous section, we described a method of ex­
pressing temporal structure in a TDNN and Contrasted this 
method to training a network o n  a static input pattern 
(spectrogram), which results in shift sensitive networks 
(i.e., poor performance for slightly misaligned input pat­
tems) as well as less crisp decision making in the units of 
the network (caused by misaligned tokens during train­
ing). 

To achieve the desired learning bchavior, we need to 
ensure that the network is exposed to sequences of pat­
terns and that it is allowed (or encouraged) to leam about 
the most powerful cues and sequences of cues among 
them. Conceptually, the backpropagation procedure is ap­
plied to speech patterns that are stepped through in time. 
An equivalent way of achieving this result is to use a spa­
tially expanded input pattern, i.e., a spectrogram plus 
some constraints on the weights. Each collection of 
TDNN units described above is duplicated for each one 
frame shift in time. In this way, the whole history of ac­
tivities is available at once. Since the shifted copies of the 
TDNN units are mere duplicates and are to Iook for the 
same acoustic event, the weights of the corresponding 
connections in the time shifted copies must be constrained 
to be the same. To implement this, we first apply the reg­
ular backpropagation forward and backward pass to all 
time-shifted copies as if they were separate events. This 
yields different error derivatives for corresponding (time 
shifted) Connections . Rather than changing the weights on 
time-shifted connections separately, however, we ac­
tually update each weight on corresponding connections 
by the same value, namely by the average of all corre­
sponding time -delayed weight changes. 6 Fig. 2 illustrates 
this by showing in each layer only two connections that 
are linked to (constrained to have the same value as) their 
t ime-shifted neighbors. Of course, this applies to all Con­
nections and all time shifts. In this way, the network is 
forced to discover useful acoustic-phonetic features in the 
input, regardless of when in time they actually occurred. 
This is an important property, as it makes the network 
independent of error-prone preprocessing algorithms that 

•Note that in thc experiments reported below. these weight changes were 
actually carried out each time the error derivative� from all training sam­
ples had been computed [5]. 
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otherwise would be needed for time alignment and/or seg­
mentation. In Section IV-C, we will show examples of 
grossly misaligned patterns that are properly recognized 
due to this property. 

The procedure described here is computationally rather 
expensive, due to the many iterations necessary for leam­
ing a complex multidimensional weight space and the 
number of leaming samples. In our case , about 800 leam­
ing samples were used, and between 20 000 and 50 000 
iterations of tlie backpropagation loop were run over all 
training samples. Two steps were taken to perform leam­
ing within reasonable time. First, we have implemented 
our learning procedure in C and Fortran on a 4 processor 
Alliant supercomputer. The speed of learning can be im­
proved considerably by computing the forward and back­
ward sweeps for several different training samples in par­
allel on different processors. Further improvements can 
be gained by vectorizing Operations and possibly assem­
bly coding the innermost loop. Our present implementa­
tion achieves about a factor of 9 speedup over a VAX 
8600, but still leaves room for further improvements 
(Lang [21), for example, reports a speedup of a factor of 
120 over a V AXt 11780 for an implementation running on 
a Convex supercomputer). The second step taken toward 
improving leaming time is given by a staged leaming 
strategy. In this approach, we start optimizing the net­
work based on 3 prototypical training tokens only. 7 In this 
case, convergence is achieved rapidly, but the network 
will have learned a representation that generalizes poorly 
to new and different patterns. Once convergence is 
achieved, the network is presented with approximately 
twice the number of tokens and learning continues until 
convergence. 

Fig. 3 shows the progress during a typical learning run. 
The measured error is 1/2 the squared error of all the 
output units, normalized for the number of training to­
kens. In this run, the number of training tokens used were 
3, 6, 9, 24, 99, 249, and 780. As can be seen from Fig. 
3, the error briefly jumps up every time more variability 
is introduced by way of more training data. The network 
is then forced to improve its representation to discover 
clues that generalize better and to deemphasize those that 
turn out to be merely irrelevant idiosyncracies of a limited 
sample set. Using the full training set of 780 tokens, this 
particular run was continued until iteration 35 000 (Fig. 
3 shows the learning curve only up to 15 000 iterations) . 
With this full training set, small learning steps have to be 
taken and learning progresses slowly. In this case, a step 
size of 0.002 and a momentum [5] of 0.1 was used. The 
staged learning approach was found to be useful to move 
the weights of the network rapidly into the neighborhood 
of a reasonable solution, before the rather slow fine tuning 
over all training tokens hegins. 

