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Modeling Focus of Attention for Meeting Indexing
Based on Multiple Cues

Rainer Stiefelhagen, Jie Yang, Member, IEEE, and Alex Waibel, Member, IEEE

Abstract—A user’s focus of attention plays an important role in
human–computer interaction applications, such as a ubiquitous
computing environment and intelligent space, where the user’s
goal and intent have to be continuously monitored. In this paper,
we are interested in modeling people’s focus of attention in a
meeting situation. We propose to model participants’ focus of
attention from multiple cues. We have developed a system to
estimate participants’ focus of attention from gaze directions
and sound sources. We employ an omnidirectional camera to
simultaneously track participants’ faces around a meeting table
and use neural networks to estimate their head poses. In addition,
we use microphones to detect who is speaking. The system predicts
participants’ focus of attention from acoustic and visual informa-
tion separately. The system then combines the output of the audio-
and video-based focus of attention predictors. We have evaluated
the system using the data from three recorded meetings. The
acoustic information has provided 8% relative error reduction
on average compared to only using one modality. The focus of
attention model can be used as an index for a multimedia meeting
record. It can also be used for analyzing a meeting.

Index Terms—Focus of attention, head pose estimation,
human–computer interaction, meeting indexing, multimedia
meeting record, multimodality.

I. INTRODUCTION

A person’s focus of attention can be visually identified
in certain circumstances. Participants in a meeting, for

example, might look at the speaker while they are listening to
the talk. When a user is editing a paper, he/she would direct
his/her visual attention would direct toward a computer screen.
Modeling and tracking a person’s focus of attention is useful for
many applications: Intelligent supportive computer applications
coulduse informationaboutauser’s focusofattention to infer the
user’s mental status, his/her goals and cognitive load and adjust
their own responses to the user accordingly. For multimodal
human computer interaction, the user’s focus of attention can
be used to determine his/her message target. For example, in
interactive intelligent rooms or houses [1], [2], focus of attention
could be used to determine whether the user is to control the
refrigerator, the TV set, or he/she is talking to another person in
the room. In other words, the user’s attention focus can be used
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to guide the environment’s “focus” to the right application and
to prevent responses generated from applications that have not
been addressed. During social interaction, gaze serves for several
functions which are not easily transmitted by auditory cues
alone [3]. In computer mediated communication systems, such
as virtual collaborative workspaces, detecting and conveying
participants’ gazes have several advantages: it can help the
participants to determine who is talking or listening to whom, it
can serve to establish joint attention during cooperative work,
and it can facilitate turn taking among participants [4], [5].
In this paper, we are interested in modeling people’s focus
of attention in a meeting situation.

We are interested in meetings because they are one of the most
common, important, and universally disliked events in our lives.
Most people find it impossible to attend all relevant meetings
or to retain all the salient points raised in meetings they do at-
tend. Meeting records are intended to overcome these problems
and extend human memories. Hand-recorded notes, however,
have many drawbacks. Note-taking is time consuming, requires
focus, and thus reduces one’s attention to and participation in
the ensuing discussions. For this reason, notes tend to be frag-
mentary and partially summarized, leaving one unsure exactly
as to what was resolved, and why. At the Interactive Systems
Lab of Carnegie Mellon University, we are developing a mul-
timedia meeting recorder and browser to track and summarize
discussions held in a specially equipped conference room [6].
The objective of the project is to provide a multimedia meeting
record without using constraining devices such as headsets, hel-
mets, suits, and buttons. The research issues include to identify:
1) who/what is the source of the message; 2) who or what is the
target and object of the message (focus of attention); 3) what
is the content of the message in the presence of jamming noise.
The main components of the Meeting Browser are: a speech rec-
ognizer, a summarization module, a discourse component that
attempts to identify the speech acts, a module for audio–visual
identification of participants [7] and a module for tracking the
participants’ focus of attention.

In order to quickly retrieve information from such a multi-
media meeting record, we can use various indexing methods.
It is well known that visual communication cues, such as
gesturing, looking at each other, or monitoring each others
facial expressions, play an important role during face-to-face
communication [3], [8]. Therefore, to fully understand an
ongoing conversation, it is necessary to capture and analyze
these visual cues in addition to spoken content. Once such
visual cues can be tracked, they can be used to index and
retrieve recorded meetings. Queries, such as “show me all parts
of the meeting, where John was telling Mary something about
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the multimedia project” become possible. In addition, during
playback of parts of a meeting, we could indicate at whom the
speaker was looking.

