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Modeling Focus of Attention for Meeting Indexing
Based on Multiple Cues

Rainer Stiefelhagen, Jie Yaniglember, IEEEand Alex Waibel Member, IEEE

Abstract—A user’s focus of attention plays an important role in  to guide the environment’s “focus” to the right application and
human-computer interaction applications, such as a ubiquitous to prevent responses generated from applications that have not
computing environment and intelligent space, where the user's paen addressed. During social interaction, gaze serves for several
goal and intent have to be continuously monitored. In this paper, functions which are not easily transmitted by auditory cues
we are interested in modeling people’s focus of attention in a X N
meeting situation. We propose to model participants’ focus of alone [3]. In computer mediated communication systems, such
attention from multiple cues. We have developed a system to as virtual collaborative workspaces, detecting and conveying
estimate participants’ focus of attention frqm gaze directions participants’ gazes have several advantages: it can help the
and sound sources. We employ an omnidirectional camera t0 yapiicipants to determine who is talking or listening to whom, it

simultaneously track participants’ faces around a meeting table S . . .
and use neural networks to estimate their head poses. In addition, can serve to establish joint attention during cooperative work,

we use microphones to detect who is speaking. The system predicts?nd it can facilitate turn taking among participants [4], [5].
participants’ focus of attention from acoustic and visual informa- In this paper, we are interested in modeling people’s focus
tion separately. The system then combines the output of the audio- of attention in a meeting situation.

and video-based focus of attention predictors. We have evaluated We are interested in meetings because they are one of the most

the system using the data from three recorded meetings. The . tant. and uni Ilv disliked tsi i
acoustic information has provided 8% relative error reduction commaon, important, and universally disliked events in our fives.

on average Compared to on|y using one modahty The focus of Most people find it impOSSible to attend all relevant meetings
attention model can be used as an index for a multimedia meeting or to retain all the salient points raised in meetings they do at-

record. It can also be used for analyzing a meeting. tend. Meeting records are intended to overcome these problems
Index Terms—Focus of attention, head pose estimation, @nd extend human memories. Hand-recorded notes, however,
human—computer interaction, meeting indexing, multimedia have many drawbacks. Note-taking is time consuming, requires

meeting record, multimodality. focus, and thus reduces one’s attention to and participation in
the ensuing discussions. For this reason, notes tend to be frag-
I. INTRODUCTION mentary and partially summarized, leaving one unsure exactly

. ) ) __as to what was resolved, and why. At the Interactive Systems
A person’s focus of attention can be visually identified 3 of Carnegie Mellon University, we are developing a mul-
in certain circumstances. Participants in a meeting, fgmedia meeting recorder and browser to track and summarize
example, might look at the speaker while they are listening {gscyssions held in a specially equipped conference room [6].
the talk. When a user is editing a paper, he/she would diregie gpjective of the project is to provide a multimedia meeting
his/her visual attention would direct toward a computer screecord without using constraining devices such as headsets, hel-
Modeling and tracking a person’s focus of attention is useful faRets, suits, and buttons. The research issues include to identify:
many applications: Intelligent supportive computer applicatioqs) who/what is the source of the message; 2) who or what is the
could use information abouta user’s focus ofattentiontoinfertt@grget and object of the message (focus of attention): 3) what
user's mental status, his/her goals and cognitive load and adj4she content of the message in the presence of jamming noise.
their own responses to the user accordingly. For multimodghe main components of the Meeting Browser are: a speech rec-
human computer interaction, the user’s focus of attention C8fnizer, a summarization module, a discourse component that
be used to determine his/her message target. For exampleaggmpts to identify the speech acts, a module for audio—visual
interactive intelligent rooms or houses [1], [2], focus of attentiogentification of participants [7] and a module for tracking the
could be used to determine whether the user is to control tﬁérticipants’ focus of attention.
refrigerator, the TV set, or he/she is talking to another person inj, order to quickly retrieve information from such a multi-
the room. In other words, the user’s attention focus can be usgddia meeting record, we can use various indexing methods.
It is well known that visual communication cues, such as
gesturing, looking at each other, or monitoring each others
Manuscript receivedApril 12, 2001; revised October 29, 2001. This work w#acial expressions, play an important role during face-to-face
supported in part by the Defense Advanced Research Projects Agency undi§immunication [3], [8]. Therefore, to fully understand an
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the multimedia project” become possible. In addition, duringnd how prediction accuracy can be improved by taking the
playback of parts of a meeting, we could indicate at whom thestory of speakers into account. We also address combination
speaker was looking. of audio- and head pose-based focus predictions, and illustrate

In this research, we address the problem of tracking the visgaperimental results. In Section VI, we present an application
focus of attention of participants in a meeting; i.e., tracking whaf our model to the meeting browser. Information about the
is looking at whom during a meeting. Such information can hgarticipants’ focus of attention is tracked and is integrated as a
used to control interaction with a smart meeting room or to indeomponent in the meeting browser. The meeting browser can
and analyze multimedia meeting records. then be used to index meeting transcriptions and summaries