Despite these speedups, learning runs still take in the 

'Note that for optimal lcaming, the training data are presented by always 
alternating tokens t'or each class. Hence. we start the network off by pre­
senting 3 tokens, one for each class. 
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order of several days. A number of programming tricks 
[21] as weil as modifications to the learning procedure 
[31] are not implemented yet and could yield another fac­
tor of I 0 or more in leaming time reduction. It is impor­
tant to note, however, that the amount of computation 
considered here is necessary only for learning of a TDNN 
and not for recognition. Recognition can easily be per­
formed in better than real time on a workstation or per­
sonal computer. The simple structure makes TDNN's also 
weil suited for standardized VLSI implementation. The 
detailed knowledge could be leamed "off-line" using 
substantial computing power and then downloaded in the 
form of weights onto a real-time production network. 

III. RECOGN!TlON EXPERIMENTS 
We now turn to an experimental evaluation of the 

TDNN's recognition performance. In particular, we 
would like to compare the TDNN's performance to the 
performance of the currently most popular recognition 
method: Hidden Markov Models (HMM). For the perfor­
mance evaluation reported here, we have chosen the best 
of a number of HMM's developed in our Iabaratory. Sev­
eral other HMM-based Variations and models have been 
tried in an effort to optimize our HMM, but we make no 
claim that an exhaustive evaluation of a11 HMM-based 
techniques was accomplished. We should also point out 
that the experiments reported here were aimed at evalu­
ating two different recognition philosophies. Each rec­
ognition method was therefore implemented and optim­
ized using its preferred representation of the speech signal, 
i.e., a representation that is weH suited and most com­
monly used for the method evaluated. Evaluation of both 
methods was of course carried out using the same speech 
input data, but we caution the reader that due to the dif­
ferences in representation, the t:xal:i � .:untribution to over­
all performance of the recognition strategy as opposed to 
its signal representation is not known. It is conceivable 
that improved front end processing might Iead to further 
performance improvements for either technique. In the 

following sections, we will start by introducing the best 
of our Hidden Markov Models . We then describe the ex­
perimental conditions and the database used for perfor­
mance evaluation and condude with the performance re­
sults achieved by our TDNN and HMM . 

A. A Hidden Markov Model (HMM) for Phoneme 
Recognition 

HMM's are currently the most successful and promis­
ing approach [32]-[34] in speech recognition as they have 
been successfully applied to the whole range of recogni­
tion tasks. Excellent performance was achieved at alllev­
els from the phonemic Ievel [35]-[38] to word recognition 
[39], [34] and to continuous speech recognition f40]. The 
success of HMM's is partially due to their ability to cope 
with the variability in speech by means of stochastic mod­
eling. In this section, we describe an HMM developed in 
our Iabaratory that was aimed at phoneme recognition, 
more specifically the voiced stops "B," "D," and "G." 
The model described was the best of a number of alternate 
designs developed in our Iabaratory [ 23], [24 ]. 

The acoustic front end for Hidden Markov Modeling is 
typically a vector quantizer that classifies sequences of 
short-time spectra. Such a representation was chosen as it 
is highly effective for HMM-based recognizers [40]. 

Input speech was sampled at 12kHz, preemphasized by 
(I - 0.97 z-1), and windowed using a 256-point Ham­
ming window every 3 ms. Then a 1 2-order LPC analysis 
was carried out. A codebook of 256 LPC spectrum en­
velopes was generated from 216 phonetically balanced 
words. The Weighted Likelihood Ratio [41], l4 2] aug­
mented with power values (PWLR) [43], [4 21 was used 
as LPC distance measure for vector quantization. 

A fairly standard HMM was adopted in this paper as 
shown in Fig. 4. It has four states and six transitions and 
was found to be the best of a series of altemate models 
tried in our Iabaratory. These included models with two, 
three, four, and five states and with tied arcs and null arcs 
[23], [24]. 

The HMM probability values were trained using vector 
sequences of phonemes according to the forward-back­
ward algorithm [32]. The vector sequences for "B," 
"D," and "G" include a consonant part and five frames 
of the following vowel. This is to model important tran­
sient information, such as formant movement, and has 
lead to improvements over context insensitive models 
[23], [24 ]. Again, variations on these parameters have 
been tried for the discrimination of these three voiced stop 
consonants. In particular, we have used I 0 and 15 frames 
(i.e., 30 and 45 ms) of the following vowel in a 5 state 
HMM, but no performance improvements over the model 
described were obtained. 

