
Speech Communication 11 (1992) 273 282 273 
North-Holland 

Integrated phoneme and function word architecture 
of Hidden Control Neural Networks for 
Continuous Speech Recognition 
Bojan Petek I, Alex H. Waibel  and Joseph M. Tebelskis 
School of Computer Science, Carnegie-Mellon University, Pittsburgh, PA 15213-3890, USA 

Received 26 September 1991 
Revised 23 January 1992 

Abstract. We present a context-dependent, phoneme and function word based, Hidden Control Neural Network (HCNN- 
CDF) architecture for continuous speech recognition. The system can be seen as a large vocabulary extension of the word- 
based HCNN system proposed by Levin in 1990. Initially, we analysed context-/ndependent HCNN modeling principle in the 
framework of the Linked Predictive Neural Network (LPNN) speech recognition system and found that it results in a 6% 
increase of the word recognition accuracy at perplexity 402. Significant savings compared to the LPNN in the resource 
requirements and computational load for the HCNN implementation can be achieved. In speaker-dependent recognition 
experiments with perplexity 111, the current versions of the LPNN and HCNN-CDF systems achieve 60% and 75% word 
recognition accuracies, respectively. 

Zusammenfasstmg. Wir stellen im folgenden eine kontextabh/ingige auf Phonemen und Funktionsw6rtern basierende Hidden 
Control Neural Network Architektur (HCNN-CDF) fiir die Erkennung von kontinuierlicher Sprache vor. Das System ist eine 
Erweiterung des wortbasierten HCNN Systems von Levin in 1990 auf ein groges Vokabular. Wir haben zuerst das Prinzip der 
kontextunabh/ingigen HCNN-Mode!lierung im Rahmen des Linked Predictive Neural Network (LPNN) Spracherkennungs- 
systems untersucht und eine Verbesserung der Worterkennungsrate um 6% bei einer Perplexit/it von 402 festgestellt. Fiir die 
HCNN-Implementation konnte eine bedeutende Parameterreduktion und Einsparung von Rechenzeit gegeniiber LPNN 
erreicht werden. Bei sprecherabh/ingigen Erkennungsexperimenten mit der Perplexit/it 111 erreichten die aktuellen Versionen 
des LPNN und des HCNN-CDF Systems Worterkennungsraten yon 60% bzw. 75%. 

R~sum6. Nous pr6sentons une architecture d'Hidden Control Neural Network (HCNN-CDF) d~pendant du contexte pour la 
reconnaissance de la parole continue, bas~e sur les phonemes et les mots fonctionnels. Le syst~me peut ~tre consider6 comme 
une large extension du vocabulaire du syst~me HCNN bas+ sur les mots, propos+ par Levin. Initialement, nous avons analys+ 
les principes de mod+lisation de HCNN sous une forme ind~pendante du contexte, dans le cadre du syst+me de reconnaissance 
de la parole Linked Predictive Neural Networks (LPNN) etavons trouv+ qu'il aboutit h une augmentation de 6% dans la 
precision de reconnaissance de la parole ~ un degr~ de perplexit+ 402. Compar6/t LPNN, nous avons pu obtenir des r6ductions 
significatives dans les exigences de ressources et les charges computationnelles grace ~ notre impl6mentation HCNN. Dans des 
experiences de reconnaissance d+pendant du locuteur, avec un degr+ de perplexit~ 111, les versions actuelles des syst6mes 
LPNN et HCNN-CDF obtiennent respectivement une pr6cision de reconnaissance de mots de 60% et 75%. 

Keywords. Automatic Speech Recognition; Hidden Control Neural Network; large vocabulary recognition; context-dependent 
modeling; function-word modeling. 