In this research, we address the problem of tracking the visual
focus of attention of participants in a meeting; i.e., tracking who
is looking at whom during a meeting. Such information can be
used to control interaction with a smart meeting room or to index
and analyze multimedia meeting records.

In our system, an omnidirectional camera is used to capture
the scene around a meeting table. Participants are detected and
tracked in the panoramic image using a real-time face tracker.
Furthermore, neural networks are used to compute head pose
of each person simultaneously from the panoramic image. We
then use a Bayesian approach to estimate a person’s focus of
attention from the computed head pose. We model thea poste-
riori probability that a person is looking at a certain target, given
the observed head pose. Using this approach, we have achieved
74% accuracy in detecting the participants’ focus of attention
on three recorded meetings.

In addition to visual information, we have investigated
whether a person’s focus of attention can be predicted from
other information. We have discovered that focus of attention is
also correlated to sound sources in a meeting. We can estimate
a person’s focus of attention based on the information of who is
talking at or was talking before a given moment. This is based
on the idea that visual attention isinfluencedby external events
such as noises, movements, or other person’s speech. We have
estimated probability distributions of where participants are
looking during certain “speaking constellations.” We can then
use these distributions to predict the focus of attention using
the sound information only. We have achieved 54% accuracy in
predicting the participants’ focus of attention on three recorded
meetings. The accuracy of sound-based prediction can be
significantly improved by also taking a history of speaker
constellations into account. We have trained neural networks to
predict focus of attention based on who was speaking during
a short period of time. Using this approach, sound-based
prediction could be increased to 63%.

Finally, the head pose based and the sound-based estimate are
combined to obtain a multimodal estimation of the participants’
focus of attention. By using both head pose and sound, we have
achieved 76% accuracy in detecting the participants’ focus of
attention on the recorded meetings.

The novelty of this research lies in estimating focus of atten-
tion from multiple cues. To our knowledge, this is the first time
that predicting a person’s focus of attention based on who is
talking has been reported.

The remainder of this paper is organized as follows: In Sec-
tion II, we introduce the idea of modeling a person’s focus of
attention by observing a person’s gaze as well as monitoring
relevant stimuli in the scene. In Section III, we introduce the
approach to estimate head poses of participants using neural
networks. In Section IV, we discuss methods to model the prob-
ability distributions of whom a person is looking at based on
his/her head pose. In Section V, we present two different ap-
proaches to predict a person’s focus of attention by monitoring
who is speaking. We provide details how focus of attention can
be predicted by knowledge about who is currently speaking,

and how prediction accuracy can be improved by taking the
history of speakers into account. We also address combination
of audio- and head pose-based focus predictions, and illustrate
experimental results. In Section VI, we present an application
of our model to the meeting browser. Information about the
participants’ focus of attention is tracked and is integrated as a
component in the meeting browser. The meeting browser can
then be used to index meeting transcriptions and summaries
with visual cues. In Section VII we summarize the paper.

II. M ODELING FOCUS OFATTENTION

The idea of this research is to track at whom or what the par-
ticipants are paying attention to during the course of a meeting.
Gaze is a good indicator of a person’s attention during social in-
teraction. When humans pay attention to someone, they usually
orient themselves toward the person of interest so as to have it
in the center of their visual field and also to signal that they are
paying attention to the other person [9], [10].

Although the eyes are the primary source to detect a person’s
gaze during social interaction, gaze is not limited to informa-
tion from the eyes. The perception of someone else’s direction
of attention also depends on the direction of their head, body
posture and other gestures, such as pointing gestures. All theses
cues are likely to be processed automatically by observers and
all make contributions to the perceptions of another person’s
attention [11]. In fact it has been shown that head orientation
strongly influences the perception of gaze, even when the eyes
are visible [12].

In our approach we aim to estimate a person’s focus of at-
tention, based on his head orientation. To map a person’s head
orientation onto the focussed object in the scene, a model of the
scene and the interesting objects in it are needed. In the case of
a meeting scenario, clearly the participants around the table are
likely targets of interest. Therefore, our approach to tracking at
whom a participant is looking is the following.

1) Detect all participants in the scene.
2) Estimate each participant’s head orientation.
3) Map each estimated head orientation to its likely targets

using a probabilistic framework.
Compared to directly classifying a person’s focus of attention

target—based on images of the person’s face for example—our
approach has the advantage, that different numbers and po-
sitions of participants in the meeting can be handled. If the
problem was treated as a multiclass classification problem, and
a classifier such as a neural network was trained to directly
learn the focus of attention target from the facial images of a
user, then the number of possible focus targets would have to
be known in advance. Furthermore, with such an approach it
would be difficult to handle situations were participants sit at
different locations than during collection of the training data.