In our system, an omnidirectional camera is used to captwh visual cues. In Section VII we summarize the paper.
the scene around a meeting table. Participants are detected and
tracked in the panoramic image using a real-time face tracker. Il. MODELING FOCUS OFATTENTION
Furthermore, neural networks are used to compute head pose
of each person Simu|taneous|y from the panoramic image_ WeThe idea of this research is to track at whom or what the par-
then use a Bayesian approach to estimate a person’s focud@pants are paying attention to during the course of a meeting.
attention from the computed head pose. We modehtheste- Gaze is a good indicator of a person’s attention during social in-
riori probability that a person is looking at a certain target, givdgraction. When humans pay attention to someone, they usually
the observed head pose. Using this approach, we have ach|év'&pt themselves toward the person of interest so as to have it
74% accuracy in detecting the participants’ focus of attentidf the center of their visual field and also to signal that they are
on three recorded meetings. paying attention to the other person [9], [10].

In addition to visual information, we have investigated Although the eyes are the primary source to detect a person’s
whether a person’s focus of attention can be predicted frd¥gZe during social interaction, gaze is not limited to informa-
other information. We have discovered that focus of attentiontign from the eyes. The perception of someone else’s direction
also correlated to sound sources in a meeting. We can estinfftéttention also depends on the direction of their head, body
a person’s focus of attention based on the information of whoR§sture and other gestures, such as pointing gestures. All theses
talking at or was talking before a given moment. This is basé¥€s are likely to be processed automatically by observers and
on the idea that visual attentioniigluencedby external events all make contributions to the perceptions of another person’s
SUCh as noisesl movementS, or Other person’s Speech_ We ﬁﬁw}tlon [11] In faCt it has been ShOWh that head Orientation
estimated probability distributions of where participants agrongly influences the perception of gaze, even when the eyes
looking during certain “speaking constellations.” We can thedf€ Visible [12].
use these distributions to predict the focus of attention using!n our approach we aim to estimate a person’s focus of at-
the sound information only. We have achieved 54% accuracytfntion, based on his head orientation. To map a person’s head
predicting the participants’ focus of attention on three recordéfientation onto the focussed object in the scene, a model of the
meetings_ The accuracy of sound-based prediction can ¥&Ne and the interesting ObjeCtS in it are needed. In the case of
significantly improved by also taking a history of speake® Mmeeting scenario, clearly the participants around the table are
constellations into account. We have trained neural networksli#¢gly targets of interest. Therefore, our approach to tracking at
predict focus of attention based on who was speaking duriiiom a participant is looking is the following.

a short period of time. Using this approach, sound-basedl) Detect all participants in the scene.
prediction could be increased to 63%. 2) Estimate each participant’s head orientation.

Finally, the head pose based and the sound-based estimate a) Map each estimated head orientation to its likely targets
combined to obtain a multimodal estimation of the participants’  using a probabilistic framework.
focus of attention. By using both head pose and sound, we hav€ompared to directly classifying a person’s focus of attention
achieved 76% accuracy in detecting the participants’ focus taffget—based on images of the person’s face for example—our
attention on the recorded meetings. approach has the advantage, that different numbers and po-

The novelty of this research lies in estimating focus of attesitions of participants in the meeting can be handled. If the
tion from multiple cues. To our knowledge, this is the first tim@roblem was treated as a multiclass classification problem, and
that predicting a person’s focus of attention based on whoadsclassifier such as a neural network was trained to directly
talking has been reported. learn the focus of attention target from the facial images of a

The remainder of this paper is organized as follows: In Seaser, then the number of possible focus targets would have to
tion Il, we introduce the idea of modeling a person’s focus dfe known in advance. Furthermore, with such an approach it
attention by observing a person’s gaze as well as monitorimguld be difficult to handle situations were participants sit at
relevant stimuli in the scene. In Section lll, we introduce theifferent locations than during collection of the training data.
approach to estimate head poses of participants using neurdDbjects which draw a person’s attention can be external
networks. In Section IV, we discuss methods to model the prastimuli such as pictures, sounds, etc., or internal stimuli such
ability distributions of whom a person is looking at based oas thoughts and attempts to retrieve information from memory
his/her head pose. In Section V, we present two different gd-3]. Clearly, visual attention is influenced by external stimuli,
proaches to predict a person’s focus of attention by monitorisgch as noises, movements, or speech of other persons. There
who is speaking. We provide details how focus of attention cas evidence, for example, that two or more people will orient
be predicted by knowledge about who is currently speakinpemselves toward each other as soon as they begin to interact.
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And it has been argued that there is an orientation reflex to the
source of a sound, causing interactors to line up the visual and
auditory channel; i.e., to look at the face which is the source of
the sound [14] (cf. [15]).

Another approach to estimate at whom or what a person
is paying attention to, could therefore be, to monitor external
events in the meeting environment, such as sounds, utterances,
gestures, persons entering the room etc., and try to make a
prediction of the participants’ focus of attention based on these
external events.

