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Abstract 

In this paper we present NPen ++, a connectionist system for 
writer independent, large vocabulary on-line cursive handwriting 
recognition. This system combines a robust input representation, 
which preserves the dynamic writing information, with a neural 
network architecture, a so called Multi-State Time Delay Neural 
Network (MS-TDNN), which integrates rec.ognition and segmen­
tation in a single framework. Our preprocessing transforms the 
original coordinate sequence into a (still temporal) sequence offea­
ture vectors, which combine strictly local features, like curvature 
or writing direction, with a bitmap-like representation of the co­
ordinate's proximity. The MS-TDNN architecture is well suited 
for handling temporal sequences as provided by this input rep­
resentation. Our system is tested both on writer dependent and 
writer independent tasks with vocabulary sizes ranging from 400 
up to 20,000 words. For example, on a 20,000 word vocabulary we 
achieve word recognition rates up to 88.9% (writer dependent) and 
84.1 % (writer independent) without using any language models. 
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1 INTRODUCTION 

Several preprocessing and recognition approaches for on-line handwriting recog­
nition have been developed during the past years . The main advantage of on-line 
handwriting recognition in comparison to optical character recognition (OCR) is the 
temporal information of handwriting, which can be recorded and used for recogni­
tion . In general this dynamic writing information (i.e . the time-ordered sequence of 
coordinates) is not available in OCR, where input consists of scanned text. In this 
paper we present the NPen++ system, which is designed to preserve the dynamic 
writing information as long as possible in the preprocessing and recognition process. 

During preprocessing a temporal sequence of N-dimensional feature vectors is com­
puted from the original coordinate sequence, which is recorded on the digitizer. 
These feature vectors combine strictly local features, like curvature and writing di­
rection [4], with so-called context bitmaps, which are bitmap-like representations of 
a coordinate's proximity. 

The recognition component of NPen++ is well suited for handling temporal se­
quences of patterns, as provided by this kind of input representation. The rec­
ognizer, a so-called Multi-State Time Delay Neural Network (MS-TDNN), inte­
grates recognition and segmentation of words into a single network architecture. 
The MS-TDNN, which was originally proposed for continuous speech recognition 
tasks [6, 7], combines shift-invariant, high accuracy pattern recognition capabilities 
of a TDNN [8, 4] with a non-linear alignment procedure for aligning strokes into 
character sequences. 

Our system is applied both to different writer dependent and writer independent, 
large vocabulary handwriting recognition tasks with vocabulary sizes up to 20,000 
words. Writer independent word recognition rates range from 92.9% with a 400 
word vocabulary to 84.1 % with a 20,000 word vocabulary. For the writer dependent 
system, word recognition rates for the same tasks range from 98.6% to 88.9% [1]. 

In the following section we give a description of our preprocessing performed on the 
raw coordinate sequence, provided by the digitizer. In section 3 the architecture and 
training of the recognizer is presented. A description of the experiments to evaluate 
the system and the results we have achieved on different tasks can be found in 
section 4. Conclusions and future work is described in section 5. 

2 PREPROCESSING 

The dynamic writing information, i.e. the temporal order of the data points, is 
preserved throughout all preprocessing steps. The original coordinate sequence 
{(x(t), y(t»hE{O ... T'} recorded on the digitizer is transformed into a new temporal 
sequence X6 = Xo ... XT, where each frame Xt consists of an N-dimensional real­
valued feature vector (h(t), . .. , fN(t» E [-1, l]N. 

Several normalization methods are applied to remove undesired variability from 
the original coordinate sequence. To compensate for different sampling rates and 
varying writing speeds the coordinates originally sampled to be equidistant in time 
are resampled yielding a new sequence {(x(t),y(t»hE{O ... T} which is equidistant in 
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Figure I: Feature extraction for the normalized word "able". The final input rep­
resentation is derived by c,alculating a 15-dimensional feature vector for each data 
point, which consists of a context bitmap (a) and information about the curvature 
and writing direction (b). 

space. This resampled trajectory is smoothed using a moving average window in 
order to remove sampling noise. In a final normalization step the goal is to find 
a representation of the trajectory that is reasonably invariant against rotation and 
scaling of the input. The idea is to determine the words' baseline using an EM 
approach similar to that described in [5] and rescale the word such that the center 
region of the word is assigned to a fixed size. 