The HMM was trained using about 250 phoneme to­
kens of vector sequences per speaker and phoneme (see 
details of the training database below). Fig. 5 shows for 
a typical training run the average log probability normal­
ized by the number of frames. Training was conlinued 
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Fig. 4. Hidden Markov Model. 

log_..prob 
-2.8 : 

( ' : ; 

-3.2 ' 

: 
-3.6 l 

i ' 

i : ! 
I l tPr.aticns -4.0 

w � m � � 
Fig. 5. Leaming in the Hidden Markov Model. 

until the increase of the average log probability between 
iterations became less than 2 * 10-3. 

Typically, about 1 0-20 learning iterations are required 
for 256 tokens. A training run takes about 1 h on a VAX 
8700. Floor values8 were set on the output probabilities 
to avoid errors caused by zero probabilities. W e have ex­
perimented with composite models, which were trained 
using a combination of context-independent and context­
dependent probability values as suggested by Schwanz er 
al. [35], [36]. In our case, no significant improvements 
were attained. 

B. Experimental Conditions 

For performance evaluation, we have used a large vo­
cabulary database of 5240 common Japanese words [44]. 
These words were uttered in isolation by three male native 
Japanese speakers (MAU, MHT, and MNM, all profes­
sianal announcers) in the order they appear in a Japanese 
dictionary. All utterances were recorded in a sound-proof 
booth and digitized at a 12 kHz sampling rate. The data­
base was then split into a training set (the even numbered 
files as derived from the recording order) and a testing set 
(the odd numbered files). A given speaker's training and 
testing data, therefore, consisted of 2620 utterances each, 
from which the actual phonetic tokens were extracted. 

The phoneme recognition task chosen for this experi­
ment was the recognition of the voiced stops, i. e., the 
phonemes "B," "D," and "G." The actual tokens were 
extracted from the utterances using manually selected 
acoustic-phonetic Iabels provided with the database [44]. 
For speaker MAU, for example, a total of 219 "B's," 
203 "D's," and 260 "G's" were extracted from the 

'Here, once again, the optimal value out of a number of alternative 
choices was selected. 

trammg and 227 "B's," 179 "D's," and 252 .. G·s. ·· 
from the testing data. Both recognition schemes. the 
TDNN's and the HMM's, were trained and tested speake� 
dependently. Thus, in both cases, separate networks v. ere 
trained for each speaker. 

In our database, no preselection of tokens was per· 
formed. All tokens labeled as one of the three voiced swps 
were included. It is important to note that since the coc· 
sonant tokens were extracted from entire utterances a:Jd 
not read in isolation, a significant amount of phonetic 
variability exists. Foremost, there is the variability imro­
duced by the phonetic context out of which a token ::. 
extracted. The actual signal of a "BA" will therefore Iook 
significantly different from a "BI" and so on. Second. L,e 
position of a phonemic token within the utterance intro­
duces additional variability. In J apanese, for exam ple. 2. 
"G" is nasalized, when it occurs embedded in an uner­
ance, but not in utterance initial position. Both of our rec­
ognition algorithms are only given the phonemic identiry 
of a token and must find their own ways of representing 
the fine variations of speech. 

C. Results 

Table I shows the results from the recognition experi­
ments described above as obtained from the testing data. 
As can be seen, for all three speakers, the TDNN yields 
considerably higher performance than our HMM. Aver­
aged over all three speakers, the error rate is reduced from 
6.3 to 1.5 percent-a more than fourfold reduction in er· 
ror. 

While it is particularly important here to base perfor­
mance evaluation on testing data,9 a few observations can 
be made from recognition runs over the training data. For 
the training data set, recognition error rates were: 99.6 
percent (MAU), 99.7 percent (MHT), and 99.7 percent 
(MNM) for the TDNN, and 96.9 percent (MAU), 99_1 
percent (MHT), and 95.7 percent (MNM) for the HMM. 
Comparison of these results to those from the testing data 
in Table I indicates that both methods achieved good gen­
eralization from the training set to unknown data. The data 
also suggest that better classification rather than better 
generalization might be the cause of the TDNN's better 
performance shown in Table I. 