Objects which draw a person’s attention can be external
stimuli such as pictures, sounds, etc., or internal stimuli such
as thoughts and attempts to retrieve information from memory
[13]. Clearly, visual attention is influenced by external stimuli,
such as noises, movements, or speech of other persons. There
is evidence, for example, that two or more people will orient
themselves toward each other as soon as they begin to interact.
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And it has been argued that there is an orientation reflex to the
source of a sound, causing interactors to line up the visual and
auditory channel; i.e., to look at the face which is the source of
the sound [14] (cf. [15]).

Another approach to estimate at whom or what a person
is paying attention to, could therefore be, to monitor external
events in the meeting environment, such as sounds, utterances,
gestures, persons entering the room etc., and try to make a
prediction of the participants’ focus of attention based on these
external events.

Following this idea, we have also tried to predict at whom a
person is looking, based on who is speaking at the moment and
based on the temporal sequence of speakers.

III. ESTIMATING HEAD POSEUSING NEURAL NETS

In this section we present an approach to estimate head poses
of participants from panoramic images using neural networks.

The main advantage of using neural networks to estimate
head pose as compared to using a model-based approach is its
robustness: With model-based approaches to head pose estima-
tion [16]–[18], head pose is computed by finding correspon-
dences between facial landmarks points (such as eyes, nostrils,
lip corners) in the image and their respective locations in a head
model. Therefore these approaches rely on tracking a minimum
number of facial landmark points in the image correctly, which
is a difficult task and is likely to fail. On the other hand, the
neural-network-based approach does not require tracking de-
tailed facial features. Instead, the whole facial region is used
for estimating the user’s head pose.

In our approach, we are using neural networks to estimate pan
and tilt of a person’s head, given automatically extracted and
preprocessed facial images as input to the neural net. Schiele and
Waibel [19] demonstrated a neural-network-based head pose
tracking system. The system estimated only head rotation in pan
direction for one person. Raeet al. [20] describe a user depen-
dent neural-network-based system to estimate the pan and tilt of
a person. In their approach, color segmentation, ellipse fitting,
and Gabor-filtering on a segmented face are used for prepro-
cessing. They reported an average accuracy of 9for pan and
7 for tilt for one user with a user dependent system.

In our previous work on estimating participant’s focus in
meetings [21], we have used separate cameras to zoom in on
each of the participants in order to obtain the input images
for pose estimation. Using these high-resolution images, we
achieved an accuracy of 7for pan and 8 for tilt on a user
independent test set in recent experiments.

In this research, we use an omnidirectional camera to capture
the participants, and track faces in the panoramic image. Com-
pared to using multiple cameras to capture all participants this
has the advantage that only one video-stream has to be captured,
which eliminates the need for camera calibration, synchroniza-
tion and camera control such as zooming on different partic-
ipants. While the facial images extracted from the panoramic
view are of considerably lower resolution than images taken
with close up views, we could still obtain good accuracy using
our approach.

Fig. 1. The panoramic camera used to capture the scene.

Fig. 2. Meeting scene as captured with the panoramic camera.

A. Capturing the Scene

In our system, an omnidirectional camera put on top of the
conference table is used to capture the scene. Fig. 11 shows a
picture of the panoramic camera system. The camera is located
in the top cylinder and is focusing on a parabolic mirror on the
bottom plate. Through this mirror almost a whole hemisphere
of the surrounding scene is visible. Fig. 2 shows the view of a
meeting scene as it is captured with this camera. As the topology
of the mirror and the optical system are known, it is possible
to compute panoramic views of the scene as well as perspec-
tive views at different angles of the panoramic view [22]. Fig. 3
shows the rectified panoramic image (with faces marked) of the
camera view depicted in Fig. 2.

B. Using Color and Motion for Face Detection

To detect and track faces in the panoramic view, a statistical
skin color model in the normalized color space is used. The color
distribution is initialized so as to find a variety of face colors
and is gradually adapted to the faces actually found. The input
image is searched for pixels with skin colors. Connected regions
of skin-colored pixels in the camera image are considered as
possible faces. Since humans rarely sit perfectly still for a long
time, motion detection is used to reject outliers that might be

1Image courtesy of CycloVision Technologies, Inc.
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Fig. 3. Panoramic view of the scene around the conference table. Faces are automatically detected and tracked (marked with white rectangles).

caused due to noise in the image or skin colored objects within
the image. Only regions with a response from the color-clas-
sifier and some motion during a period of time are considered
as faces. In addition, some geometric constraints are applied to
distinguish (skin-colored) hands from faces. For more detail, the
interested reader is referred to [23].