From the normalized coordinate sequence {(x(t), y(t))hE{O .. . T} the temporal se-
quence 2::r; of N-dimensional feature vectors ~t = (!l(t), ... .IN(t)) is computed 
(Figure I). Currently the system uses N = 15 features for each data point. The 
first two features fl(t) = x(t)-x(t-I) and h(t) = y(t)-b describe the relative X 
movement and the Y position relative to the baseline b. The features /get) to f6(t) 
are used to desc,ribe the curvature and writing direction in the trajectory [4] (Fig­
ure I(b)). Since all these features are strictly local in the sense that they are local 
both in time and in space they were shown to be inadequate for modeling temporal 
long range context dependencies typically observed in pen trajectories [2]. There­
fore, nine additional features h(t) to !J5(t) representing :3 x:3 bitmaps were included 
in each feature vector (Figure I(a». These so-called context bitmaps are basically 
low resolution, bitmap-like descriptions of the coordinate's proximity, which were 
originally described in [2]. 

Thus, the input representation as shown in Figure I combines strictly local features 
like writing direction and curvature with the c,ontext bitmaps, which are still local 
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in space but global in time. That means, each point of the trajectory is visible from 
each other point of the trajectory in a small neighbourhood. By using these context 
bitmaps in addition to the local features, important information about other parts 
of the trajectory, which are in a limited neighbourhood of a coordinate, are encoded. 

3 THE NPen++ RECOGNIZER 

The NPell ++ recognizer integrates recognition and segmentation of words into 
a single network architecture, the Multi-State Time Delay Neural Network (MS­
TDNN) . The MS-TDNN, which was originally proposed for continuous speech 
recognition tasks [6 , 7], combines the high accuracy single character recognition 
capabilities of a TDNN [8, 4] with a non-linear time alignment algorithm (dynamic 
time warping) for finding stroke and character boundaries in isolated handwritten 
words. 

3.1 MODELING ASSUMPTIONS 

Let W = {WI, .. . WK} be a vocabulary consisting of K words. Each of these words 
Wi is represented as a sequence of characters Wi == Ci l Ci 2 • •• Cik where each character 
Cj itself is modelled by a three state hidden markov model Cj == qj q] qJ. The 
idea of using three states per character is to model explicitly the imtial, middle 
and final section of the characters. Thus , Wi is modelled by a sequence of states 
Wi == qioqi l · .. qhk . In these word HMMs the self-loop probabilities p(qij/qij) and 
the transition probabilities p(qij/qij_l) are both defined to be ~ while all other 
transition probabilities are set to zero. 

During recognition of an unknown sequence of feature vectors ~'(; = ~o . . . ~T we 
have to find the word Wi E W in the dictionary that maximizes the a-posteriori 
probability p( Wi /~a 10) given a fixed set of parameters 0 and the observed coordinate 
sequence. That means , a written word will be recognized such that 

Wj = argmaXw,EWp(Wi/Za,O). 

In our Multi-State Time Delay Neural Network approach the problem of modeling 
the word posterior probability p( wdz'{; , 0) is simplified by using Bayes' rule which 
expresses that probability as 

p(Z'{;/WilO)P(Wi/O) 
p(z'{;/O) 

Instead of approximating p( Wi /z'{;, 0) directly we define in the following section a 
network that is supposed to model the likelihood of the feature vector sequence 
p(z'{; /Wi, 0). 