Figs. 6-11 show scatter plots of the recognition out­
come for the test data for speaker MAU, using the HMM 
and the TDNN. For the HMM (see Figs. 6-8), the log 
probability of the next best matehing incorrect token is 
plotted agairrst the log probability10 of the correct token, 
e.g., "B," "D," and "G." In Figs. 9-11, the activation 
Ievels from the TDNN's output units are plotted in the 
same fashion. Note that these plots are not easily com­
parable, as the two recognition methods have been trained 
in quite different ways_ They do, however, represent the 

9If the training data are insufficient, neural nctworks can in principle 
leam to memorize training patterns rather than finding generalization of 
spcech. 

10Normalized by number of frames. 
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TABLE I 
RECOGNITION RESULTS FOR THRF.F. SPEAKF.RS. ÜV!:R TF.ST DATA USING 

.
TDNN AND HMM 

speaker 
nurober number 

oft.okens of errors 

b(2271 4 
MAU d(l79) 3 

g(252) I 
b(208) 2 

MHT d 170) 0 
g(254) 4 
b(216) ll 

MNM d 178 I 
g(256) 4 

0.0 

recognition TDNN number 
rate oferrors 
98.2 18 
98.3 98.8 6 
99.6 23 

99.0 8 
100 99.1 3 
98.4 7 

94.9 27 
99.4 97.5 !3 
98.4 19 

,' ;, . 

/c��::�� 
H •, ,·�· .. :.'• ::: 

. . . 
.. • 't 

recognition HMM rate 
92.1 

96.7 92.9 

90.9 

96.2 

98.2 97.2 

97.2 

87.5 
92.7 90.9 

92.6 

-10.0 "-------------------__J corl"'.et-

-10.0 0.0 
Fig. 6. Scattcr plot showing log probabilities fo r thc best matehing incor­

rect casc versus the correcrly recognized "B's'' using an HMM. 

.· 

. . . ,. 
< .' 

.. · .. · 

, . . . 

-10.0 L------------------__.J correct 

-10.0 0.0 
Fig. 7. Scatter plor showing log probabilitics for rhe best ma tehing incor­

rect case versus the corre ctly recognized "D's'' using an HMM. 

numerical values that each method's decision rule uses to 
detennine the recognition oulcome. We presem rhese piots 
here to show some interesting properties of the two tech­
niques. The most striking observation that can be made 
from these plots is that the outpur units of a TDNN have 
a rendency to fire with high confidence as can be seen 

0.0 

. ': 
• . . 

-10,0 L..' , _____ _ ...:_ ___________ __J COI"r"tCt 
-10.0 0.0 

Fig. 8. Scattcr plot showing log probabilities for thc best matehing incor­
rect case versus the correctly rccognized "G's" using an HMM. 

· 

1.0 next_best 

·. 

,. 

0.0 l<..._ ____ _________ _,___,.__._,.__·:.�· .. correct 

0.0 1.0 
Fig. 9. Scatter plot showing activation Ieveis for thebest matehing incor­

recr casc vcrsus the correctly rccognized ''B's" using a TDNN. 

l.O 

0.0 I.�·-·._· --------�_,__...........__....· ........ J corroct 

0.0 1.0 
Fig. 10. Scatter plot showing activation Ieveis for thc bcst matehing in­

correct casc versus rhe correctly recogni1.ed "D's" using a TDNN. 
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1.0 

.. 
0.0 L---�-------_..:.'---� ........ · C01"1"1tC't 

0.0 1.0 
Fig. I I. Scalter plot showing activation Ievels for the best matehing in· 

correct case versus the correctly recognized "G's'' using a TDNN. 

from the duster of dots in the lower right-hand comer of 
the scatter plots. Most output units tend to fire strongly 
for the correct phonemic dass and not at all for any other, 
a property that is encouraged by the leaming procedure. 
One possible consequence of this is that rejection thresh­
olds could be introduced to improve recognition perfor­
mance. If one were to eliminate among speaker MAU's 
tokens all those whose highest activation Ievel is less than 
0.5 and those which result in two or more closely com­
peting activations (i.e., are near the diagonal in the scatter 
plots), 2.6 percent of all tokens would be rejected, while 
the remaining substitution error rate would be less than 
0.46 percent. 

