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ABSTRACT

Identifying whether an utterance is a statement, quesgjmeting, and so forth is integral to effective
automatic understanding of natural dialog. Little is knoWwowever, about how such dialog acts (DAS) can
be automatically classified in truly natural conversatidhis study asks whether current approaches, which
use mainly word information, could be improved by addinggadic information.

The study is based on more than 1000 conversations from tltelfhwoard corpus. DAs were hand-
annotated, and prosodic features (duration, pause, F@yyerend speaking rate) were automatically ex-
tracted for each DA. In training, decision trees based osdffieatures were inferred; trees were then applied
to unseen test data to evaluate performance. Performargevatuated for prosody models alone, and after
combining the prosody models with word information—eitfrem true words or from the output of an
automatic speech recognizer.

For an overall classification task, as well as three subfgsksody made significant contributions to
classification. Feature-specific analyses further redetilat although canonical features (such as FO for
guestions) were important, less obvious features couldpemsate if canonical features were removed.
Finally, in each task, integrating the prosodic model witb¥aspecific statistical language model improved
performance over that of the language model alone, espetialthe case of recognized words. Results
suggest that DAs are redundantly marked in natural contrersaand that a variety of automatically
extractable prosodic features could aid dialog processisgeech applications.

Keywords: automatic dialog act classification, prosody, discourseleting, speech understanding,
spontaneous speech recognition.



INTRODUCTION

Why Model Dialog?

Identifying whether an utterance is a statement, quesgi@eting, and so forth is integral to understand-
ing and producing natural dialog. Human listeners eas#griininate such dialog acts (DAS) in everyday
conversation, responding in systematic ways to achieventlteial goals of the participants (Clark, 1996;
Levelt, 1989). Little is known, however, about how to builfldly automatic system that can successfully
identify DAs occurring in natural conversation.

Atfirst blush, such a goal may appear misguided, becausecuostit computer dialog systems are de-
signed for human-computer interactions in specific domé&htsdying unconstrained human-human dialogs
would seem to make the problem more difficult than necessange task-oriented dialog (whether human-
human or human-computer) is by definition more constraimedheence easier to process. Nevertheless, for
many other applications, as well as for basic research Inglideveloping DA classifiers for conversational
speech is clearly an important goal. For example, optimtdraatic summarization and segmentation of
natural conversations (such as meetings or interviewsjrdrival and retrieval purposes requires not only
knowing the string of words spoken, but also who asked gorestiwho answered them, whether answers
were agreements or disagreements, and so forth. Anothevation for speech technology is to improve
word recognition. Because dialog is highly conventionéffecent DAs tend to involve different word
patterns or phrases. Knowledge about the likely DA of arratiee could therefore be applied to constrain
word hypotheses in a speech recognizer. Modeling of DAs fiaman-human conversation can also guide
the design of better and more natural human-computer adesf. On the theoretical side, information about
properties of natural utterances provides useful comparigata to check against descriptive models based
on contrived examples or speech produced under laboragttymgs. Automatic methods for classifying
dialog acts could also be applied to the problem of labelargd databases when hand-annotation is not
feasible, thereby providing data to further basic research

Word-Based Approaches to Dialog Act Detection

Automatic modeling of dialog has gained interest in recearyg, particularly in the domain of human-
computer dialog applications. One line of work has focusegedicting the most probable next dialog
act in a conversation, using mainly information about the lgtory or context (Yamaoka & lida, 1991;
Woszczyna & Waibel, 1994; Nagata & Morimoto, 1994; Reitldn§ Maier, 1995; Bennacef et al., 1995;
Kita et al., 1996; Reithinger et al., 1996). A second, relditee of research has focused on DA recognition
and classification, taking into account both the DA histarg &atures of the current DA itself (Suhm &
Waibel, 1994; Reithinger & Klesen, 1997; Chu-Carroll, 1988muel et al., 1998). In all of these previous
approaches, DA classification has relied heavily on infdiomethat can be gleaned from words, such as cue
phrases and N-grams, or information that can be derived Wwomnd sequences, such as syntactic form.

Why Use Prosody?

This work focuses on exploring another, relatively untappetential knowledge source for automatic
DA classification: prosody. By prosody we mean informatibowt temporal, pitch, and energy characteris-
tics of utterances that are independent of the words. We intemeested in prosody for several reasons. First,
some DAs are inherently ambiguous from word informatiomaloFor example, declarative questions (e.g.,
“John is here?”) have the same word order as statements, et lwhen lexical and syntactic cues are

4



consistent with that of a statement, may be distinguishebiequestion only via prosody. Second, in a real
application, word recognition may not be perfect. Indedaltesof-the-art recognizers still show over 30%
word error rate for large-vocabulary conversational spedaird, there are potential applications for which
a full-fledged speech recognizer may not be available otigedcand a less computationally expensive, but
somewhat less accurate method to track the structure ofl@gds acceptable. Fourth, an understanding
of prosodic properties of different utterance types caw lmamore natural output from speech synthesis
systems. And finally, it is of basic theoretical interest &scriptive accounts in linguistics, as well as to
psycholinguistic theories of sentence processing, torstaied how different DAs are signaled prosodically.

Previous Studies of Prosody and Discourse

The main context in which prosody has been explored speéyficathe purpose of dialog processing is
inthe area of discoursegmentation-both at the utterance level and at higher levels such asgla@zation
of utterances into turns and topics. The segmentation efusihan both descriptive and computational
fields, and describe or attempt to detect utterance and tmpiadaries using various acoustic-prosodic
features, including pitch range, intonational contouclhation patterns, utterance duration, pre-boundary
lengthening phenomena, pause patterns, speaking ratesnangly patterns. There has been increasing
work in studying spontaneous speech, in both human-humamaman-machine dialog. In most cases
the features cuing the segments are coded by hand, but cowddtally be estimated by automatic means
for speech applications (Grosz & Hirschberg, 1992; Nakaji&Allen, 1993; Ayers, 1994; Litman &
Passonneau, 1995; Hirschberg & Nakatani, 1996; Koopman®ginum & van Donzel, 1996; Bruce et al.,
1997; Nakajima & Tsukada, 1997; Swerts, 1997; Swerts & Qkighn1997). Although much of the work
on prosody and segmentation has been descriptive, sonme stadies have developed classifiers and tested
performance using a fully automatic detection paradigmr éxample, Hirschberg and Nakatani (1998)
found that features derived from a pitch tracker (FO, bub alsicing and energy information) provide
cues to intonational phrase boundaries; such a system teulded as a front end for audio browsing
and playback. Similarly, in experiments on subsets of thenaa Verbmobil spontaneous speech corpus,
prosodic features (including features reflecting duratipause, FO, and energy) were found to improve
segmentation performance (into DASs) over that given by glage model alone (Mast et al., 1996; Warnke
et al.,, 1997). The Verbmobil work was in the context of an allesystem for automatically classifying
DAs, but the prosodic features were used only at the segti@m&tage.