Following this idea, we have also tried to predict at whom a
person is looking, based on who is speaking at the moment and
based on the temporal sequence of speakers. Fig. 1. The panoramic camera used to capture the scene.

I1l. ESTIMATING HEAD POSEUSING NEURAL NETS

In this section we present an approach to estimate head pc
of participants from panoramic images using neural network

The main advantage of using neural networks to estime
head pose as compared to using a model-based approach i
robustness: With model-based approaches to head pose est
tion [16]-[18], head pose is computed by finding correspot
dences between facial landmarks points (such as eyes, nost
lip corners) in the image and their respective locations in a he
model. Therefore these approaches rely on tracking a minimt
number of facial landmark points in the image correctly, whic
is a difficult task and is likely to fail. On the other hand, the
neural-network-based approach does not require tracking
tailed facial features. Instead, the whole facial region is us:
for estimating the user’s head pose.

In our approach, we are using neural networks to estimate 34 2. Meeting scene as captured with the panoramic camera.
and tilt of a person’s head, given automatically extracted and
preprocessed facialimages as input to the neural net. Schiele aAndc apturing the Scene
Waibel [19] demonstrated a neural-network-based head pos e
tracking system. The system estimated only head rotation in pajn our system, an omnidirectional camera put on top of the
direction for one person. Rag al. [20] describe a user Olepen_com‘erence table is used to capture the scene. Fightws a

dent neural-network-based system to estimate the pan and tille r:ler?o()f ::hTir?(?grogi?Iig ?c?cTJzirr? sgitzm ;::t?oﬁir:qei:%:'solziﬂteed
a person. In their approach, color segmentation, ellipse fitti pcy 9 P

L ottom plate. Through this mirror almost a whole hemisphere
and Gabor-filtering on a segmented face are used for prepr?-the surrounding scene is visible. Fig. 2 shows the view of a

cessing. They reported an average accuracy’ db®pan and °
9. y rep g P meeting scene as itis captured with this camera. As the topology

7° for tiltfor one user with a user dependent system, .of the mirror and the optical system are known, it is possible

Int_our p;e:zlwous \r/1vork on zstlmatlntg partmpants focus'n?o compute panoramic views of the scene as well as perspec-
meetings [21], we have used separate cameras to zoom M98 views at different angles of the panoramic view [22]. Fig. 3

each of the _part?cipants_ in order to_ obtain th_e input imaggﬁows the rectified panoramic image (with faces marked) of the
for pose estimation. Using these high-resolution images, WE 1 era view depicted in Fig. 2

achieved an accuracy of for pan and 8 for tilt on a user
independent test set in recent experiments. B. Using Color and Motion for Face Detection

In this research, we use an omnidirectional camerato capturel_ detect and track f _— L tatistical
the participants, and track faces in the panoramic image. Corr%- 0 detect and track faces In the panoramic view, a statistica

pared to using multiple cameras to capture all participants N _coIc_)rmpd_eI_|r_1the normalized c_:olorspa(_:e is used. The color
stribution is initialized so as to find a variety of face colors

has the advantage that only one video-stream has to be captu 5 'is gradually adapted to the faces actually found. The input

which eliminates the need for camera calibration, synchromz%r—] . : : : .
. . . image is searched for pixels with skin colors. Connected regions
tion and camera control such as zooming on different partic; 7. ; . : :
. . o of skin-colored pixels in the camera image are considered as
ipants. While the facial images extracted from the panoramic ~ . . . .
. . : . ossible faces. Since humans rarely sit perfectly still for a long
view are of considerably lower resolution than images tak 1]

) . . : . fime, motion detection is used to reject outliers that might be
with close up views, we could still obtain good accuracy using
our approach. limage courtesy of CycloVision Technologies, Inc.
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Fig. 3. Panoramic view of the scene around the conference table. Faces are automatically detected and tracked (marked with white rectangles).

@ (b)

We collected training data from 14 users. During datlg . o
lecti the user was automatically tracked in the panora ig. 4. Training samples. (a) The perspective images are genera_ted_ from the
collecuon, user wi u Ically I p oramic view. (b) Head pose labels are collected with a magnetic field pose

view, and a perspective view as depicted in Fig. 4 was geracker.
erated. To determine true head pose, the users had to wear
head band with a sensor of a Polhemus pose tracker attach
to it. Using the pose tracker, the head pose with respect t
a magnetic transmitter could be collected in real time. The
user was asked to randomly look around in the room and th
perspective images of the user were recorded together with th
pose sensor readings.

caused due to noise in the image or skin colored objects within

the image. Only regions with a response from the color-clas-

sifier and some motion during a period of time are considered

as faces. In addition, some geometric constraints are applied to
distinguish (skin-colored) hands from faces. For more detail, the

interested reader is referred to [23].