C. Data Collection

We collected training data from 14 users. During data
collection, the user was automatically tracked in the panoramic
view, and a perspective view as depicted in Fig. 4 was gen-
erated. To determine true head pose, the users had to wear a
head band with a sensor of a Polhemus pose tracker attached
to it. Using the pose tracker, the head pose with respect to
a magnetic transmitter could be collected in real time. The
user was asked to randomly look around in the room and the
perspective images of the user were recorded together with the
pose sensor readings.

D. Preprocessing of Images

We have investigated two different image preprocessing
methods as input to the neural networks for head pose estima-
tion: 1) using normalized gray-scale images of the user’s face
as input and 2) applying edge detection to the facial images
before feeding them into the networks. To find and extract faces
in the collected images, we use the color-based face detector
described in Section III-B.

In the first preprocessing approach, histogram normalization
is applied to the gray-scale face images. No additional feature
extraction is performed. The normalized gray-scale images are
down-sampled to a fixed size of 2030 pixels and are then
used as input to the networks. Histogram normalization defines
a mapping of gray levels into gray levels such that the
distribution of matches a certain target distribution (e.g.,
a uniform distribution). This mapping stretches contrast and
usually improves the detectability of many image features [24].
Histogram normalization is also helpful to get some illumination
invariance.

In the second approach, a horizontal and a vertical edge
operator plus thresholding is applied to the facial gray-scale
images. The resulting edge images are down-sampled to 2030
pixels and are both used as input to the neural networks. Fig. 5
shows the preprocessed images of a user’s faces. The normalized
gray-scale image and the horizontal and vertical edge images
of a user’s face are depicted.

(a) (b)

Fig. 4. Training samples. (a) The perspective images are generated from the
panoramic view. (b) Head pose labels are collected with a magnetic field pose
tracker.

(a) (b) (c)

Fig. 5. Preprocessed images. (a) Normalized gray-scale. (b) Horizontal edge.
(c) Vertical edge image.

E. Neural-Network Architecture

We have trained separate neural networks to estimate head
pose in pan and tilt directions. For each network, a multilayer
perceptron architecture with one output unit (for pan or tilt) and
one hidden layer with 20 to 60 hidden units. The input retina
varied between 20 30 units and 3 20 30 units depending
on the different types of input images. Output activations for pan
and tilt are normalized to vary between zero and one. Neural
networks are trained using standard backpropagation.

F. Experimental Results

We divided the data set of 12 users (of the 14 users in the
whole data set) into a training set consisting of 6080 images, a
cross-evaluation set of size 760 images and a test set with a size
of 760 images. The images of the remaining two users were kept
as a user independent test set. As input to the neural networks,
three different approaches were evaluated:

1) using histogram normalized gray-scale images as input;
2) using horizontal and vertical edge images as input;
3) using both normalized gray-scale plus the edge images as

input.
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The neural networks were trained on the training data set and
the cross-evaluation set was used to determine when to stop
training. The performance of the networks was then evaluated
on the test set containing images of the 12 persons that were
also in the training set (multiuser case). On the multiuser test
set, we obtained the best performance using both, normalized
gray-scale images and edge images as input. A mean error of
7.8 for pan and 5.4 for tilt was obtained with the best net-
works. Using only the gray-scale images as input, the results
decreased to a mean error of 9.4for pan and 6.9 for tilt. With
edge images as input, a mean error of only 10.8for pan and
7.1 for tilt could be achieved.

1) User Independent Results:To determine how well the
neural nets can generalize to new users, we have also evalu-
ated the networks on the two new users whose data have not
been in the training set. On the two new users the best result for
pan estimation, which was 9.9mean error, was obtained using
normalized gray-scale images plus edge images as input. The
best result for tilt-estimation measured was 9.1mean error and
was obtained using only normalized gray-scale images as input.
Table I summarizes the results on the multiuser and the user-in-
dependent test sets.

2) Adding Artificial Training Data: In order to obtain addi-
tional training data, we have artificially mirrored all of the im-
ages in the training set, as well as the labels for head pan. As
a result, the available amount of training data could be doubled
without having the effort of additional data collection. Having
more training data should especially be helpful in order to get
better generalization on images from new, unseen users. Indeed,
after training with the additional data, we obtained an average
error of 9.5 for pan and 9.8for tilt on the two new users using
the gray-scale and the edge images as input. On the multiuser
test set the mean pose estimation error significantly decreased
to 3.1 for pan and 2.5for tilt. Table II shows the results on the
multiuser test set as well as the new user test set for the different
preprocessing approaches.