1. Introduction 

Early connect ionis t  approaches to Automat ic  
Speech Recogni t ion  (ASR)  predominant ly  used 
connect ionis t  models as classifiers of either full 

The author is now with the Department of Computer Sci- 
ence, Faculty of Electrical Engineering and Computer Science, 
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words (e.g. digits), or subword units  (e.g. syllables, 
phonemes)  (Waibel  and  Lee, 1990). In  a classifica- 
t ion based approach,  consecutive frames of speech 
input  vectors are clamped to the network inputs  
and  are mapped  into a b inary  pat tern  representing 
a finite set of  recogni t ion classes. This approach 
treats the adjacent  speech feature vectors as 
independent  variables and  does no t  explicitly 
model  the causality between them. 
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The application of artificial neural networks 
(ANN) in the framework of Hidden Markov 
Models (HMM) was analysed in (Bourlard and 
Wellekens, 1990; Bourlard, 1991; Franzini et al., 
1991). This work showed that ANNs could be 
effectively used to estimate emission probabilities 
for the HMMs. This hybrid approach has the 
advantages of improved discrimination and the 
ability to incorporate multiple sources of know- 
ledge without assumptions of distributions or sta- 
tistical independence (Bourlard, 1991 ; Morgan et 
al., 1991 ; Franzini et al., 1991). 

Recently, a non-linear prediction approach has 
been proposed for ASR, and used in several sys- 
tems, e.g. "Neural Prediction Model", NPM, by 
Iso and Watanabe (1990, 1991), "Hidden Control 
Neural Network", HCNN, by Levin (1990) and 
"Linked Predictive Neural Networks", LPNN, by 
Tebelskis and Waibel (Tebelskis and Waibel, 1990; 
Tebelskis et al., 1991). In these systems, the connec- 
tionist networks, used as acoustic models of speech, 
are trained to learn the temporal correlations 
between adjacent speech patterns, thus presenting 
a dynamical systems approach to ASR (Tishby, 
1990). 

Initial evaluations of these models were carried 
out on small vocabulary recognition tasks, such 
as speaker-independent digit recognition (Iso and 
Watanabe, 1990; Levin, 1990, 1991), yielding high 
recognition performances, and large vocabulary 
continuous speech recognition extensions (Iso and 
Watanabe, 1991 ; Tebelskis et al., 1991). The work 
of Tebelskis uncovered a discriminatory problem 
of the predictive approach on the English database 
(Tebelskis et al., 1991). 

This paper describes a large vocabulary, context- 
dependent HCNN system. The system can be seen 
as a large vocabulary extension of the word-level 
HCNN system of Levin (1990). After reviewing 
the basic concepts of the predictive connectionist 
approach to ASR, we present results of a prelimin- 
ary comparison between the L P N N  and HCNN, 
using context-independent models. Section 4 pre- 
sents a context-dependent HCNN modeling princi- 
ple for large vocabulary ASR and function word 
integration to the system. The evaluation of the 
HCNN-CDF system's performance on the CMU 
Conference Registration Database and its com- 
parison to the baseline LPNN (Tebelskis et al., 

1991) are presented in Section 5. We conclude the 
paper with a discussion of the results and promis- 
ing future research directions. 

2. Predictive connectionist approach to ASR 

The basic idea of the NPM, HCNN and LPNN 
predictive modeling is shown in Figure 1. 

An n-frame window, n = nM +rip (Figure 1), of 
speech vectors is input into a multi-layer feed-for- 
ward net. The network is trained to approximate 
as close as possible the speech frame at time t. The 
prediction error, defined as the distance between 
the predicted and the actual speech frame, is used 
as an error criterion for the backpropagation train- 
ing. During training a pool of canonical subword 
models (e.g. phonemes, demi-syllables) learns to 
become specialized to predict corresponding por- 
tions of an utterance. This means that they develop 
the lowest prediction errors in, the regions on which 
they have been trained, and the higher errors out- 
side of those regions. A word is typically represen- 
ted as a sequence of predictors that best predict the 
observed speech. The Viterbi algorithm is used for 
finding the best sequence of predictors over time in 
order to match the observed speech signal. 

2.1. L P N N  and H C N N  modeling." a comparison 

When comparing the LPNN and HCNN model- 
ing principles, the following differences can be 
observed. 
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Fig. 1. Predict ive connect ionis t  mode l ing  pr inciple  for ASR.  

Speech Communication 



B. Petek et al. /HCNN system for large vocabulary CSR 275 

1. LPNN:  Phoneme model ing:  d i s t r i b u t e d  

2. HCNN:  Phoneme model ing:  dls t r lbut~: : l  

A,  9 P H O N E M E  M O D E L S  
S i STATES 

State model ing:  d i s t r i b u t e d  

SPEECH 
FRAMES 

State model ing: sha red  

~ l - ' l - ' q ' 7  Hidden Contro l  Input (HCI) 
" the rmomete r  representat ion",  
e.g., (1OO, 110, 111) 

Fig. 2. LPNN and HCNN modeling principles. 