A second line of relevant previous work includes studieslenautomatic detection of pitch accents,
phrase accents, and boundary tones for speech technalbgg become increasingly clear that a transcribed
word sequence does not provide enough information for $paaderstanding, since the same sequence
of words can have different meanings depending, in part,rosqaly. The location and type of accents
and boundary tones can provide important cues for tasks asitéxical or syntactic disambiguation, and
can be used to rescore word hypotheses and reduce syntastimantic search complexity (Waibel, 1988;
Veilleux & Ostendorf, 1993; Wightman & Ostendorf, 1994; Kpenet al., 1995; Kompe, 1997). These and
many related studies model FO, energy, and duration patterdetect and classify accents and boundary
tones; information on the location and type of prosodic &veran then be used to assign or constrain
meaning, typically at the level of the utterance. Such imfation is relevant to dialog processing, since
the locations of major phrase boundaries delimit utteranues, and since tonal information can specify
pragmatic meaning in certain contexts (e.g., a rising fioaalary tone suggests questions). First developed
for formal speech, such approaches have also been applgbtdaneous human-computer dialog, where
the modeling problem becomes more difficult as a result af ¢esistrained speech styles.

Beyond the detection of accents, boundary tones, and dseoelevant segment boundaries, there has



been only limited investigation into automatic processépgcifically to identify DAs in conversational
speech. In one approach, Taylor et al. (1997, 1998) useehilfthrkov models (HMMs) to model accents
and boundary tones in different conversational “moves’him Maptask corpus (Carletta et al., 1995), with
the aim of applying move-specific language models to impspe&ech recognition. The event recognizer
used “tilt” parameters (Taylor & Black, 1994), or FO, amptie, duration, and a feature capturing the shape
(rise, fall, or combination). As reported in many other séisdof accent detection, performance degraded
sharply from speaker-dependent formal styles to speakipiendent spontaneous speech (e.g., Ostendorf
& Ross, 1997). The automatic detection of moves was thugddinby somewhat low accent detection
accuracy (below 40%); however, overall results suggestatintonation can be a good predictor of move

type.

In another study, Yoshimura et al. (1996) aimed to autoralyiadentify utterances in human-machine
dialog likely to contain emotional content such as exclaomatof puzzlement, self-talk, or other types of
paralinguistic information that the system would not beeabl process. The approach involved clustering
utterances based on vector-quantized FO patterns andlloregeession fits on the contours. Patterns
deviating from a typically relatively flat overall slope vesiound to be likely to contain such paralinguistic
content.

Finally, researchers on the Verbmobil project (Kiel3linglet1993; Kompe et al., 1995), following ideas
of Noth (1991), addressed an interesting case of ambigibpuman-machine interaction in the context
of a train-scheduling system. Apparently, subjects oftearrupt the announcement of train schedules to
repeat a specific departure or arrival time. The repeat cae sme of three functional roles: confirmation
of understanding, questioning of the time, or feedbackitimauser is still listening. The tendency of users
to interrupt in this manner is even more pronounced wherirtglto an automatic system with synthesized
speech output, since the synthesis can often be difficutiigpeehend. To aid in automatically identifying
responses, Gaussian classifiers were trained on FO featundar to those mentioned in earlier work
(Waibel, 1988; Daly & Zue, 1992), including the slope of tlegnession line of the whole contour and of
the final portion, as well as utterance onset- and offsettedl values. Similarly, Terry et al. (1994) used FO
information to distinguish user queries from acknowledgisen a direction-giving system. To this end,
the shape of pitch contours was classified either by a harttewrule system, or a trained neural network.

Current Study

For the present work, we were interested in automatic mestiioat could be applied to spontaneous
human-human dialog, which is notoriously more variabl@tfegad speech or most forms of human-computer
dialog (Daly & Zue, 1992; Ayers, 1994; Blaauw, 1995). We algnted to cover the full set of dialog
act labels observed, and thus needed to be able to definetthet®n and computation of all proposed
features for all utterances in the data. We took an explorapproach, including a large set of features
from the different categories of prosodic features used@work on boundary and discourse described
earlier. However, our constraints were somewhat diffetieai in previous studies.

One important difference is that because we were interestesing prosodic features in combination
with alanguage modelin speech recognition, our features designed to not rely on any word information;
as explained later, this feature independence allows apilbiétic combination of prosodic and word-based
models. A second major difference between our approach ar# based on hand-labeled prosodic
annotations is that our features needed to be automatiesligctable from the signal. This constraint
was practical rather than theoretical: it is currently neadible to automatically detect abstract events
such as accents and phrase boundaries reliably in sponsiheman-human dialog with variable channel



quality (such as in telephone speech). Nevertheless, isasthe case that we do not yet fully understand
how abstract categories characterize DAs in natural spegdas, and that an understanding could be
augmented by information about correlations between DAkather feature types. For example, even for
DAs with presumed canonical boundary tone indicators (siscthe rising intonation typical of questions),
other features may additionally characterize the DA. Fetance, descriptive analyses of Dutch question
intonation have found that in addition to a final FO rise, @@rtinterrogatives differ from declaratives in
features located elsewhere, such as in onset FO and in lgviéchlrange (Haan et al., 1997a, 1997b). Thus,
we focussed on global and rather simple features, and assnmkandmarks in our utterances other than
the start and end times.

Our investigation began as part of a larger project (Juyaétlal., 1997a, 1998Db; Stolcke et al., 1998)
on DA classification in human-human telephone conversstiasing three knowledge sources: (1) a dialog
grammar (a statistical model of the sequencing of DAs in aexmation), (2) DA-specific language models
(statistical models of the word sequences associated \aitiicplar types of DAs), and (3) DA-specific
prosodic models. Results revealed that the modeling wagmiargely by DA priors (represented as
unigram frequencies in the dialog grammar) because of arraxt skew in the distribution of DAs in the
corpus—nearly 70% of the utterances in the corpus studied ei¢her statements (declaratives) or brief
backchannels (such as “uh-huh”). Because of the skew, ithffasult to assess the potential contribution of
features of the DAs themselves, including the prosodiafest Thus, to better investigate whether prosody
can contribute to DA classification in natural dialog, forstipaper we eliminate additional knowledge
sources that could confound our results. Analyses are @tedun a domain of uniform priors (all DAs
are made equally likely). We also exclude contextual infation from the dialog grammar (such as the
DA of the previous utterance). In this way, we hope to gainttebenderstanding of the inherent prosodic
properties of different DAs, which can in turn help in thelding of better integrated models for natural
speech corpora in general.