C. Data Collection

D. Preprocessing of Images

We have investigated two different image preprocessing @ (b) ©
methods as input to the neural networks for head pose estifid-5- Preprocessed images. (a) Normalized gray-scale. (b) Horizontal edge.
- . . . , c) Vertical edge image.
tion: 1) using normalized gray-scale images of the user's fal§
as input and 2) applying edge detection to the facial imagEs
before feeding them into the networks. To find and extract faces
in the collected images, we use the color-based face detectoyVe have trained separate neural networks to estimate head
described in Section 11I-B. pose in pan and tilt directions. For each network, a multilayer
In the first preprocessing approach, histogram normalizati®§rceptron architecture with one output unit (for pan or tilt) and
is applied to the gray-scale face images. No additional featfe hidden layer with 20 to 60 hidden units. The input retina
extraction is performed. The normalized gray-scale images ¥gfied between 28 30 units and 3< 20 x 30 units depending
down-sampled to a fixed size of 2030 pixels and are then ©N thg dlﬁerenttypgs of inputimages. Output activations for pan
used as input to the networks. Histogram normalization defin@gd tilt are normalized to vary between zero and one. Neural
a mapping of gray levelg into gray levelsq such that the networks are trained using standard backpropagation.
distribution of ¢ matches a certain target distribution (e.gF Experimental Results
a uniform distribution). This mapping stretches contrast and
usually improves the detectability of many image features [24]. We divided the data set of 12 users (of the 14 users in the
Histogram normalization is also helpful to get some illuminatiowhole data set) into a training set consisting of 6080 images, a
invariance. cross-evaluation set of size 760 images and a test set with a size
In the second approach, a horizontal and a vertical edge’60images. The images of the remaining two users were kept
operator plus thresholding is applied to the facial gray-scadé & user independent test set. As input to the neural networks,
images. The resulting edge images are down-sampleda320 three different approaches were evaluated:
pixels and are both used as input to the neural networks. Fig. 51) using histogram normalized gray-scale images as input;
shows the preprocessed images of a user’s faces. The normalize®) using horizontal and vertical edge images as input;
gray-scale image and the horizontal and vertical edge images3) using both normalized gray-scale plus the edge images as
of a user’'s face are depicted. input.

Neural-Network Architecture
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The neural networks were trained on the training data set and TABLE |

the cross-evaluation set was used to determine when to stop AVERAGE ERROR IN DEGREES(PAN/TILT) ON A MULTIUSER AND A
.. USERINDEPENDENTTEST SET

training. The performance of the networks was then evaluated

on the test set containing images of the 12 persons that were Net Input Multi-user Test Set | New Users

also in the training set (multiuser case). On the multiuser test Gray-scale 9.4 /69 113/ 9.1

set, we obtgined the best per_formance u_sing both, normalized Fdges 108 /7.1 153 /108

gray-scale images and edge images as mp_ut. A mean error of Fdges + Gray-scale 78 /54 9.9/ 103

7.8 for pan and 5.4 for tilt was obtained with the best net-

works. Using only the gray-scale images as input, the results

decreased to a mean error of 9fdr pan and 6.9 for tilt. With TABLE I

edge images as input, a mean error of only 106 pan and  FESTSUSNE AT ArTrIcAL T DA, REsuTe o e

7.1° for tilt could be achieved. DIFFERENT PREPROCESSINGAPPROACHES THE MEAN ERROR IN DEGREES
1) User Independent Result§o determine how well the OF PAN/TILT IS SHOWN

neural nets can generalize to new users, we have also evalu- -

ated the networks on the two new users whose data have not Net Tnput | Multh-user Test Set | New Users

been in the training set. On the two new users the best result for Gray-scale 55/41 104/9.3

pan estimation, which was &.8nean error, was obtained using Edges 56/35 12.2 /103

normalized gray-scale images plus edge images as input. The Edges + Gray-scale 3.1/25 9.5/98

best result for tilt-estimation measured was’9riean error and
was obtained using only normalized gray-scale images as input. . .
>INg only gray-s g pwﬁom a persort is looking could be, to use the measured
Table | summarizes the results on the multiuser and the user-in- . .
d head pose of5 and look which target persoh; sits nearest
ependent test sets.

2) Adding Artificial Training Data: In order to obtain addi- the position to whichs'is looking. Gaze is, however, not only

tional training data, we have artificially mirrored all of the im-getggg'ré%dntg; g?vigyzozg}nbpul;?elz/o tll),l ¥;ﬁﬁggi§;ﬂ;%§v}$§?ﬁ:'
ages in the training set, as well as the labels for head pan. A%rson at which they are looking. Instead, they also use their
a result, the available amount of training data could be doublB S ' '
. i " . . eye gaze direction.
without r_\a_vlng the effort of addltl_onal data coIIe(_:tlon. Having We have therefore developed a Bayesian approach to estimate
more training data should especially be helpful in order to ge{ hich target a person is locking, based on his observed head
better generalization on images from new, unseen users. IndeaefYV. . A

otation. More precisely, we wish to finB(Focuss = T|zs),

after training with the additional data, we obtained an average o . ) .
error of 9.5 for pan and 9.8for tilt on the two new users using éne probability that a persfiis looking toward a certain target