The state sequence of a phoneme is modeled by 
a single Hidden Control Neural Network while the 
LPNN system uses a sequence of distinct neural 
networks (Figure 2). 

This gives the HCNN system the advantage of 
having fewer parameters to train for a given 
amount of training data while having more training 
data per neural network. This should;be advanta- 
geous for obtaining a better model. 

Since models for different states within a 
phoneme or function word are shared (Figure 2), 
the HCNN system is less computationally demand- 
ing than the LPNN. The hidden unit input activa- 
tions (e.g. the solid lines in Figure 3) for a given 
speech frame from the input layer to the first 
hidden layer need not be recomputed for more than 
one state; i.e. only the hidden control inputs 
change (e.g. the dotted lines in Figure 3). 

3. Baseline experiments 

This section briefly summarizes the results 
obtained from our preliminary experiments. First, 
the context-independent HCNN and LPNN 
modeling principles were compared. Following 
this, Section 3.1 describes the HCNN function 
word modeling experiments. 

In the preliminary set of experiments, unrelated 
to the issue of function word modeling, we com- 
pared the performance of the context-independent 
LPNN and HCNN modeling without function 
words under the same testing conditions. The word 
recognition accuracy was tested every 20 epochs of 
training and was analysed twice, starting from two 
different initial conditions. 

Both systems consisted of 40 phoneme models. 
While keeping the size of the prototypical neural 
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Fig. 3. Reduction of computational load by the HCNN modeling principle. 
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network about the same, the total number of free 
parameters in the system was reduced from 80 960 
(LPNN modeling) to 42 080 when HCNN model- 
ing was used. In our comparison, each phoneme 
model had 32 input units, 10 hidden and 16 output 
units. In the HCNN case, two more input units 
were used as the hidden control inputs. All net- 
works were fully connected. 

In these experiments, the "mblw" speaker of the 
CMU's Conference Registration Database and a 2- 
state phoneme topology were used for performance 
evaluation. 

A comparable performance (96% word recogni- 
tion accuracy) of both modeling principles was 
obtained on the same task at perplexity 7. When 
testing at perplexity 402, the HCNN modeling 
showed 6% better word recognition accuracy. This 
absolute difference in word recognition accuracy 
was measured as the smallest difference at any par- 
ticular number of epochs. At that point on the 
learning curve, the LPNN and HCN systems 
achieved 14% and 20% word accuracies, 
respectively. 

3.1. H C N N  function word modeling 

Function word modeling for continuous speech 
recognition was shown to be an important issue 
in ASR (Lee, 1988). Function words have strong 
coarticulation effects, are very frequent in continu- 
ous speech and are often poorly articulated by the 
speaker. Poor modeling of these words can consid- 
erably degrade the overall word accuracy of an 
ASR system. 

Initially, our system consisted of 40 canonical 
phoneme models. Preliminary analysis of the rec- 
ognition results showed that most misrecognitions 
occur on short words and function words. We thus 
decided to add additional resources to the system 
to achieve better modeling and improved recogni- 
tion accuracy for these words. 

We selected the function word "the" for the 
experiments. In order to decide on which modeling 
principle models function words better, two sets 
of experiments were conducted. In the first set of 
experiments we modeled a function word with a 
sequence of phoneme models (e.g. DH AX), and 
in the second set with the word-level function word 
model. 

A training algorithm that clusters function 
words was developed, as described in (Petek et al., 
1991). 

In order to concentrate on issues of function 
word modeling, we initially tested on excerpted 
words, where word boundaries are given. 

When tested on 105 function words, the experi- 
ments showed a decrease of 23% in the number of 
substitution errors, i.e. from 40 to 16 errors, when 
the word-level model was used. 

4. HCNN-CDF system for large vocabulary CSR 

This section describes a context-dependent 
Hidden Control Neural Network Architecture 
(HCNN-CDF) fo.r large vocabulary continuous 
speech recognition. In order to design a large 
vocabulary ASR system, subword units, e.g. 
phonemes or syllables, have to be used. Subword 
modeling is then improved by applying explicit 
context-dependent modeling to the Hidden Control 
Neural Network model (Figure 4) (Petek et al., 
1991). 