3) Discussion: From experiment results, we have observed
that using only edge images as input leads to poorer head pose
estimations in both pan and tilt directions, as compared to using
only gray-scale images as input. Furthermore, using both gray-
scale and edge images as input leads to the best results in both
pan and tilt directions in most cases. However, on the test set
of new users, using only gray-scale images as input leads to
slightly better results for the estimation of head tilt (up/down) as
compared to using both gray-scale and edge images. Moreover,
adding artificial training data improves estimation results both
on the multiuser test set and on the new users.

IV. M ODELING FOCUSBASED ON HEAD ROTATION

In our approach, we first estimate a persons head orienta-
tion—as described in Section III—and then estimate at whom a
person was looking at, based on his estimated head rotation.

Using a priori knowledge about the size of the table and
assuming that participants are located close to the table, it is
possible to compute the approximate two-dimensional (2-D)
location of each participant from the positions of the faces
found in the panoramic image. A first solution to find out at

TABLE I
AVERAGE ERROR IN DEGREES(PAN/TILT) ON A MULTIUSER AND A

USER-INDEPENDENTTEST SET

TABLE II
RESULTSUSING ADDITIONAL ARTIFICIAL TRAINING DATA. RESULTS ON THE

MULTIUSER TEST SET AND ON THE TWO NEW USERSARE SHOWN FOR THE

DIFFERENTPREPROCESSINGAPPROACHES. THE MEAN ERROR IN DEGREES

OF PAN/TILT IS SHOWN

whom a person is looking could be, to use the measured
head pose of and look which target person sits nearest
the position to which is looking. Gaze is, however, not only
determined by head pose, but also by the direction of eye gaze.
People do not always completely turn their heads toward the
person at which they are looking. Instead, they also use their
eye gaze direction.

We have therefore developed a Bayesian approach to estimate
at which target a person is looking, based on his observed head
rotation. More precisely, we wish to find ,
the probability that a personis looking toward a certain target
person , given the person’s observed horizontal head rotation

, which is the output of the neural network for head pan esti-
mation. Using Bayes formula, this can of be decomposed to

(1)

where denotes the head pan of personin degrees and is
one of the other persons around the table.

Using this framework, given a pan observationfor a person
—as estimated by the neural network for head pan estima-

tion—it is then possible to compute the posterior probabilities
for all targets and choose the one with

highest posterior probability as the focus of attention target in
the current frame.

In order to compute , it is however
necessary to estimate the class-conditional probability density
function , the class prior
and for each person. Finding is trivial and can
be done by just building a histogram of the observed head
rotations of a person over time.

One possibility to find the class-conditional pdf and the
prior would be to adjust them on a training set of similar
meetings. This, however, would require training data for any
possible number of participants at the table and for any possible
combination of the participants’ locations around the table.
Furthermore, adapting on different meetings and different per-
sons would probably not model a certain person’s head turning
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Fig. 6. Class-conditional head pan distributions of four persons when looking to the person to their left, to their right or to the person sitting opposite.

style very well, nor would the priors necessarily be the same
in different meetings. In our meeting recordings we observed
that some people turned their head more than others and some
people made stronger use of their eye-gaze and turned their
head less when looking at other people. Fig. 6 shows the head
pan distributions of four participants in one of our recorded
meetings. The head rotation of the user was estimated with
the neural nets. It can be seen, for example, for Person 1, the
three class-conditionals are well separated, whereas for Person
3 or Person 4, the peaks of some distributions are much closer
to each other, and a higher overlap of the distributions can be
observed.

We have therefore developed an unsupervised learning ap-
proach to find the head pan distributions of each participant
when looking at the others.

A. Unsupervised Adaptation of Model Parameters

In our approach, we assume that the class-conditional head
pan distributions, such as depicted in Fig. 6, can be modeled
as Gaussian distributions. Then, the distribution of all head pan
observations from a person will result in a mixture of Gaus-
sians

(2)

where the individual component densities are given by
Gaussian distributions .

In our approach, the number of Gaussiansis set to the
number of other participants at the table, because we assume
that these are the most likely targets that the person has looked
at during the meeting, and because we want to find the individual
Gaussian components that correspond to looking at these target
persons.