Our approach builds on a methodology previously developea dlifferent task involving conversational
speech (Shriberg et al., 1997). The method is based on oetiaty a large database of automatically
extracted acoustic-prosodic features. In training, degitree classifiers are inferred from the features; the
trees are then applied to unseen data to evaluate perfoenaauacto study feature usage.

The analyses examine decision tree performance in four l@gstication tasks. We begin with a task
involving multiway classification of the DAs in our corpus. e\then examine three binary classification
tasks found to be problematic for word-based classificati@uestion detection, Agreement detection, and
the detection of Incomplete Utterances. For each task, aue ¢tassifiers using various subsets of features
to gain an understanding of the relative importance of dbffiéfeature types. In addition, we integrate tree
models with DA-specific language models to explore the rélprosody when word information is also
available, from either a transcript or a speech recognizer.

METHOD

Speech Data

Our data were taken from the Switchboard corpus of humanamigiephone conversations on various
topics (Godfrey et al., 1992). The original release of tligpas contains roughly three million words from
more than 2430 different conversations, each roughly 1Qutesin duration. The corpus was collected
at Texas Instruments and is distributed by the LinguistiasaDConsortium (LDC). A set of roughly 500
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speakers representing all major dialects of American Bhgiarticipated in the task in exchange for a per-
call remuneration. Speakers could participate as oftehesdesired; many speakers participated multiple
times. Speakers were aware that their speech was beingdestobut were informed only generally
that Tl speech researchers were interested in the conm@rsatSpeakers registered by choosing topics
of interest (e.g., recycling, sports) from a predetermiset] and by indicating times that they would be
available. They were automatically connected to anothésrday a “robot operator” based on matching of
registrants to topics and available times. An advantageisprocedure is the absence of experimenter bias.
Conversations were therefore between strangers; howteamsgcribers rated the majority of conversations
as sounding highly “natural”. There were some clear adygeg#o using this corpus for our work, including
its size, the availability of transcriptions, and senteles@l segmentations. But most important, it was one
of the only large English conversational-speech corpoeala@ve at the time, for which we could obtain
N-best word recognition output from a state-of-the-arbgegtion system.

Dialog Act Labeling

Labeling system We developed a DA labeling system for Switchboard, takig atarting point the
DAMSL system (Core & Allen, 1997) of DA labeling for task-ented dialog. We adapted the DAMSL
system to allow better coverage for Switchboard, and alsodate labels that provide more information
about the lexical and syntactic realization of DAs. Certeliasses in DAMSL were never used, and
conversely it was necessary to expand some of the DAMSL edass provide a variety of labels. The
adapted system, “SWBD-DAMSL”, is described in detail inafaky et al. (1997b).

Table 1: Seven Grouped Dialog Act Classes

| Type | SWBD-DAMSL Tag | Example

Statements
Description sd Me, I'm in the legal department
View/Opinion SV | think it's great

Questions
Yes/No ay Do you have to have any special training?
Wh qw Well, how old are you?
Declarative qy'd,gqwd So you can afford to get a house?
Open go How about you?

Backchannels b Uh-huh

Incomplete Utterances % So, -

Agreements aa That'’s exactly it

Appreciations ba | can imagine

Other all other (see Appendix A)

SWBD-DAMSL defines approximately 60 unique tags, many ofollepresent orthogonal information
about an utterance and hence can be combined. The labelgdesus®of 220 of these combined tags, which
we clustered for our larger project into 42 classes (Juyattkal., 1998b). To simplify analyses, the 42
classes were further grouped into seven disjoint main elasonsisting of the frequently occurring classes
plus an “Other” class containing DAs each occurring less 2 of the time. The groups are shown in
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Table 1. The full set of DAs is listed in Appendix A, along wilstual frequencies. The full list is useful
for getting a feel for the heterogeneity of the “Other” clagable 2 shows three typical exchanges found in
the corpus, along with the kinds of annotations we had at mpodal.

Table 2: Example Exchanges in Switchboard. Utterance bamigwlare indicated by “/”; “-/” marks
incomplete utterances.

| Speaker Dialog Act Utterance |
A Wh-Question What kind do you have now? /
B Statement-non-opinion Uh, we have a, a Mazda nine twenty nine and a Ford
Crown Victoria and a little two seater CRX.
A Acknowledge-Answer Oh, okay. /
B Statement-Opinion Uh, it’s rather difficult to, to project what kind of, uk,
A Statement-non-opinion We'd, look, always look into, uh, consumer reports to seetwiral
of, uh, report, or, uh, repair records that the various casseh/
B Abandoned So, uh;/
A Yes-No-Question And did you find that you like the foreign cars better than thendstic? /
B Yes-Answer Uh, yeah./
B Statement-non-opinion We've been extremely pleased with our Mazdas.
A Backchannel-Question Oh, really? /
B Yes-Answer Yeah./

For the Statement classes, independent analyses showebdetao SWBD-DAMSL types of State-
ments, Descriptions and Opinions, were similar in theitdakand their prosodic features, although they
did show some differences in their distribution in the diss®, which warrants their continued distinction
in the labeling system. Since, as explained in the Intradoctve do not use dialog grammar information
in this work, there is no reason not to group the two typesttogrdfor analysis. For the Question category
we grouped together the main question types described by etaal. (1997a, 1997b), namely, Declarative
Questions, Yes-No Questions, and Wh-Questions.

Labeling procedure. Since there was a large set of data to label, and limiteddingdabor resources,
we decided to have our main set of DA labels produced basedeoiext transcripts alone. Llabelers were
given the transcriptions of the full conversations, andtbould use contextual information, as well as cues
from standard punctuation (e.g., question marks), but didisten to the soundfiles. A similarapproach was
used for the same reason in the work of Mast et al. (1996). We aware, however, that labeling without
listening is not without problems. One concern is that ¢eilf\s are inherently ambiguous from transcripts
alone. A commonly noted example is the distinction betweepke Backchannels, which acknowledge a
contribution (e.g., “uh-huh”) and explicit Agreementgye:that's exactly it”). There is considerable lexical
overlap between these two DAs, with emphatic intonatiorvegimg an Agreement (e.g., “right” versus
“right!”). Emphasis of this sort was not marked by punctaatin the transcriptions, and Backchannels
were nearly four times as likely in our corpus; thus, lab®lhen in doubt were instructed to mark an
ambiguous case as a Backchannel. We therefore expectesbthatpercentage of our Backchannels were
actually Agreements. In addition to the known problem of IB&@nnel/Agreement ambiguities, we were
concerned about other possible mislabelings. For examipieg intonation could reveal that an utterance
is a Declarative Question rather than a Statement. Simjladsitant-sounding prosody could indicate an



Incomplete Utterance (from the point of view of the speakartention), even if the utterance is potentially
complete based on words alone.