The HCNN-CDF system explicitly models func- 
tion words on the word level by using a single 
Hidden Control Neural Network. For example, a 
function word "the" is modeled with a single 
"THE" function word model, rather than a 
sequence of phoneme models. As shown by our 
preliminary experimental results, word-level 
modeling of function words improves their recog- 
nition rate. 

Another significant extension compared to the 
HCNN system of Levin (1990) is the use of explicit 
context-dependent modeling, as described in 
Section 4.1. 

The HCNN-CDF system consists of N context- 
dependent phone models and M context-dependent 
function word models. The N= 40 phone models 
used in this work are given in Table 1. 

Word models are defined by concatenating the 
phone models, as defined in the system's diction- 
ary. Given that any word can be described by a 
concatenation of canonical phone models, large 
vocabulary speech recognition can be achieved. 
Each phone or function-word model has a transi- 
tion diagram as shown in Figure 5. 
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Fig. 4, Context-dependent HCNN model. 

Table 1 
Canonical phone models of the HCNN system 

Phoneme Example Phoneme Example Phoneme Example Phoneme Example 

SIL (silence) IH bit F fluff Q (garbage) 
AA father IY beet G gig R roar 
AE bat OW coat HH how S sass 
AH but UH book JH fudge SH ship 
AO hot UW boot K key T time 
AW cow B bib L lull TH thin 
AY bite CH chip M maim V valve 
EH bet D dime N anna W one 
ER bird DH the NG bang Y you 
EY bait DX at P ship Z zoos 

N e t  I 

=) 

Net 1 

Fig. 5. State transition diagrams of the HCNN model. 

4.1. Context-dependent H C N N  modeling 

One of the strengths of connectionist models is 
their ability to successfully combine information 
from several input domains. This capability has 
also been used in our context-dependent HCNN 
modeling principle for large vocabulary ASR. 

In the framework of classification networks it 
has already been demonstrated that the phonetic 

context has to be taken into account for very high 
accuracy in phoneme recognition (Watrous, 1989). 

The input layer of the context-dependent HCNN 
model consists of three groups of units, i.e. speech 
inputs with Nx units, hidden control inputs with N, 
units and Np contextual units. 

Ninput = N~- + N,. + Np. (1) 

The mapping function ~ between the observable 
speech input x and the output y is defined by 

y = 2t = ~'~o~(X, c, p) ~- ~o,c.p(X), (2) 

where to represents a set of fixed parameters (i.e. 
weights and biases of the network), and (x, c, p) 
the concatenation of the three inputs. 

Since the coverage of left and right contexts of 
our database was rather small, we decided to make 

Vol. 11, Nos. 2-3, June 1992 



278 B. Petek et al. / H C N N  system for  large vocabulary CSR 

the predictive models only right-context dependent. 
The binary pattern of contextual information rep- 
resents a coding of the linguistic features of the 
right-hand phoneme, as described in (McClelland, 
1986). 

We used 10 bits for contextual input representa- 
tion, coding each phoneme along four dimensions. 
The first dimension (three bits) was used to divide 
the phonemes into interrupted consonants (stops 
and nasals), continuous consonants (fricatives, 
liquids and semivowels) and vowels. The second 
dimension (two bits) was used to subdivide these 
classes. The third dimension (three bits) classified 
the phonemes by places of articulation (front, 
middle, back). Finally, the fourth dimension (two 
bits) divided the consonants into voiced and 
unvoiced, and vowels into long and short. 

Separate first hidden layers for speech/state and 
context information were used. After the training 
phase, the activations in the contextual first hidden 
layer can be cached, thus yielding additional com- 
putational savings. Given the context, known 
hidden unit activations are clamped to the first 
hidden layer instead of the contextual input vector 
being clamped to the input layer. 

As can be seen in Figure 4, the mapping function 
of the HCNN model is now state as well as context 
dependent. The hidden control input enables the 
MLP model to handle large-scale temporal vari- 
ability (i.e. state transitions in a phoneme/word). 
The contextual inputs permit more context-specific 
predictions, thus potentially enhancing the dis- 
crimination among acoustic models. 