3.2 THE MS-TDNN ARCHITECTURE 

In Figure 2 the basic MS-TDNN architecture for handwriting recognition is shown. 
The first three layers constitute a standard TDNN with sliding input windows in 
each layer. In the current implementation of the system, a TDNN with 15 input 
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Figure 2: The Multi-State TDNN architecture , consisting of a 3-layer TDNN to 
estimate the a posteriori probabilities of the character states combined with word 
units, whose scores are derived from the word models by a Viterbi approximation 
of the likelihoods p(x6'IWi). 

units , 40 units in the hidden layer , and 78 state output units is used . There are 7 
time delays both in the input and hidden layer. 

The softmax normalized output of the states layer is interpreted as an estimate of 
the probabilities of the states qj given the input window x!~~ = Xt-d .. . Xt+d for 
each t ime frame t , i.e . 

exp(1/j (t)) 
2::k exp(1/k(t)) 

( 1 ) 

where 1lj (t) represents the weighted sum of inputs to state unit j at time t . Based 
on these estimates , the output of the word units is defined to be a Viterbi approx­
imation of the log likelihoods of the feature vector sequence given the word model 
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T 

logp(zrlwi) ~ m~ L 10gp(z;~~lqt, Wi) + logp(qtlqt-I, Wi) 
qo t=1 

T 

~ m~ Llogp(qtlz;~~) -logp(qt) + logp(qtlqt-1, Wi). (2) 
qo t=1 

Here, the maximum is over all possible sequences of states q'{; = qo . .. qT given a 
word model, p(qtlz!~~) refers to the output of the states layer as defined in (1) and 
p(qt) is the prior probability of observing a state qt estimated on the training data. 

3.3 TRAINING OF THE RECOGNIZER 

During training the goal is to determine a set of parameters 0 that will maximize 
the posterior probability p( wlzr, 0) for all training input sequences. But in order 
to make that maximization computationally feasible even for a large vocabulary 
system we had to simplify that maximum a posteriori approach to a maximum 
likelihood training procedure that maximizes p(zrlw, 0) for all words instead. 

The first step of our maximum likelihood training is to bootstrap the recognizer 
using a subset of approximately 2,000 words of the training set that were labeled 
manually with the character boundaries to adjust the paths in the word layer cor­
rectly. After training on this hand-labeled data, the recognizer is used to label 
another larger set of unlabeled training data. Each pattern in this training set 
is processed by the recognizer. The boundaries determined automatically by the 
Viterbi alignment in the target word unit serve as new labels for this pattern. Then, 
in the second phase, the recognizer is retrained on both data sets to achieve the 
final performance of the recognizer. 

4 EXPERIMENTS AND RESULTS 

We have tested our system both on writer dependent and writer independent tasks 
with vocabulary sizes ranging from 400 up to 20,000 words. The word recognition 
results are shown in Table 1. The scaling of the recognition rates with respect to 
the vocabulary size is plotted in Figure 3b. 

T bl 1 W' a e rlter d d epen ent an d' d d In epen ent recogmtIOn resu ts 
Vocabulary Writer Dependent Writer Independent 

Task Size Test RecognitIon Test KecogmtIOn 
Patterns Rate Patterns Rate 

crtAOO 400 800 98.6% 800 92.9% 
wsj_l,OOO 1,000 800 97.8% - -
wsj_7,000 7,000 - - 2,500 89.3% 

wsj_l0,000 10,000 1,600 92.1% 2,500 87.7% 
wsj..20,000 20,000 1,600 88.9% 2,500 84.f% 
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Figure 3: (a) Different writing styles in the database: cursive (top), hand-printed 
(middle) and a mixture of both (bottom) (b) Recognition results with respect to 
the vocabulary size 

For the writer dependent evaluation, the system was trained on 2,000 patterns from 
a 400 word vocabulary, written by a single writer, and tested on a disjunct set 
of patterns from the same writer. In the writer dependent case, the training set 
consisted of 4,000 patterns from a 7,000 word vocabulary, written by approximately 
60 different writers. The test was performed on data from an independent set of 40 
writers . 