Such ambiguities are of particular concern for the analgédsand, which seek to determine the role
of prosody in DA classification. If some DAs are identifiabldyowhen prosody is made available, then a
subset of our original labels will not only biacorrect, they will also bebiasedtoward the label cued by a
language model. This will make it difficult to determine theggdee to which prosodic cues can contribute
to DA classification above and beyond the language model cUés took two steps toward addressing
these concerns within the limits of our available resourcesst, we instructed our labelers to flag any
utterances that they felt were ambiguous from text alonduture work such utterances could be labeled
after listening. Given that this was not possible yet forcdlthe labeled data, we chose to simply remove
all flagged utterances for the present analyses.

Second, we conducted experiments to assess the loss mhdwri@beling with transcripts only. We
asked one of the most experienced of our original DA lab&kerseannotate utterances after listening to the
soundfiles. So that the factor of listening would not be canfited with that of inter-labeler agreement, all
conversations to be relabeled were taken from the set olrsations that she had labeled originally. In the
interest of time, the relabeling was done with the origiaéldis available. Instructions were to listen to all
of the utterances, and take the time needed to make any changdich she felt the original labels were
inconsistent with what she heard. This approach is not sacés equivalent to relabeling from scratch,
since the labeler may be biased toward retaining previdusda Nevertheless, it should reveal the types
of DAs for which listening is most important. This was the goga first round (Round 1) of relabeling,
in which we did not give any information about which DAs to patyention to. The rate of changes for
the individual DA types, however, was assumed to be congeevaere, since the labeler had to divide her
attention over all DA types. Results are shown in the leftiooi of Table 3.

"We thank Traci Curl for reannotating the data and for helgfatussions.
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Table 3: Changes in DA Labeling Associated with Listeninghafiges are denoted as original label
(transcript-only)}-new label (transcript + listening). In Round |, labeler wasware of DAs of interest; in
Round Il, labelerwas biased toward the most frequent chizogeRound | (Backchannel Agreement). La-
bels are from original DA classes (as listed in Appendixi#gBackchannelas=Agreementsv=Statement-
opinion,sd=Statement-non-opinion.

Round |

Round I

Goal of study Which DAs change most? What is upper bound for
DA-specific change rate?
Task focus All DAs b andaa
Relabeling time 20 total hrs 10 hrs
Number of conversations 44 19 (notin Round 1)
Changed DAs (%) 114/5857 1.95% 114/4148 2.75%
Top changes (% of total changes)
b—aa 43/114 37.7% 72/114 63.2%
sv—sd 22/114 19.3% 2/114 1.75%
sd—sv 17/114 14.9% 0 0%
Other changes <3% each <8% each
Change rate, relative to total DAs
b—aa 43/5857 0.73% 72/4148 1.74%
Other changes 71/5857 1.21% 42/4148 1.01%
Change rate, relative to DA priors
b—aalb 43/986 4.36% 72/690 10.43%
Non-b/aa—Non-b/aa/ Non-b/aa | 57/4544 1.25% 11/3180 0.35%

Only 114 changes were made in Round |, for an overall rate afigh of under 2%. Given that attention
was divided over all DAs in this round, the most meaningfddrmation from Round | is not the overall
rate of changes, which is expected to be conservative, butrrghe distribution of types of changes. The
most prominent change made after listening was the comrersi Backchannelsb) to Agreementsda).
Details on the prosodic cues associated with this changdemeribed elsewhere (Jurafsky et al., 1998a).
As the table shows for top changes, this change accountet8far 37.7%, of the 114 changes made; the
next most frequent change (within the two different origi@atement labels) accounted for less than 20%
of the change$.The salience of thb—aa changes is further seen after normalizing the number ofgésn
by the DA priors. On this measur;—aa changes occur for over 4% of originllabels. In contrast, the
normalized rates for the second and third most frequentstgpehanges in Round | were 22/989 (2.22%)
for sv—sd and 17/2147 (0.79%) fosd—sv. For all changes not involving eithér or aa, the rate was
only about 1%. A complete list of recall and precision ratgdD\ type (where labels after listening are
used as reference labels, and labels from transcripts al@ngsed as hypothesized labels), can be found in
Appendix B.

To address the issue of attention to changing the origitel$& we ran a second round of relabeling
(Round Il). Sinceb—aa changes were clearly the most salient from Round I, we dssxlithese changes
with the labeler, and then asked her to relabel additionalesations with attention to these changes. Thus,
we expected her to focus relatively more attentiofoeraain Round Il (although she was instructed also to
label any other glaring changes). We viewed Round Il as a wayptain an upper bound on the DA-specific

2In addition, many of thed—sv changes were in fact an indirect resulttef-aa changes for the following utterance.
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change rate, sinde—aa changes were the most frequently occurring changes adteniing, and since the
labeler was biased toward focusing attention on these @sarigpr Round Il, we used a completely separate
set of data from Round I, to avoid confounding the relabefimocedure. The overall distribution of DAs
was similar to that in the set used in Round I.

As shown in Table 3, the number of changes made in Round Il k@same (by coincidence) as in
Round I. However, since there were fewer total utterancdgaand I, the rate of change relative to total
DAs increased from Round | to Round Il. In Roundid}-aa changes greatly increased from Round I, both
relative to total DAs and relative to DA-specific priors. Aetsame time, other types of changes decreased
from Round | to Round 1.

The most important result from Round 1l is the ratelefaa changes relative to the prior for the
class. This value was about 10%, and is a reasonable estifnidte upper bound on DA changes for any
particular class from listening, since it is unlikely thaténing would affect other DAs more than it did
Backchannels, given both the predominancbk-efaa changes in Round |, and the fact that the labeler was
biased to attend tb—aa changes in Round Il. These results suggest that at least 9@% otterances in
any of our originally labeled DA classes are likely to be neatkvith the same DA label after listening, and
that for most other DAs this value should be considerablyéig Therefore, although our transcript-only
labels contained some errors, based on the results of titelelg experiments we felt that it was reasonable
to use the transcript-only labels as estimates of aftegriag labels.