The model parameters of the mixture model can then be
adapted so as to maximize the likelihood of the pan ob-
servations given the mixture model. This is done using the
expectation-maximization algorithm by iteratively updating the
parameter values using the following update equations [25]:

(3)

(4)

(5)

To initialize the means of the mixture model, kmeans clus-
tering was performed on the pan observations.

After adapting the mixture model to the data, the individual
Gaussian components can be used as an approximation of the
class-conditionals , and the priors of the mix-
ture model can be used to approximate the focus priors

of our model, described in (1). Furthermore,
the individual Gaussian components can be assigned to corre-
sponding target persons based on their relative position around
the table.

Fig. 7 shows an example of the adaptation on pan ob-
servations from one user. In Fig. 7(a) the distribution of all
head pan observations of the user is depicted together with
the Gaussian mixture that was adapted as described above.
Fig. 7(b) depicts the real class-conditional head pan distribu-
tions of that person, together with the Gaussian components
taken from the Gaussian mixture model depicted in Fig. 7(a).
As can be seen, the Gaussian components provide a good
approximation of the real class-conditional distributions of the
person. Note that the real class-conditional distributions are just
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(a) (b)

c)

Fig. 7. (a) The distributionp(x) of all head pan observations for a person. Also the adapted mixture of three Gaussians is plotted. (b) True and estimated
class-conditional distributions of head panx for the same person, when looking to three different targets. The adapted Gaussians, are taken from the adapted
Gaussian mixture model depicted in (a). (c) The posterior probability distributionsP (Focusjx) for resulting from the found mixture of Gaussians.

depicted for comparison and are of course not necessary for
the adaptation of the Gaussian components. Fig. 7(c) depicts
the posterior probability distribution resulting from the adapted
class-conditionals and class priors.

B. Meetings for Evaluation

To evaluate our system, several meetings were recorded. In
each of the meetings four participants were sitting around a table
and were discussing a freely chosen topic. Video was captured
with the panoramic camera and each participant had one micro-
phone in front of him to capture his speech. Using this setup,
we recorded audio streams for each of the participants plus the
panoramic view of the scene simultaneously to harddisk. The
three recorded meetings varied from 5 min and 30 s to 8 min
and 30 s and contained between 870 to 1280 video frames.

In each frame of the recorded meetings, we labeled for each
of the participants at whom he was looking. These lables could
be one of “left,” “right,” or “straight,” meaning a person was
looking to the person to his left, to his right, or to the person
at the opposite. If the person was not looking at one of these
targets; e.g., the person was looking down on the table or was
staring up to the ceiling, the label “Other” was assigned.

In addition, labels indicating whether a person was speaking
or not, were assigned to each video frame. These labels could
be assigned by listening to the audio streams.

C. Experimental Results

We have evaluated this approach on three evaluation meet-
ings. In each meeting, the faces of the participants were
automatically tracked, and head pan was estimated using
the neural-network-based approach. For each of the four
participants in each meeting, the class-conditional head pan

TABLE III
PERCENTAGE OFCORRECTASSIGNEDFOCUS TARGETS BASED ON

COMPUTINGP (Focusjhead pan)

distribution Focus, the class-priors Focus and the
observation distributions were automatically adapted to
compute the posterior probabilities Focus for each
person. In each frame the target with the highest posterior
probability was chosen as the focus of attention target of the
person. For the 12 users in the three meetings, the correct
focus target could be detect on average in 73.9% of the frames.
Table III shows the average results on the three meetings.

V. PREDICTING FOCUSFROM SOUND

As we have argued before, visual attention is influenced by
external stimuli. We have, therefore, investigated whether it is
possible to predict a person’s focus of attention based on audio
information.

In our first experiment to predict focus from sound we
analyzed at whom the four participants in the recorded meet-
ings were looking during certain “speaking” conditions. Here,
“speaking” was treated as a binary variable; i.e., each of the four
participants, was either labeled as “speaking” or “not speaking”
in each video frame. Now, using this binary “speaking” variable
and having four participants, there exist 2possible “speaking”
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conditions in each frame, ranging from none of the participants
is speaking to all of the participants are speaking.

Table IV summarizes at whom participants in our three meet-
ings were looking, based on who was speaking. In the first row,
the speaking condition is represented as the binary vector,
with entry indicating whether the subject himself (“self”)
was speaking, the second entryindicating whether the person
to the subject’s left was speaking, the third entryindicating
whether the person opposite (“center”) towas speaking, and
entry indicating whether the person to its right was speaking.
For each person and each case we counted how often the sub-
jects looked to the right, looked straight or looked to the person
to their right. For example, when only the person to the subject’s
left was speaking (entry “0 1 0 0”), in 59% of the cases the sub-
ject was looking to the left person (the speaker), in 28% of the
cases he was looking straight to the opposite person and in 11%
of the cases he was looking to the person to his right.