IV. THE LEARNED !NTERNAL REPRESENTATIONS OF A 

TDNN 

Given the encouraging performance of our TDNN's, a 
closer Iook at the leamed intemal representation of the 
network is warranted. What are the properties or abstrac­
tions that the network has leamed that appear to yield a 
very powerful description of voiced stops? Figs. 12 and 
13 show two typical instances of a "D" out of two dif­
ferent phonetic contexts ("DA" and "DO," respec­
tively). In both cases, only the correct unit, the "D-out­
put unit," fires strongly, despite the fact that the two input 
spectrograms differ considerably from each other. If we 
study the internal firings in these two cases, we can see 
that the network has learned to use altemate intemal rep­
resentations to link variations in the sensory input to the 
same higher Ievel concepts .. A good example is given by 
the firings of the third and fourth hidden unit in the first 
layer above the input layer. As can be seen from Fig. 13, 
the founh hidden unit fires particuiarly strongiy after 
vowel onset in the case of "00," while the third unit 
shows stronger activation after vowel onset in the case of 
"DA." 

Fig. 14 shows the significance of these different firing 
pattems. Here the connection strengths for the eight mov-
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• • !!!!!II!I!.WI 
il !ll!tlll •• 
. ..  !!11\ll!!ll. 
· ·�'�·� 
•1:!•11•11!! 
"'!!1111111'!111. 
ll!l " 11111!!111 !I 
.. '!! "'"!llJ!!I 
.... !OI�'ii!Uill 

. . . 
• • •• • •  

(�Z) 

., • • • • • • - 5437 
t1 .., ,., ., •• - & .!1 -4S47 
... . . . . . . .  1797 
• • • • • • • • 1187 
0 ••••••• "" 
• • • • • • • • 22SO 
• ••••• • • an 
........... 1 
• • • ••••• 1•06 
.. . ...... 1119 
• •• • •••• 1011 
• ••••••• ••• 
•••••••• 656 
• • • • • • • •  461 
• ••••••• 201 
• • • • • • • • 141 

Fig. 12. TDNN activation pattems for "DA." 
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Fig. 13. TDNN activation pattems for "DO." 
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ing TDNN units are shown, where white and black blobs 
represent positive and negative weights, respectively, and 
the magnitude of a weight is indicated by the size of the 
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5.) 6.) 7.) 8.) 
TDNN·units 

timt 
1.) 2.) 3.) 4.) 

TDNN-units 
Fig. 14. Weights on conneclions from 16 coefficients over 3 time frames 

to each of the 8 hidden units in the first layer. 

blob. In this figure, the time delays are displayed spatially 
as a 3 frame window of 16 spectral coefficients. Concep­
tually, the weights in this window form a moving acous­
tic-phonetic feature detector that fires when the pattern 
for which it is specialized is encountered in the input 
speech. In our example, we can see that hidden unit num­
ber 4 (which was activated for "DO") has learned to fire 
when a falling (or rising) second formant starting at around 
1600 Hz is found in the input (see filled arrow in Fig. 14) .  
As can be seen in Fig.  13 ,  this is  the case for "DO" and 
hence the firing of hidden unit 4 after voicing onset (see 
row pointed to by the filled arrow in Fig. 13) .  In the case 
of "DA" (see Fig. 12),  in turn, the second formant does 
not fall significantly, and hidden unit 3 (pointed to by the 
filled arrow) fires instead. From Fig. 14 we can verify that 
TDNN unit 3 has leamed to Iook for a steady (or only 
slightly falling) second formant starting at about 1 800 Hz. 
The connections in the second and third layer then link 
the different firing patterns observed in the first hidden 
layer into one and the same decision. 

Another interesting feature can be seen in the bottom 
hidden unit in hidden layer number 1 (see Figs. 1 2  and 
13, and compare them to thc wcights of hidden ünit 1 
displayed in Fig. 14). This unit has learned to take on the 
role of finding the segment boundary of the voiced stop. 
It does so in reverse polarity, i . e . ,  it is always on except 
when the vowel onset of the voiced stop is encountered 

• • 

(Ht:) 

� � � � · · · · · � � � � � � Mn 
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Fig. 15. TDNN activation pattems for "GA" embedded in an utterance. 

(see unfilled arrow in Figs. 13 and 12). Indeed, the higher 
Iayer TDNN units subsequently use this "segmenter" to 
base the final decision on the occurrence of the right lower 
features at the right point in time. 