Interlabeler reliability . Interlabeler reliability on our main (transcript-only@tsof annotations was
assessed using the Kappa statistic (Cohen, 1960; Siegek&I@a, 1988; Carletta, 1996), or the ratio of
the proportion of times that raters agree (corrected fonchaagreement) to the maximum proportion of
times that the rates could agree (corrected for chance mgmr®. Kappa computed for the rating of the
original 42 classes was 0.81, which is considered high fertyipe of task.Post hoagrouping of the ratings
using the seven main classes just described yielded a Kdipa5o

Training and Test Sets

We partitioned the available data into three subsets famitrg and testing. The three subsets were
not only disjoint but also shared no speakers. Traming set(TRN) contained 1794 conversation sides;
its acoustic waveforms were used to train decision treeslewhe corresponding transcripts served as
training data for the statistical language models used irdvbased DA classification. Theeld-out set
(HLD) contained 436 conversation sides; it was used to testgerformance as well as DA classification
based on true words. A much smalligvelopment test s@DEV) consisting of 38 matched conversation
sides (19 conversations) was used to perform experimeviitving automatic word recognition, as well as
corresponding experiments based on prosody and true Worde TRN and HLD sets contained single,
unmatched conversation sides, but since no discoursextoves required for the studies reported here this
was not a problem. The three corpus subsets with their Statere summarized in Table 4.

3The DEV set was so called because of its role in the WS97 pimjbat focused on word recognition.
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Table 4: Summary of Corpus Training and Test Subsets

| Name| Description | Sides| Utterances Words |
TRN | Training set 1794 166K | 1.2M
HLD | Held-out test set 436 32K | 231K
DEV | Developmenttestset 19 4K 29K

Dialog Act Segmentation

In a fully automated system, DA classification presuppdseability to also find the boundaries between
utterances. In spite of extensive work on this problem ienégears, to our knowledge there are currently
no systems that reliably perform utterance segmentatiosgontaneous conversational speech when the
true words are not known. For this work we did not want to camid the issue of DA classification with
DA segmentation; thus, we used utterance boundaries mémkéaiman labelers according to the LDC
annotation guidelines described in Meteer et al. (1995)kékp results using different knowledge sources
comparable, these DA boundaries were also made expligiiggoses of speech recognition and language
modeling?

The utterance boundaries were marked between words. Toastithe locations of the boundaries
in the speech waveforms, a forced alignment of the acoustining data was merged with the training
transcriptions containing the utterance boundary animotatmarked by the LDC. This yielded word and
pause times of the training data with respect to the acossgjmentations. By using these word times along
with the linguistic segmentation marks, the start and emesifor linguistic segments were found.

This technigue was not perfect, however. One problem igtlaay of the words included in the linguistic
transcription had been excised from the acoustic trainatg.dSome speech segments were considered not
useful for acoustic training and thus had been excludedelltely. In addition, the alignment program
was allowed to skip words at the beginning and end of an amoseyment if there was insufficient acoustic
evidence for the word. This caused misalignments in theesthraf highly reduced pronunciations or for
low-energy speech, both of which are frequent in SwitchtoaErrors in the boundary times for DAs
crucially affect the prosodic analyses, since prosoditufes are extracted assuming that the boundaries
are reasonably correct. Incorrect estimates affect tharacg of global features (e.g., DA duration) and
may render local features meaningless (e.g., FO measure atupposed end of the utterance). Since
features for DAs with known problematic end estimates wdadlanisleading in the prosodic analyses, they
were omitted from all of our TRN and HLD data. The time bounespf the DEV test set, however, were
carefully handmarked for other purposes, so we were ablséanact values for this test set. Overall, we
were missing 30% of the utterances in the TRN and HLD setsusecaf problems with time boundaries;
this figure was higher for particular utterance types, egfigdor short utterances such as backchannels,
for which as much as 45% of the utterances were affected. , TheiOEV set was mismatched with respect
to the TRN and HLD sets in terms of the percentage of uttesaaffected by problematic segmentations.

“Note that the very notion of utterances and utterance baigsia a matter of debate and subjectto research (Traum &nidae
1996). We adopted a pragmatic approach by choosing a pséirexsegmentation for this rather large corpus.
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Prosodic Features

The prosodic database included a variety of features thatidoe computed automatically without
reference to word information. In particular, we attemptedhave good coverage of features and feature
extraction regions that were expected to play a role in theetfocused analyses mentioned in the Introduc-
tion: detection of Questions, Agreements, and Incompléterahces. Based on the literature on question
intonation (Vaissiere, 1983; Haan et al., 1997a, 1997b)expected Questions to show rising FO at the end
of the utterance, particularly for Declarative and Yes-Nae&ions. Thus, FO should be a helpful cue for
distinguishing Questions from other long DAs such as Statémn Many Incomplete Utterances give the
impression of being cut off prematurely, so the prosodicavélr at the end of such an utterance may be
similar to that of the middle of a normal utterance. Spedifjcanergy can be expected to be higher at the
end of an abandoned utterance compared to energy at the ermbofpleted one. In addition, unlike most
completed utterances, the FO contour at the end of an Inaepkterance is neither rising nor falling. We
expected Backchannels to differ from Agreements by the arnafueffort used in speaking. Backchannels
function to acknowledge another speaker’s contributiorthaut taking the floor, whereas Agreements
assert an opinion. We therefore expected Agreements toligher energy, greater FO movement, and a
higher likelihood of accents and boundary tones than Baakcéls.

Duration features. Duration was expected to be a good cue for discriminatiateBtents and Questions
from DAs functioning to manage the dialog (e.g., Backch#s)nealthough this difference is also encoded
to some extent in the language model. In addition to the ouralf the utterance in seconds, we included
features correlated with utterance duration, but basedamd counts conditioned on the value of other
feature types, as shown in Table 5.

Table 5: Duration Features

| Feature Name | Description
Duration
ling_dur duration of utterance
Duration-pause
ling_dur minusminlOpause ling_dur minus sum of duration of all pauses of at least 100 ms
contspeechframes number of frames in continuous speech regionsl(s, ignoring

pauses< 10 frames)
Duration-correlated FO-based counts

fO_num.utt number of frames with FO values in utterance (pralicing=1)

fO_num.goodutt number of FO values above fin (fO_min = .75*f0_mode)

regr.dur duration of FO regression line (from start to end point, urdgs
voiceless frames)

regr-numframes number of points used in fitting FO regression line (excludese-
less frames)

numaccutt number of accents in utterance from event recognizer

numboundutt number of boundaries in utterance from event recognizer

The duration-pause set of features computes durationrilgmpause regions. Such features may be
useful if pauses are unrelated to DA classification. (If pawee relevant, however, this should be captured
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by the pause features described in the next section.) TheB6d count features reflect either the number of
frames or recognized intonational events (accents or bamigg) based on FO information (see FO features,
below). The first four of these features capture time in spepky using knowledge about the presence
and location of voiced frames, which may be more robust fordatia than relying on pause locations from
the alignments. The last two features are intended to caphe amount of information in the utterance,
by counting accents and phrase boundaries. Duration-izedaversions of many of these features are
included under their respective feature type in the follogwsections.