Overall it can be seen that if there was only one speaker, sub-
jects most often looked to that speaker (percentages are indi-
cated in bold font in Table IV for that person). This also holds
for cases were there was only oneadditionalspeaker when the
subject itself was speaking. The last row of Table IV indicates
in which direction subjects looked on average, regardless of
speaking conditions. It can be seen that there is a bias toward
looking straight; i.e., regardless who was speaking, in 44% of
the cases the person opposite has been looked at, whereas the
persons sitting to the side have been looked at in only 26% of
the cases.

The entries of Table IV can be directly interpreted as the the
probability that a subject was looking to a certain person,
based on the binary audio-observation vector:

FocusSound Focus

where , with “left,” “straight,” “right” denote the pos-
sible persons to look at, and where

denotes the audio-observation vector with binary components
, indicating whether the subject itself, the person to hisright,

left, or the person opposite (center) to the subject was speaking.
The probability FocusSound can be used directly to pre-

dict at whom a participant is looking in a frame, based on who
was speaking during that video frame. In each frame, for each
subject the person was chosen as the focus of person,
which maximized Focus .

By using only the speaker labels to make a sound-based focus
prediction, the correct focus of each participants could be pre-
dicted with an average accuracy of 54% on three evaluation
meetings.

A. Combining Gaze and Sound to Predict Focus

In Section IV it was shown, how we can determine the prob-
ability FocusSound; i.e., the probability that a person is
looking toward a certain other person, based on the informa-
tion, of whom is currently speaking. By choosing in each frame
the target person which maximized Focus as
the focus of person, a focus prediction accuracy of 54% could
be achieved.

TABLE IV
TABLE SUMMARIZES, HOW OFTEN PEOPLELOOKED TO PARTICIPANTS IN

CERTAIN DIRECTIONS, DURING THE DIFFERENTSPEAKING CONDITIONS. THE

SPEAKING CONDITION IS REPRESENTED IN THEFIRST ROW (SEE TEXT)

In Section IV we showed, how to compute Focus
, the posterior probability, that a personis looking to-

ward person , based on his estimated head rotation. There,
by again choosing in each frame the target personwhich
maximized Focus as the focus of person, we
achieved correct focus prediction in 73.9% of the frames.

These two independent predictions of a person’s
focus— FocusSound and Focusgaze—can be com-
bined in a straightforward way to obtain a prediction of a
person’s focus which is based on both, the observation, who
is speaking, and based on the estimation of the person’s head
rotation. The combined result can be obtained by computing
the weighted sum of both predictions

Focus FocusGaze FocusSound

We have evaluated the combined prediction results on our
meetings for different values of , ranging from 0.0 to 1.0.
On the three meetings, the optimal values ofranged from
0.3 to 0.6. By setting to 0.6, good results could be achieved
on all meetings. Using this multimodal prediction, an accuracy
of 74.8% was achieved on the three meetings (see Table V).
Compared to the prediction accuracy of 73.9% using gaze
only, this corresponds to a relative error reduction of 3.4%.

While the presented combination of head pose- and sound-
based prediction is done heuristically by choosing a weighting
parameter, we expect that by using more advanced and adap-
tive fusion methods, better combination results will be obtained.
Appropriate fusion methods to be investigated could be to train
neural networks for fusion of the two modalities, to determine
the weighting parameters using error information of the two
models or to investigate other feature dependent combinations
methods [26]–[29].
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TABLE V
FOCUS-PREDICTION USING GAZE ONLY SOUND ONLY AND PREDICTION USING

BOTH GAZE AND SOUND

B. Using the Sound History to Predict Focus

In Section IV, information about who is speaking is used to
predict FocusSound; i.e., how likely it is for a person to look
at one of the others based on who is speaking. The prediction,
however, is only based the audio-observationcorresponding
to the current video frame at time.

This has several drawbacks: By using only audio-information
from one frame, no temporal information is taken into account
for the prediction. Temporal information, however might be
very important.

A straightforward extension is, to use a history of
audio-events to predict the proba-
bility that a person is looking toward one of the others; i.e.,
to estimate Focus .

In this work, we have chosen to use a neural network to
predict Focus . We have trained one
neural network to estimate the probabilities that a person is
looking to the person to his right, to his left, and to the
person opposite to himself, based on a history of ten audio-
observations. As audio-observations, we have again chosen
the binary audio-observation vector ,
described in Section IV.