In the previous example, we have seen that the TDNN 
can account for variations in phonetic context. Figs. 1 5  
and 1 6  show examples o f  variability caused b y  the relative 
position of a phoneme within a word. In Japanese, a "G" 
embedded in a word tends to be nasalized as seen in the 
spectrum of a "GA" in Fig. 15. Fig. 16 shows a word 
initial "GA . "  Despite the striking differences between 
these two input spectrograms, the network's intemal a1-
ternate representations manage to produce in both cases 
crisp output firings for the right category. 

Figs. 1 7  and 1 8 ,  finally, demoostrate the shift invari­
ance of the network. They show the same token "DO" 
of Fig. 1 3, misaligned by +30 ms and -30 ms, respec­
tively. Despite the gross misalignment (note that signifi­
cant transitional information is lost by the misalignment 
in Fig. 18), the correct result was obtained reliably. A 
close Iook at the internal activation patterns reveals that 
the hidden units' feature detectors do indeed fire accord­
ing to the events in the input speech, and are not nega­
tively affected by the relative shift with respect to the in­
put units. Naturally, error rates will gradually increase 
when the tokens are artificially shifted to an extent that 
important features begin to fall outside the 1 5  frame data 
window considered here. We have observed, for example, 
a 2.6 percent increase in .error rate when alt tokens from 
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Fig. 18. TDNN activation patterns for "DO" misaligned by -30 ms. 

the training data were artificially shifted by 20 ms. Such 
residual time-shift sensitivities are due to the edge effects 
at the token boundaries and can probably be removed hy 
training the TDNN using randomly shifted training to­
kens. 1 1 We also consider the fonnation of shift-invariant 

internal features to be the important desirable property we 
observe in the TDNN. Such intemal features eould be in­
corporated into !arger speech recognition systems using 
more sophisticated search techniques or a syllable or word 
Ievel TDNN, and hence could replace the simple Integra­
tion layer we have used here for training and evaluation. 

Three important properties of the TDNN's have been 
observed. First, our TDNN was able to leam, without hu­
man interference, meaningful l inguistic abstractions such 
as fonnant tracking and segmentation. Second, we have 
demonstrated that it has leamed to fonn altemate repre­
scntations linking different acoustic events with the samc 
higher Ievel coneept. In this fashion, it can implement 

trading relations between lower Ievel acoustic events 
leading to robust recognition performance. Third, we ha\·e 
seen that the network is shift invariant and does not rely 
on precise alignment or segmentation of the input. 

V. CONCLUSION AND Su��ARY 

In this paper we have presented a Time-Dela) r eural 
Network (TDNN) approach to phoneme recognition. We 

1 1Wc gratefully acknowledge onc of the reviewers for sugge>ting this 
idea. 
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have shown that this TDNN has two desirable properties 
related to the dynamic structure of speech. First, it can 
learn the temporal structure of acoustic events and the 
temporal relationships between such events. Second, it is 
translation invariant, that is, the features leamed by the 
network are insensitive to shifts in time. Examples dem­
oostrate that the network was indeed able to leam acous­
tic-phonetic features, such as formant movements and 
segmentation, and use them effectively as intemal ab­
stractions of speech. 

The TDNN presented here has two hidden layers and 
has the ability to leam complex nonlinear decision sur­
faces. This could be seen from the network's ability to 
use altemate intemal representations and trading relations 
among lower Ievel acoustic-phonetic features, in order to 
arrive robustly at the correct final decision. Such altemate 
representations have been particularly useful for repre­
senting tokens that vary considerably from each other due 
to their different phonetic environment or their position 
within the original speech utterance. 

Finally, we have evaluated the TDNN on the recogni­
tion of three acoustically similar phonemes, the voiced 
stops " 8 , "  "D," and "G. "  In extensive performance 
evaluation over testing data from three speakers, the 
TDNN achieved an average recognition score of 98.5 per­
cent. For comparison, we have applied various Hidden 
Markov Models to the same task and only been able to 
recognize 93.7 percent of the tokens correctly. We would 
like to note that many variations of HMM's have been 
attempted, and many more variations of both HMM's and 
TDNN 's are conceivable. Some of these variations could 
potentially Iead to significant improvements over the re­
sults reported in this study. Our goal here is to present 
TDNN's as a new and successful approach for speech rec­
ognition. Their power lies in their ability to develop shift­
invariant intemal abstractions of speech and to use them 
in trading relations for making optimal decisions. This 
holds significant promise for speech recognition in gen­
eral, as it could help overcome the representational weak­
nesses of speech recognition systems faced with the un­
certainty and variability in real-life signals. 
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