Pause features To address the possibility that hesitation could providei@ to the type of DA, we
included features intended to reflect the degree of pauagwhjown in Table 6. To obtain pause locations we
used information available from forced alignments; howgtres was only for convenience (the alignment
information was included in our database for other purppdesrinciple, pause locations can be detected
by current recognizers with high accuracy without knowlkedd the words. Pauses with durations below
100 milliseconds (10 frames) were excluded since they ame likely to reflect segmental information than
hesitation. Features were normalized to remove the inherelation with utterance duration. The last
feature provides a more global measure of pause behavtuidimg pauses during which the other speaker
was talking. The measure counts only those speech framesrimerin regions of at least 1 second of
continuous speaking. The window was run over the conversdliy channel), writing out a binary value
for each frame; the feature was then computed based on thesravithin a particular DA.

Table 6: Pause Features

| Feature Name Description \
minl0pauseountn_ldur number of pauses of at least 10 frames (100 ms) in uttejnce,

normalized by duration of utterance
total min10pausedur_n_Idur | sum of duration of all pauses of at least 10 frames in utteranc
normalized by duration of utterance
meanminl0pauselur_utt mean pause duration for pauses of at least 10 frames innteera
meanminlOpauselurncv | mean pause duration for pauses of at least 10 frames innttgra
normalized by same in convside

contspeechframesn number of frames in continuous speech regiagnsl(s, ignoring
pauses< 10 frames) normalized by duration of utterance

FO features FO features, shown in Table 7, included both raw valuesa{pbt from ESPS/Waves+)
and values from a linear regression (least-squares fit)gdrime-level FO values.
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Table 7: FO Features

Feature Name

Description

fO_meangood.utt
fO_meann

fO_meanratio
fO_meanzcv

fO_sd goodutt
fO_sdn
fO_maxn
fO_maxuutt

max f0_smooth
fO_min_utt

mean of FO values included in flum goodutt

difference between mean FO of utterance and mean FO of cm
for FO values> fO_min
ratio of FO mean in utterance to FO mean in convside

mean of good FO values in utterance normalized by mean al
dev of good FO values in convside
st dev of FO values included in fium good utt

log ratio of st dev of FO values in utterance and in convside
log ratio of max FO values in utterance and in convside
maximum FO value in utterance (no smoothing)

maximum FO in utterance after median smoothing of FO contg

VSi

nd st

ur

minimum FO value in utterance (no smoothing); can be below

fO_min

fO_percentgood utt

ratio of number of good FO values to number of FO values i

utterance

utt grad

pengrad

endgrad
endfO0_mean
penf0_mean
absfO_diff
rel_fO_diff
normendf0_mean

norm penf0_mean

least-squares all-points regression over utterance
least-squares all-points regression over penultimaiemeg
least-squares all-points regression over end region

mean FO in end region

mean FO in penultimate region

difference between mean FO of end and penultimate regions
ratio of FO of end and penultimate regions

mean FO in end region normalized by mean and st dev of FO from

convside _ _ .
mean FO in penultimate region normalized by mean and st
from convside

dev

norm fO_diff difference between mean FO of end and penultimate regiams,
malized by mean and st dev of FO from convside

regr._startfO first FO value of contour, determined by regression line ysial

finalb_amp amplitude of final boundary (if present), from event recagni

finalb_label label of final boundary (if present), from event recognizer

finalb_tilt tilt of final boundary (if present), from event recognizer

numaccn_dur
numaccn_rdur
numboundn_ldur

numboundn_rdur

number of accents in utterance from event recognizer, niazath
by duration of utterance

number of accents in utterance from event recognizer, niazath
by duration of FO regression line

number of boundaries in utterance from event recognizemab
ized by duration of utterance

number of boundaries in utterance from event recognizemab
ized by duration of FOQ regression line
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To capture overall pitch range, mean FO values were cakxlaver all voiced frames in an utterance.
To normalize differences in FO range over speakers, padatiguacross genders, utterance-level values
were normalized with respect to the mean and standard dmviat FO values measured over the whole
conversation side. FO difference values were normalized ¢og scale. The standard deviation in FO
over an utterance was computed as a possible measure ofgixpreess over the utterance. Minimum and



maximum FO values, calculated after median smoothing toieéte spurious values, were also included
for this purpose.

We included parallel measures that used only “good” FO \sloevalues above a threshold (f@in)
estimated as the bottom of a speaker’s natural FO range.OTiméf can be calculated in two ways. For both
methods, a smoothed histogram of all the calculated FO sdtirea conversation side is used to find the FO
mode. The true fnin comes from the minimum FO value to the left of this modecd&ese the histogram
can be flat or not sufficiently smoothed, the algorithm cowddidmled into choosing a value greater than
the true minimum. A simpler way to estimate therfin takes advantage of the fact that values below the
minimum typically result from pitch halving. Thus, a goodiesate of fOmin is to take the point at 0.75
times the FO value at the mode of the histogram. This measuselg approximates the true fdin, and is
more robust for use with the Switchboard d&t@he percentage of “good” FO values was also included to
measure (inversely) the degree of creaky voice or vocal fry.

The rising/falling behavior of pitch contours is a good co#eir utterance type. We investigated several
ways to measure this behavior. To measure overall slopealeelated the gradient of a least-squares fit
regression line for the FO contour. While this gives an adégunmeasure for the overall gradient of the
utterance, it is not always a good indicator of the type ahg#&alling behavior in which we are most
interested. Rises at the end can be swamped by the dedfiradtibe preceding part of the contour, and
hence the overall gradient for a contour can be falling. Vgdfore marked two special regions at the end
of the contour, corresponding to the last 200 millisecorshgl(region) and the 200 milliseconds previous
to that (penultimate region). For each of these regions wasomed the mean FO and gradient, and used
the differences between these as features. The starting irathe regression line was also included as a
potential cue to FO register (the actual first value is praneéd measurement error).

In addition to these FO features, we included intonati@valnt features, or features intended to capture
local pitch accents and phrase boundaries. The event ésatugre obtained using the event recognizer
described in Taylor et al. (1997). The event detector useldiM approach to provide an intonational
segmentation of an utterance, which gives the locationdgaf pccents and boundary tones. When compared
to human intonation transcriptions of Switchbodrthis system correctly identifies 64.9% of events, but
has a high false alarm rate, resulting in an accuracy of 31.7%

Energy features We included two types of energy features, as shown in Tabl&!& first set of
features was computed based on standard RMS energy. Bemawudata were recorded from telephone
handsets with various noise sources (background noiselbasaghannel noise), we also included a signal-
to-noise ratio (SNR) feature to try to capture the energgnftbe speaker. SNR values were calculated using
the SRI recognizer with a Switchboard-adapted front enduthieyer & Weintraub, 1994, 1995). Values
were calculated over the entire conversation side, ancetaracted from regions of speech were used to
find a cumulative distribution function (CDF) for the consation. The frame-level SNR values were then
represented by their CDF value to normalize the SNR valuesaspeakers and conversations.