All data used in these experiments was collected at the University of Karlsruhe, 
Germany. Only minimal instructions were given to the writers. The writers were 
asked to write as natural as they would normally do on paper, without any re­
strictions in writing style. The consequence is , that the database is characterized 
by a high variety of different writing styles , ranging from hand-printed to strictly 
cursive patterns or a mixture of both writing styles (for example see Figure 3a). 
Additionally the native language of the writers was german, but the language of 
the dictionary is english. Therefore , frequent hesitations and corrections can be ob­
served in the patterns of the database. But since this sort of input is typical for real 
world applications , a robust recognizer should be able to process these distorted 
patterns, too . From each of the writers a set of 50-100 isolated words, choosen 
randomly from the 7,000 word vocabulary, was collected. 

The used vocabularies CRT (Conference Registration Task) and WSJ (ARPA Wall 
Street Journal Task) were originally defined for speech recognition evaluations. 
These vocabularies were chosen to take advantage of the synergy effects between 
handwriting recognition and speech recognition, since in our case the final goal is 
to integrate our speech recognizer JANUS [10] and the proposed NPen++ system 
into a multi-modal system. 



1100 Stefan Manke, Michael Finke, Alex Waibel 

5 CONCLUSIONS 

In this paper we have presented the NPen++ system, a neural recognizer for writer 
dependent and writer independent on-line cursive handwriting recognition. This 
system combines a robust input representation, which preserves the dynamic writing 
information, with a neural network integrating recognition and segmentation in a 
single framework. This architecture has been shown to be well suited for handling 
temporal sequences as provided by this kind of input . 

Evaluation of the system on different tasks with vocabulary sizes ranging from 400 
to 20,000 words has shown recognition rates from 92.9% to 84.1 % in the writer 
independent case and from 98.6% to 88.9% in the writer dependent case. These 
results are especially promising because they were achieved with a small training 
set compared to other systems (e.g. [3]). As can be seen in Table 1, the system 
has proved to be virtually independent of the vocabulary. Though the system 
was trained on rather small vocabularies (e.g. 400 words in the writer dependent 
system), it generalizes well to completely different and much larger vocabularies. 

References 

[1] S. Manke and U. Bodenhausen, "A Connectionist Recognizer for Cursive Hand­
writing Recognition", Proceedings of the ICASSP-94, Adelaide, April 1994. 

[2] S. Manke, M. Finke, and A. Waibel, "Combining Bitmaps with Dynamic Writing 
Information for On-Line Handwriting Recognition", Proceedings of the ICPR-
94, Jerusalem, October 1994. 

[3] M. Schenkel, I. Guyon, and D. Henderson, "On-Line Cursive Script Recognition 
Using Time Delay Neural Networks and Hidden Markov Models", Proceedings 
of the ICASSP-94, Adelaide, April 1994. 

[4] I. Guyon, P. Albrecht, Y. Le Cun, W. Denker, and W. Hubbard, "Design of a 
Neural Network Character Recognizer for a Touch Terminal", Pattern Recogni­
tion, 24(2), 1991. 

[5] Y. Bengio and Y. LeCun. "Word Normalization for On-Line Handwritten Word 
Recognition", Proceedings of the ICPR-94, Jerusalem, October 1994. 

[6] P. Haffner and A. Waibel, "Multi-State Time Delay Neural Networks for Contin­
uous Speech Recognition", Advances in Neural Information Processing Systems 
(NIPS-4) , Morgan Kaufman, 1992. 

[7] C. Bregler, H. Hild, S. Manke, and A. Waibel, "Improving Connected Letter 
Recognition by Lipreading", Proceedings of the ICASSP-93, Minneapolis, April 
1993. 

[8] A. Waibel, T. Hanazawa, G. Hinton, K. Shiano, and K. Lang, "Phoneme Recog­
nition using Time-Delay Neural Networks", IEEE Transactions on Acoustics, 
Speech and Signal Processing, March 1989. 

[9] W. Guerfali and R. Plamondon, "Normalizing and Restoring On-Line Hand­
writing", Pattern Recognition, 16(5), 1993. 

[10] M. Woszczyna et aI., "Janus 94: Towards Spontaneous Speech Translation", 
Proceedings of the ICASSP-94, Adelaide, April 1994. 