the gray-scale and the edge images as input. On the multiu%%rrsorm given the person’s observed horizontal head rotation
: which is the output of the neural network for head pan esti-

test set the mean pose estimation error significantly decreadéd ) .
to 3.1° for pan and 2.5for tilt. Table Il shows the results on themat'on' Using Bayes formula, this can of be decomposed to
multiuser test set as well as the new user test set for the different p(zs|Foc.s = T)P(Foc.s = T)
preprocessing approaches. P(Foc.s =Tlxs) =
3) Discussion: From experiment results, we have observed p(ws)
that using only edge images as input leads to poorer head p@#Rre::, denotes the head pan of pers®in degrees and’ is
estimations in both pan and tilt directions, as compared to usigge of the other persons around the table.
only gray-scale images as input. Furthermore, using both graysing this framework, given a pan observatigrfor a person
scale and edge images as input leads to the best results in Bpthas estimated by the neural network for head pan estima-
pan and tilt directions in most cases. However, on the test §gh—it is then possible to compute the posterior probabilities
of new users, using only gray-scale images as input leads#procuss = 7;|xs) for all targetsZ; and choose the one with

slightly better results for the estimation of head tilt (up/down) asighest posterior probability as the focus of attention target in
compared to using both gray-scale and edge images. Moreovigs, current frame.

adding artificial training data improves estimation results both |n order to computeP(Focuss = T'|zs), it is however

on the multiuser test set and on the new users. necessary to estimate the class-conditional probability density

function p(xs|Focuss = T'), the class priotP(Focuss = T)

andp(xs) for each person. Finding(xs) is trivial and can

be done by just building a histogram of the observed head
In our approach, we first estimate a persons head orientatations of a person over time.

tion—as described in Section lll—and then estimate at whom aOne possibility to find the class-conditional pdf and the

person was looking at, based on his estimated head rotationprior would be to adjust them on a training set of similar
Using a priori knowledge about the size of the table andheetings. This, however, would require training data for any

assuming that participants are located close to the table, ipizssible number of participants at the table and for any possible

possible to compute the approximate two-dimensional (2-Bpmbination of the participants’ locations around the table.

location of each participant from the positions of the facdsurthermore, adapting on different meetings and different per-

found in the panoramic image. A first solution to find out asons would probably not model a certain person’s head turning

1)

IV. MODELING FOCUSBASED ONHEAD ROTATION
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Fig. 6. Class-conditional head pan distributions of four persons when looking to the person to their left, to their right or to the person siitiag oppos

style very well, nor would the priors necessarily be the sameThe model parameters of the mixture model can then be
in different meetings. In our meeting recordings we observediapted so as to maximize the likelihood of the pan ob-
that some people turned their head more than others and s@®evations given the mixture model. This is done using the
people made stronger use of their eye-gaze and turned theipectation-maximization algorithm by iteratively updating the
head less when looking at other people. Fig. 6 shows the hgmdameter values using the following update equations [25]:

pan distributions of four participants in one of our recorded S POl (j|zm)zn
meetings. The head rotation of the user was estimated with new _ ’ 3)
the neural nets. It can be seen, for example, for Person 1, the Hi > Pel(j|an)
three class-conditionals are well separated, whereas for Person n
3 or Person 4, the peaks of some distributions are much closer . > PNl ||l - u}le“’HQ
to each other, and a higher overlap of the distributions can be (g;.‘eW) =_=n YT 4)
observed. d ;P (™)
We have therefore developed an unsupervised learning ap- 1
proach to find the head pan distributions of each participant PO =+ > PM(lam). (5)

when looking at the others.
To initialize the meang; of the mixture model, kmeans clus-

tering was performed on the pan observations.
. After adapting the mixture model to the data, the individual

In our approach, we assume that the class-conditional h&ad ;ssian components can be used as an approximation of the
pan distributions, such as depicted in Fig. 6, can be mOdelagss—conditiona@(a:|Focus — T, and the priors of the mix-
as Gaussian distributions. Then, the distribution of all head PRNe modelP(j) can be used to approximate the focus priors
observations from a perse() will resultin a mixture of Gaus- P(Focus = T) of our model, described in (1). Furthermore,

A. Unsupervised Adaptation of Model Parameters

slans the individual Gaussian components can be assigned to corre-
M sponding target persons based on their relative position around
p(@) =~ > _p(xli)P() (2) the table.

Fig. 7 shows an example of the adaptation on pan ob-
servations from one user. In Fig. 7(a) the distribution of all
where the individual component densitigg|j) are given by head pan observations of the user is depicted together with
Gaussian distributiond’; (1;,07). the Gaussian mixture that was adapted as described above.