4.2. Context-dependent H C N N  as a 
statistical model 

From a statistical point of view, the HCNN 
model can be described by an equivalent vector 
source with assumed white Gaussian noise nt 
having zero mean and covariance matrix Z (Levin, 
1990). 

Following this assumption, a context-dependent 
HCNN model can be described as 

• ~t = ~  . . . . .  p ( X t - l ) + n t ,  nt,,~N(0, Z). (3) 

Assuming this interpretation, the conditional 

likelihood of observation xt is given by 

1 P(x, bx,-~, co, c , ,p ) -  (2~)a/21~,[1/2 

x exp(-  ½ (x~- ~t(ct, p)) 'Z - - I ( x  t - -  X t(Ct, p))). 
(4) 

By assuming the equiprobability of control codes 
ci, the joint likelihood of the data and the control 
can be written as 

1 

× _1 ~ p)), 
exp ( z,= 1 (x,-.~,(c,, 

× Z -  ( x , - x , ( c , ,  p)) , (5) 

where xT denotes the observed sequence 
{xj . . . . .  XT}. This assumption considers a special 
case of the Markov process (Levin, 1990) and can 
be easily extended for the general case. 

The final goal is to maximize P(xT, ctTlc0, p), 
given by (5). In order to see the relationship 
between the minimization of the prediction error j 
and the desired maximization of the joint likeli- 
hood, the logarithm of (5) and simplification yields 

In P(x~, c~ log, p) 

T 
= ~ (x , -  .~,(c,, p))'X - t ( x , -  Yet(c,, p)) + lnJZI. 

t=l  

(6) 

If the non-diagonal components of the covari- 
ance matrix are negligible, (6) reduces to 

In P(x~, c~X ] o9, p) 

= (x , -~ , (c t ,  p))2 ~- E In 0-2. (7) 
2 

t=l i=1 a i  i=1 

Performed by the Back-Propagation (BP) training 
algorithm. 
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The assumption of the unity variance, i.e. 
a, 2- = 1, and further simplification yields 2 

T 

lnP(xT, cTlog, p )=  ~ iIx,-~c,(c,,p)lt 2. (8) 
t = l  

the discrimination hyperplanes for the increased 
number of decision classes. 

5. Experimental results 

The comparison of (8) with the equation of the 
BP training algorithm 

r,, 
dk(n) = min X Ilxt(n)--~,(n, k)ll 2 (9) 

{ak ( t ) ]  t ~  I 

yields 

In e(xT, c~rl o9, p)"~dk(n). (lO) 

Therefore, the minimization of the prediction 
error dk(n) performed by the BP algorithm is 
equivalent to the maximization of the joint 
likelihood P(x~, cT] o9, p), 

mind(og, cT, p) ¢¢, maxP(x~,eX~log, p), (11) 

which is the desired goal of the training procedure. 

4.3. Integrating function word models into 
the system 

Function word models have been added to the 
system by introducing additional context-depen- 
dent HCNN word models (previously, every word 
was modeled by a sequence of one or more general 
purpose phoneme models). The hidden control 
input now codes for the states within a word, as in 
the word-level HCNN system of Levin (1990). 

The context input code of the word model was 
chosen to be the same as the first phoneme code 
in the standard phonetic spelling of the function 
word. 

An important issue when adding additional 
resources to the predictive system like this is the 
fact that the existing resources (i.e. phoneme mod- 
els) need not be retrained. If the system was classifi- 
cation-based, however, all the models would have 
to be retrained to insure the proper learning of 

2 This assumption need not be made if we implement 
variance modeling. 

The described integrated phoneme and function 
word HCNN system was trained on the Confer- 
ence Registration Database recorded at CMU 
which consists of 204 English sentences (data from 
speaker "mjmt" was used in the experiments). For 
testing, we used the first three dialogs of a separate 
recording as a test set (the same as reported in 
(Tebelskis et al., 1991)). 

The prototypical network consisted of 64 speech 
inputs (2 frames of speech with corresponding 
delta frames), 5 hidden control inputs, 10 context 
inputs, 30 speech/state units in the first hidden 
layer, 5 context units in the first hidden layer, and 
16 predicted speech output units (1 frame). The 
networks were fully connected. Speech input vector 
consisted of 16-dimensional mel-scale filterbank 
coefficients, corresponding to time frames t -  1 and 
t - 2, and first order difference vectors for these two 
frames, computed using a 40 msec delta. 