5A more linguistically motivated measure of the maximum FOuldobe to take the FO value at the RMS maximum of the
sonorant portion of the nuclear-accented syllable in tiragd(e.g., Hirschberg & Nakatani, 1996). However, ourseghisticated
measure of pitch range was used as an approximation becaudid wot have information about the location of accents cagd
boundaries available.

5We thank David Talkin for suggesting this method.

"As labeled by the team of students at Edinburgh; see Ackryahents.
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Table 8: Energy Features

Feature Name Description
utt nrg.mean | mean RMS energy in utterance

absnrg diff difference between mean RMS energy of end and penultimate
regions

endnrg_mean| mean RMS energy in end region
normnrg_diff | normalized difference between mean RMS energy of end |and
penultimate regions

rel_nrg_diff ratio of mean RMS energy of end and penultimate regions
snrmeanutt | mean SNR (CDF value) in utterance

snrsd.utt st dev of SNR values (CDF values) in utterance

snrdiff _utt girl:fgerence between maximum SNR and minimum SNR in utter-

snrmin_utt st dev of SNR values (CDF values) in utterance
snrmaxutt maximum SNR value (CDF values) in utterance

Speaking rate (enrate) features We were also interested in overall speaking rate. Howewer,
needed a measure that could be run directly on the signale siar features could not rely on word
information. For this purpose, we experimented with a dignacessing measure, “enrate” (Morgan et al.,
1997), which estimates a syllable-like rate by looking ateéhergy in the speech signal after preprocessing.
Studies comparing enrate values to values based on hamst#itzed syllable rates for Switchboard show a
correlation of about .46 for the version of the software usetthie present work.

The measure can be run over the entire signal, but becausestailarge window, values are less
meaningful if significant pause time is included in the windoWe calculated frame-level values over
a 2-second speech interval. The enrate value was calcuiated25-millisecond frame window with a
window step size of 200 milliseconds. Output values wereuwated every 10 milliseconds to correspond
to other measurements. We included pauses of less than idsand ignored speech regions of less than 1
second, where pause locations were determined as deseabest.

If the end of a speech segment was approaching, meanindg&é2aidecond window could not be filled,
no values were written out. The enrate values corresporigdipgurticular utterances were then extracted
from the conversation-side values. This way, if utteraneese adjacent, information from surrounding
speech regions could be used to get enrate values for thertdegs and ends of utterances that normally
would not fill the 2-second speech window. Features comporadse in tree-building are listed in Table 9.

8We thank Nelson Morgan, Eric Fosler-Lussier, and Nikki Miadori for allowing us to use the software and note that the
measure has since been improved (mrate), with correlatiamsasing to about .67 as described in Morgan and Fossiesier
(1998).
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Table 9: Speaking Rate Features

Feature Name Description

meanenr_utt mean of enrate values in utterance

meanenr utt norm | meanenr.utt normalized by mean enrate in conversation side
stdevenr.utt st dev of enrate values in utterance

min_enr.utt minimum enrate value in utterance

max.enr.utt maximum enrate value in utterance

Gender features As a way to check the effectiveness of our FO normalizatremsicluded the gender
of the speaker. It is also possible that features could bd dgkerently by men and women, even after
appropriate normalization for pitch range differences. a® included the gender of the listener to check
for a possible sociolinguistic interaction between thevessational dyad and the ways in which speakers
employ different prosodic features.

Decision Tree Classifiers

For our prosodic classifiers, we used CART-style decisieadr(Breiman et al., 1983). Decision trees
can be trained to perform classification using a combinaidfatiscrete and continuous features, and can be
inspected to gain an understanding of the role of differeatures and feature combinations.

We downsampled our data (in both training and testing) t@ioban equal number of datapoints in
each class. Although an inherent drawback is a loss of powéne analyses due to fewer datapoints,
downsampling was warranted for two reasons. First, as nedglikr, the distribution of frequencies for
our DA classes was severely skewed. Because decision plegcsording to an entropy criterion, large
differences in class size wash out any effect of the feattiresiselves, causing the tree not to split. By
downsampling to equal class priors we assure maximum satysib the features. A second motivation for
downsampling was that by training our classifiers on a unmifdistribution of DAs, we facilitated integration
with other knowledge sources (see section on Integratiéijer expanding the tree with questions, the
training algorithm used a tenfold cross-validation pragedto avoid overfitting the training data. Leaf
nodes were successively pruned if they failed to reduceritregy in the cross-validation procedure.

We report tree performance using two metriascuracyand efficiency Accuracy is the number of
correct classifications divided by the total number of saaplAccuracy is based on hard decisions; the
classification is that class with the highest posterior phility. Because we downsampled to equal class
priors, the chance performance for any tree with N class&é9@®N%. For any particular accuracy level,
there is a trade-off between recall and false alarms. Ingbhbworld there may well be different costs to a
false positive versus a false negative in detecting a paaticitterance type. In the absence of any model of
how such costs would be assigned for our data, we reporttsessguming equal costs to these errors.

Efficiency measures the relative reduction in entropy betvitbe prior class distribution and the posterior
distribution predicted by the tree. Two trees may have theeselassification accuracy, but the tree that more
closely approximates the probability distributions of thea (even if there is no effect on decisions) has
higher efficiency (lower entropy). Although accuracy arfitefncy are typically correlated, the relationship
between the measures is not strictly monotonic since affigitboks at probability distributions and accuracy
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looks only at decisions.

Dialog Act Classification from Word Sequences

Two methods were used for classification of DAs from word infation. For experiments using the
correct worddV, we needed to compute the likelihoollsiV |U) for each DA or utterance typ#, i.e., the
probability with whichU' generates the word sequeri¢é The predicted DA type would then be the one
with maximum likelihood. To estimate these probabilitis,grouped the transcripts of the training corpus
by DA type, and trained a standard trigram language modabusackoff smoothing (Katz, 1987) for each
DA. This was done for the original 42 DA categories, yield#®yDA-specific language models. Next, for
experiments involving a DA class comprising several of the original DAS;, Uy, ..., U,, we combined
the DA likelihoods in a weighted manner:

P(W|C) = P(W|U)P(UL|C) + ...+ P(W|U,)P(U,|C)

Here, P(U4|C), ..., P(U,|C) are the relative frequencies of the various DAs within class

For experiments involving (necessarily imperfect) autdonaord recognition, we were given only the
acoustic informatiom. We therefore needed to compute acoustic likelihaBds|U ), i.e., the probability
that utterance typ& generates the acoustic manifestatibn In principle, this can be accomplished by
considering all possible word sequend€&sthat might have generated the acousticand summing over
them:

P(A|U) = > P(AIW)P(W|U)
w

Here P(W|U) is estimated by the same DA-specific language models asshefwdP ( A|1V ) is the acoustic
score of a speech recognizer, expressing how well the acalstervations match the word sequeice

In practice, however, we could only consider a finite numblepatential word hypothese®’; in our
experiments we generated the 2500 most likely word seqsdoceach utterance, and carried out the above
summation over only those sequences. The recognizer used si@te-of-the-art HTK large-vocabulary
recognizer, which nevertheless had a word error rate of 44%he test corpu$.