In our approach, the number of Gaussiarsis set to the Fig. 7(b) depicts the real class-conditional head pan distribu-
number of other participants at the table, because we assuinas of that person, together with the Gaussian components
that these are the most likely targets that the person has lookakkn from the Gaussian mixture model depicted in Fig. 7(a).
at during the meeting, and because we wantto find the individusd can be seen, the Gaussian components provide a good
Gaussian components that correspond to looking at these taaggiroximation of the real class-conditional distributions of the
persons. person. Note that the real class-conditional distributions are just
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<)

Fig. 7. (a) The distributiop(2) of all head pan observations for a person. Also the adapted mixture of three Gaussians is plotted. (b) True and estimated
class-conditional distributions of head parfor the same person, when looking to three different targets. The adapted Gaussians, are taken from the adapted
Gaussian mixture model depicted in (a). (c) The posterior probability distribuif¢Bscus|z) for resulting from the found mixture of Gaussians.

depicted for comparison and are of course not necessary for TABLE Il
the adaptation of the Gaussian components. Fig. 7(c) depicts "ERCENTAGE OFgg;EE%f;'ﬁf(‘)iﬂ;ﬁgjg;\;GETS BASED ON
the posterior probability distribution resulting from the adapted

class-conditionals and class priors. P(Focus|Gaze)
. . Meeting A (4 participants 68.8 %
B. Meetings for Evaluation g A (4 participants) -
] Meeting B (4 participants) 73.4 %
To evaluate our system, several meetings were recorded. In Meeting C (4 participants) 795 %
each of the meetings four participants were sitting around a table
Average 73.9 %

and were discussing a freely chosen topic. Video was captured
with the panoramic camera and each participant had one micro-
phone in front of'him to capture his speech. U_si_ng this setUistribution p(a|Focus, the class-priorsP(Focug and the
we recorded audio streams for each of the participants plus fjgseryation distributiong(z) were automatically adapted to
panoramic view of the scene simultaneously to harddisk. TESmpute the posterior probabilitig&Focus= T;|z) for each

three recorded meetings varied from 5 min and 30 S 10 8 M son In each frame the target with the highest posterior
and 30 s and contained between 870 to 1280 video frames. qhapility was chosen as the focus of attention target of the

In each frame of the recorded meetings, we labeled for egghison For the 12 users in the three meetings, the correct
of the participants at whom he was looking. These lables coyldh s target could be detect on average in 73.9% of the frames.

be one of *left,” “right,” or “straight,” meaning a person wasyape ||| shows the average results on the three meetings.
looking to the person to his left, to his right, or to the person

at the opposite. If the person was not looking at one of these
targets; e.g., the person was looking down on the table or was
staring up to the ceiling, the label “Other” was assigned. As we have argued before, visual attention is influenced by
In addition, labels indicating whether a person was speakiggternal stimuli. We have, therefore, investigated whether it is
or not, were assigned to each video frame. These labels coglsible to predict a person’s focus of attention based on audio

V. PREDICTING FOCUS FROM SOUND

be assigned by listening to the audio streams. information.
i In our first experiment to predict focus from sound we
C. Experimental Results analyzed at whom the four participants in the recorded meet-

We have evaluated this approach on three evaluation maatss were looking during certain “speaking” conditions. Here,
ings. In each meeting, the faces of the participants weltgpeaking” was treated as a binary variable; i.e., each of the four
automatically tracked, and head pan was estimated usj@yticipants, was either labeled as “speaking” or “not speaking”
the neural-network-based approach. For each of the fdareach video frame. Now, using this binary “speaking” variable
participants in each meeting, the class-conditional head pamd having four participants, there existgssible “speaking”
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conditions in each frame, ranging from none of the participants TABLE IV

R : o ; TABLE SUMMARIZES, HOw OFTEN PEOPLE LOOKED TO PARTICIPANTS IN
1S speaklng to all of the participants are speakmg. CERTAIN DIRECTIONS DURING THE DIFFERENT SPEAKING CONDITIONS. THE

Table IV summarizes at whom participants in our three meet- speaking ConpITION IS REPRESENTED IN THEFIRST Row (SEE TEXT)
ings were looking, based on who was speaking. In the first row,

the speaking condition is represented as the binary vettor A = (asagacag) | Left |Straight | Right
with entry a, indicating whether the subjesét himself (“self”) 0000 026 | 049 0.23
was speaking, the second entyindicating whether the person 0001 011 | 027 | o.se0
to the subject’s left was speaking, the third entgyindicating 0010 012 | o712 011
whether the person opposite (“center”)4avas speaking, and 0011 007 | oas o0
entrya g indicating whether the person to its right was speaking.
For each person and each case we counted how often the sub- 0199 059 | 038 oL
jects looked to the right, looked straight or looked to the person 0101 03 | o 037
to their right. For example, when only the person to the subject’s 01190 033 | 060 005
left was speaking (entry “0 1 0 0”), in 59% of the cases the sub- 0111 021 | o4 | 038
ject was looking to the left person (the speaker), in 28% of the 1000 0.24 | 048 | 025
cases he was looking straight to the opposite person and in 11% 1001 009 | 034 | 0.53
of the cases he was looking to the person to his right. 1010 018 | 0.61 0.18
Overall it can be seen that if there was only one speaker, sub- 1011 0.08 | 059 0.30
jects most often looked to that speaker (percentages are indi- 1100 0.60 | 024 0.11
cated in bold font in Table IV for that person). This also holds 1101 029 | 0.44 0.26
for cases were there was only cagditional speaker when the 1110 035 | 0.56 0.08
subject itself was speaking. The last row of Table IV indicates 1111 050 | 050 0.00
in which direction subjects looked on average, regardless of oll cases 026 | 044 0.26