In contrast to the LPNN system (Tebelskis et 
al., 1991), the HCNN phoneme model consisted of 
5 states, implemented by a single network, as 
shown in Figure 4. All canonical phoneme (and 
function word) models had the same topology, 
except the silence model, which had 3 states. 

Each of the phoneme or function word models 
was implemented by two separate HCNN net- 
works, called alternates. This concept improved the 
modeling accuracy by allocating more than one 
predictive model per phoneme or word (Tebelskis 
and Waibel, 1990). During training, only the win- 
ning alternate model was reinforced by backpropa- 
gating error while competing alternate remained 
unchanged. 

5.1. HCNN-CDF system evaluation 

We tested the context-dependent HCNN system 
at task perplexity 111. The results are summarized 
in Table 2. The table includes the Linked Predictive 
Neural Network (LPNN) system's performance, 
as given in (Tebelskis et al., 1991). The HCNN- 
CD denotes the system with 40 canonical phoneme 
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Fig. 6. Typical example of the HCNN-CDF continuous speech recognition. Upper trace: Actual sentence, x-axis: time (frame 
sampling rate is 10 ms); y-axis: frequency (normalized melscale filterbank coefficients). Middle trace: Predictions and segmentation 
generated by the HCNN system. Major hash marks: phoneme and function word boundaries; Minor hash marks: HCNN-input 
"thermometer" input change; Bars above major segmentation marks specify the alternate model index• Lower trace: Prediction errors 
made along the alignment path• 

models (i.e. no function word models), and the 
HCNN-CDF system additionally models three 
function words (a, the, you). 

We did an additional analysis of the phoneme 
confusion matrix of the HCNN-CD system on the 
training data which showed that there is still 20% 
phoneme-level confusions after the training has 
been completed. The most confusions occurred on 
AH, AE, EH, UH, D, K and N phonemes. 

A typical example of the recognized sentence by 
the HCNN-CDF system is given in Figure 6. 

6. Discussion and conclusions 

We presented a context-dependent, phoneme 
and function word based, Hidden Control Neural 
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Table 2 
Speaker-dependent word recognition accuracies of LPNN and 
HCNN systems 

System Speaker A (mjmt), perplexity 111 
LPNN HCNN-CD HCNN-CDF 

Substitutions 28% 20% 18% 
Deletions 8°/,, 6°/,, 3% 
Insertions 4% 2% 4% 

Word accuracy 60% 72% 75% 

One possibility to address this problem would be 
a design of an additional corrective training algo- 
rithm. This algorithm should enable the training 
on examples outside the optimal alignment path, 
thus enforcing discriminant behaviour of the mod- 
els outside the regions of "positive" training 
examples. The design of this procedure for the pre- 
dictive models of the system is at present still an 
open and important research issue. 

Network architecture for large vocabulary continu- 
ous speech recognition and evaluated its perform- 
ance on the Conference Registration Database. 

Speaker-dependent performance evaluation of 
the LPNN and HCNN systems on the same task 
with perplexity 111 showed that the systems 
achieve 60% and 75% word recognition accuracy, 
respectively. 

Additionally, we have shown that the baseline 
performance of the HCNN system increased from 
72°/,, to 75% when modeling three most frequently 
misrecognised function words. 

One of the remaining drawbacks of the system 
is still the insufficient discrimination power among 
the predictive models of the system. The main 
reasons for this seem to be the following: 

The lack of "negative" examples of prediction. As 
the models get trained only on "positive" examples 
along the optimal alignment path, no explicit 
mechanism enforces them to become discriminant 
among each other. The consequence of training on 
only "positive" examples is that the predictors have 
undefined regions, in which no training examples 
were given to define a controlled, i.e. non-confus- 
able, response when compared to the other models 
of the system. 

The problem of identity mappings. The current 
implementation of the system predicts successive 
speech frames in an utterance. Some subword 
speech units, e.g. vowels, exhibit very small change 
between successive speech frames, thus training the 
model to make very similar (i.e. identity) map- 
pings. The response of the model trained in this 
manner increases the confusability among the pre- 
dictive models of the system, since it predicts fairly 
well also the data of the other models. 
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