To evaluate the performance of the audio-history-based pre-
diction, we have trained networks round-robin; i.e., the neural
nets were trained on data from two out of the three meetings and
were evaluated on the remaining third meeting.

Using the audio-history based prediction of focus, an average
prediction accuracy of 63.5% on the three meetings could be
achieved. Compared to the 54.1% achieved with the prediction
based on a single audio-frame, this is a relative error reduction
of 20%. The audio-based prediction results are summarized in
Table VI.

Again we can compute a combined, gaze- and sound-based
prediction, by computing the weighted sum ofFocusGaze
and FocusSound

Foc. Foc.Gaze Foc.

By setting to 0.5, we achieved an average accuracy of 75.9%
on the three meetings.

Table VII summarizes the results we obtained by using
sound-only based focus prediction, gaze-only based focus
estimation and combined estimation.

VI. I NTEGRATING FOCUS OFATTENTION MODELING INTO A

MEETING BROWSER

We have integrated a component to track people’s focus of
attention into the “meeting browser”—a system to track and

TABLE VI
FOCUS-PREDICTION USING ONE FRAME AND TEN FRAMES OFSPEAKER

INFORMATION. NEURAL NETWORKS WERE TRAINED TO PREDICT

P (FocusjA ;A ; . . . ; A )

TABLE VII
FOCUS-PREDICTION USING GAZE ONLY SOUND ONLY AND PREDICTION USING

BOTH. SOUND-BASED FOCUS PREDICTION IS DONE WITH A NEURAL

NETWORK, USING TEN FRAMES OFSPEAKERINFORMATION AS INPUT

summarize meetings [6], [30], [31]. The meeting browser is a
system designed to automatically review and search recordings
of meetings. The browser is implemented in Java and includes
video capture of individuals in the meeting, as pictured in Fig. 8.
The main components of the meeting browser are: 1) a speech
recognizer; 2) a summarization module; 3) a discourse com-
ponent that attempts to identify speech acts; 4) a module for
audio–visual identification of participants [7]; and 5) a module
for tracking the participants’ focus of attention.

The meeting browser is part of a multimodal intelligent
meeting room. The goal of this project is not only to provide a
tool to record and transcribe spoken content of the meetings,
but to also detect who participated in the meeting and who
was talking when and to whom. For the data acquisition in
the meeting room, we used several microphones, a panoramic
camera as described in Section III-A and several cameras
around the table to capture close-up views of the participants.

With the components described in this paper, it is possible
to detect the number and positions of participants in a meeting
as well as to track which person at the table each of the
participants look at. Together with the components for person
and speaker identification, which are described in detail in [7],
it is furthermore possible to determine who these participants
are and who the speaker of a certain utterance was (speaker
ID). Given all these cues for indexing of the meetings, it is
then possible to formulate queries such as: “show me all parts,
where John was telling Mary something about the multimedia
project.” In addition, during playback of parts of the meeting,
we could indicate at whom the speaker was looking during
his speech. For example, Fig. 9 shows an example where the
gaze tracking component detected and indicated that the person
was looking at the participant to her left and at the one to
her right, respectively. Finally, we could even use this data
to analyze meetings in many ways. One such usage could be
to calculate how much of the time someone was speaking or
how much of the time person X was addressing person Y.
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Fig. 8. Meeting browser with video capture.

(a) (b)

Fig. 9. Examples in which the attention model indicates that the person is
looking to the participant to the left and right, respectively.

VII. CONCLUSION

We have presented a system to estimate visual focus of
attention of participants in a meeting from multiple cues. The
participants are simultaneously tracked in a panoramic view
and their head poses are estimated using neural networks. For
each participant, probability distributions of looking toward
other participants are estimated from head poses using an
unsupervised learning approach. These distributions are then
used to predict focus of attention given a head pose. The
accuracy of such predication is 74% accurate in detecting the
participants’ focus of attention on our test data.

Furthermore, we have demonstrated how focus of attention
can be predicted based on knowledge of who is currently
speaking, and how this audio-based prediction can be improved
by taking the history of utterances into account. On the recorded
meetings, participants’ focus of attention has been predicted
correctly in 63% of the frames by using audio information only.

Finally, we have shown how the audio- and the video-based
predictions can be fused to get a more accurate and robust es-
timation of participants’ focus of attention. By using both head
pose and sound, focus of attention could be detected in 76% of
the frames in recorded meetings.

Other application areas of tracking focus of attention include:
multimodal human computer interfaces, computer supported
collaborative work, and interactive intelligent environments.
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