speaking conditions. It can be seen that there is a bias toward
looking straight; i.e., regardless who was speaking, in 44% of
the cases the person opposite has been looked at, whereas t¢ section IV we showed, how to compufé(Focus, =
persons sitting to the side have been looked at in only 26% i, ), the posterior probability, that a perssris looking to-

the cases. ward persorY;, based on his estimated head rotatign There,

The entries of Table IV can be directly interpreted as the thg again choosing in each frame the target pergpavhich
probability that a subject was looking to a certain persa,  maximized P(Focus; = T;|zs) as the focus of persofi, we
based on the binary audio-observation vector achieved correct focus prediction in 73.9% of the frames.

P(FocusgSound = P(Focus; = ;| A) These two independent predictions of a person’s

) ) ) focus—P(Focu$Sound and P(Focuggaze—can be com-
whereTj, with j € {"left,” “straight,” “right” } denote the pos- pined in a straightforward way to obtain a prediction of a
sible persons to look at, and where person’s focus which is based on both, the observation, who
is speaking, and based on the estimation of the person’s head

rotation. The combined result can be obtained by computing

denotes the audio-observation vector with binary componegg weighted sum of both predictions
a;, indicating whether the subjectgelf the person to higght,
left, or the person oppositegnte) to the subject was speaking. ,(Focug = (1 — ) P(FocugGaze + oP(FocugSound.

The probabilityP(FocugSound can be used directly to pre-
dict at whom a participant is looking in a frame, based on wheye have evaluated the combined prediction results on our
was speaking during that video frame. In each frame, for eagfeetings for different values af, ranging from 0.0 to 1.0.
subjectS the persoriZ; was chosen as the focus of pers8n  On the three meetings, the optimal valuescofanged from
which maximizedP(Focug; = T;|A). 0.3 to 0.6. By settingy to 0.6, good results could be achieved

By using only the speaker labels to make a sound-based foeusall meetings. Using this multimodal prediction, an accuracy
prediction, the correct focus of each participants could be prgf-74.8% was achieved on the three meetings (see Table V).
dicted with an average accuracy of 54% on three evaluatigdmpared to the prediction accuracy of 73.9% using gaze

A= (ase1f7 Aleft ; Acenter aright)

meetings. only, this corresponds to a relative error reduction of 3.4%.
o . While the presented combination of head pose- and sound-
A. Combining Gaze and Sound to Predict Focus based prediction is done heuristically by choosing a weighting

In Section IV it was shown, how we can determine the prolparameter, we expect that by using more advanced and adap-
ability P(FocugSound; i.e., the probability that a person istive fusion methods, better combination results will be obtained.
looking toward a certain other person, based on the inform&ppropriate fusion methods to be investigated could be to train
tion, of whom is currently speaking. By choosing in each frammeural networks for fusion of the two modalities, to determine
the target persoff; which maximizedP(Focug = Ti|ﬁ) as the weighting parameters using error information of the two
the focus of persof, a focus prediction accuracy of 54% couldnodels or to investigate other feature dependent combinations

be achieved. methods [26]-[29].
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TABLE V TABLE VI
FocusPREDICTION USING GAZE ONLY SOUND ONLY AND PREDICTION USING Focus-PREDICTION USING ONE FRAME AND TEN FRAMES OF SPEAKER
BOTH GAZE AND SOUND INFORMATION. NEURAL NETWORKS WERE TRAINED TO PREDICT

P(Focus|A*, A1, ...  A*9)

Gaze only | Sound only | Combined .
Mesting A | 68.8 577% | 697 % | PiFocus|’] | PlRecm A", .., 4%
Meeting B|  73.4 576% | 753% Mestingh | 577% | w0
Meeting C| 795 69% | 795% HadgB| WAR | dmak
Average 73.9 541% | 748% :'.’:"l"‘.;-,_.“'.'_‘."_f_!,_ _ iR
5 ErARE 541 L | v

B. Using the Sound History to Predict Focus

In Section IV, information about who is speaking is used t TABLE VI
! p g QOCUS-PREDICTION USING GAZE ONLY SOUND ONLY AND PREDICTION USING

predictp(FocusSound; i.e., how likely it is for a person to look BOTH. SOUND-BASED FOCUS PREDICTION IS DONE WITH A NEURAL
at one of the others based on who is speaking. The prediction, NETWORK, USING TEN FRAMES OF SPEAKER INFORMATION AS INPUT

however, is only based the audio-observatiBrcorresponding Goze only | Sound oaly | Combined
to the current video frame at tinte
This has several drawbacks: By using only audio-information Meeting A | 688 630% | T4%
from one frame, no temporal information is taken into account Meeting B | 73.4 672% | "%
for the prediction. Temporal information, however might be Meeting G| 795 602% | 805%
very important_ Average 73.9 63.5 % 75.9 %
A straightforward extension is, to use a history of
audio-events A, A*7L, ..., AN to predict the proba- , _ , _
bility that a personS is looking toward one of the others; i.e., SUmmarize meetings [6], [30], [31]. The meeting browser is a
to estimateP(FocugA?, At—1, ... At=N). system _deS|gned to autom_atl_cally review apd search re_cordmgs
In this work, we have chosen to use a neural network ff meetings. The browser is implemented in Java and includes
predict P(FocugAt, A*~L,. .., A*N). We have trained one video capture of individuals in the meeting, as pictured in Fig. 8.

neural network to estimate the probabilities that a person [§€ Main components of the meeting browser are: 1) a speech

looking to the person to his right, to his left, and to thgecognizer; 2) a summarization module; 3) a discourse com-

person opposite to himself, based on a history of ten audRRnent that attempts to identify speech acts; 4) a module for
observations. As audio-observations, we have again cho io—visual identification of participants [7]; and 5) a module

the binary audio-observation vectot — (as, aL, ac, ar), for tracking the participants’ focus of attention.

described in Section IV. The meeting browser is part of a multimodal intelligent
To evaluate the performance of the audio-history-based pPBE€ting room. The goal of this project is not only to provide a

diction, we have trained networks round-robin; i.e., the neurt@°! 10 record and transcribe spoken content of the meetings,

nets were trained on data from two out of the three meetings to also detect who participated in the meeting and who

were evaluated on the remaining third meeting. was talking when and to whom. For the data acquisition in
Using the audio-history based prediction of focus, an averaljf¢ Meeting room, we used several microphones, a panoramic

prediction accuracy of 63.5% on the three meetings could haMera as described in Section Ill-A and several cameras

achieved. Compared to the 54.1% achieved with the predictiBfPund the table to capture close-up views of the participants.

based on a single audio-frame, this is a relative error reduction’Vith the components described in this paper, it is possible

of 20%. The audio-based prediction results are summarized§hd€tect the number and positions of participants in a meeting
Table V. as well as to track which person at the table each of the

Dajticipants look at. Together with the components for person
and speaker identification, which are described in detail in [7],

it is furthermore possible to determine who these participants
are and who the speaker of a certain utterance was (speaker
P(Foc) = (1 — a)P(Foc)|Gaze + aP(Foc|AY,..., A"™™). D). Given all these cues for indexing of the meetings, it is

. . en possible to formulate queries such as: “show me all parts,
By settinga to 0'5’. we achieved an average accuracy of 7Es'g\%were John was telling Mary something about the multimedia
on the three meetings.

Table VIl summarizes the results we obtained by usirPrOJect. In addition, during playback of parts of the meeting,

sound-onlv based focus prediction. aaze-onlv based focke could indicate at whom the speaker was looking during
und-only ocus prediction, gaz y G2 speech. For example, Fig. 9 shows an example where the
estimation and combined estimation.

gaze tracking component detected and indicated that the person
was looking at the participant to her left and at the one to
her right, respectively. Finally, we could even use this data
to analyze meetings in many ways. One such usage could be
We have integrated a component to track people’s focustof calculate how much of the time someone was speaking or
attention into the “meeting browser’—a system to track arftow much of the time person X was addressing person Y.

Again we can compute a combined, gaze- and sound-ba:
prediction, by computing the weighted sumBfFocusGaze
and P(Focus$Sound

VI. INTEGRATING FOCUS OFATTENTION MODELING INTO A
MEETING BROWSER
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Fig. 9. Examples in which the attention model indicates that the person is[9]
looking to the participant to the left and right, respectively.

[10]
VII. CONCLUSION

We have presented a system to estimate visual focus d&¥ll
attention of participants in a meeting from multiple cues. The
participants are simultaneously tracked in a panoramic viez2]
and their head poses are estimated using neural networks. For
each participant, probability distributions of looking toward [13]
other participants are estimated from head poses using an
unsupervised learning approach. These distributions are thék!
used to predict focus of attention given a head pose. The
accuracy of such predication is 74% accurate in detecting the
participants’ focus of attention on our test data. [15]

Furthermore, we have demonstrated how focus of attentiopg
can be predicted based on knowledge of who is currently
speaking, and how this audio-based prediction can be improved
by taking the history of utterances into account. On the recordcj&
meetings, participants’ focus of attention has been predicteds]
correctly in 63% of the frames by using audio information only.

Finally, we have shown how the audio- and the video-basefiq
predictions can be fused to get a more accurate and robust es-
timation of participants’ focus of attention. By using both head(20]
pose and sound, focus of attention could be detected in 76% of
the frames in recorded meetings. [21]

Other application areas of tracking focus of attention include;
multimodal human computer interfaces, computer supportegzl
collaborative work, and interactive intelligent environments.
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