Integration of Knowledge Sources

To use multiple knowledge sources for DA classification, iprosodic information as well as other,
word-based evidence, we combined tree probabilities | F') and word-based likelihoodB8(W |U') mul-
tiplicatively. This approach can be justified as follows. eTltkelihood-based classifier approach dictates
choosing the DA with the highest likelihood based on bothghesodic featured” and the wordsV,
P(F,W|U). To make the computation tractable, we assumed, similaaydoT et al. (1998), that the
prosodic features are independent of the words once condii on the DA. We recognize, however, that
this assumption is a simplificatidfS. Our prosodic model averages over all examples of a parti@#Aa
it is “blind” to any differences in prosodic features thatrredate with word information. For example,
statements about a favorite sports team use different wbastsstatements about personal finance, and the
two different types of statements tend to differ prosodjcgd.g., in animation level as reflected by overall

®Note that the summation over multiple word hypotheses ifepable to the more straightforward approach of lookingrayo
the one best hypothesis and treating it as the actual wordiségurpose of DA classification.

Yutterance length is one feature for which this independassemption is clearly violated. Utterance length is regmésd by
a prosodic feature (utterance duration) as well as impfigitthe DA-specific language models. Finke et al. (1998)gasga way
to deal with this particular problem by conditioning the darmge models on utterance length.
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pitch range). In future work, such differences could patdiyt be captured by using more sophisticated
models designed to represent semantic or topic informatiam practical reasons, however, we consider
our prosodic models independent of the words once con@iti@m the DA, i.e.:

P(FE,W|U) = P(W|U)P(F|W,U)
P(W|U)P(F|U)
x P(W|U)P(U|F)

4

The last line is justified because, as noted earlier, weddhthe prosodic trees on downsampled data
or a uniform distribution of DA classes. According to Bayesw, the required likelihood( F'|U') equals
P(U|F)P(F)/P(U). The second factof’( '), is the same for all DA type&, and P(U ) is equalized by
the downsampling procedure. Hence, the probability eséthhy the treepP(U|}'), is proportional to the
likelihood P( F|U). Overall, this justifies multiplying®(W |U') and P(U | F).1t

RESULTS AND DISCUSSION

We first examine results of the prosodic model for a seven-glagsification involving all DAs. We
then look at results from a words-only analysis, to discqa@ential subtasks for which prosody could
be particularly helpful. The words-only analysis revediatteven if correct words are available, certain
DAs tend to be misclassified. We examine the potential rolpro$ody for three such subtasks: (1) the
detection of Questions, (2) the detection of Agreementd (3nthe detection of Incomplete Utterances. In
all analyses we seek to understand the relative importahdgferent features and feature types, as well
as to determine whether integrating prosodic informatidth & language model can improve classification
performance overall.

Seven-Way Classification

We applied the prosodic model first to a seven-way classibicaask for the full set of DAs: Statements,
Questions, Incomplete Utterances, Backchannels, Agnetm&ppreciations, and Other. Note that “Other”
is a catch-all class representing numerous heterogene@sstliat occurred infrequently in our data.
Therefore we do not expect this class to have consistenire=at As described in the Method section,
data were downsampled to equal class sizes to avoid confogmesults with information from prior
frequencies of each class. Because there are seven clahaesge accuracy for this task is 100/7% or
14.3%. For simplicity, we assumed equal cost to all decisioars, i.e., to all possible confusions among
the seven classes.

Atree builtusing the full database of features describélibegields a classification accuracy of 41.15%.
This gain in accuracy is highly significant by a binomial fgst. .0001. If we are interested in probability
distributions rather than decisions, we can look at theiefiy of the tree, or the relative reduction in

n practice we needed to adjust the dynamic ranges of the talmapility estimates by finding a suitable exponential ey
to make

P(E,W|U) < P(W|UYP(F|UY
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entropy over the prior distribution. By using the all-feisi prosodic tree for this seven-way classification,
we reduce the number of bits necessary to describe the diasslo datapoint by 16.8%.

The all-features tree is large (52 leaves), making it diffite interpret the tree directly. In such cases
we found it useful to summarize the overall contribution iifiedent features by using a measure of “feature
usage”, which is proportional to the number of times a featnas queried in classifying the datapoints.
The measure thus accounts for the position of the featuriednree: features used higher in the tree have
greater usage values than those lower in the tree since dhemore datapoints at the higher nodes. The
measure is normalized to sum to 1.0 for each tree. Table tugage by feature type.

Table 10: Feature Usage for Main Feature Types in Seven-Wassfiication

Feature | Usage

Type
Duration| 0.554
FO 0.126

Pause 0.121
Energy | 0.104
Enrate 0.094

Table 10 indicates that when all features are availableratidn-related feature is used in more than half
of the queries. Notably, gender features are not used dhalsupports the earlier hypothesis that, as long
as features are appropriately normalized, it is reasortaldeeate gender-independent prosodic models for
these data. A summary of individual feature usage, as shoWatile 11, reveals that the raw duration feature
(ling_dur)—which is a “free” measure in our work since we assumedtions of utterance boundaries—
accounted for only 14% of the queries in the tree; the remgiqueries of the 55% accounted for by duration
features were those associated with the computation ofrfi€Dpause-related information. Thus, the power
of duration for the seven-way classification comes largetynf measures involving computation of other
prosodic features. The most-queried feature, ragmn frames (the number of frames used in computing
the FO regression line), may be better than other duratiomsomes at capturing actual speech portions (as
opposed to silence or nonspeech sounds), and may be betteotter FO-constrained duration measures
(e.g., fQnumgoodutt) because of a more robust smoothing algorithm. We cam rad¢e that the high
overall rate of FO features given in Table 11 represents arsation over many different individual features.
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Table 11: Feature Usage for Seven-Way (all DAs) Classiboati

Feature | Feature Usage
Type

Duration | regr numframes 0.180
Duration | ling_dur 0.141
Pause contspeechframesutt n 0.121
Enrate | stdevenr.utt 0.081
Enrate | ling_durminusminlOpause 0.077
Pause contspeechframesutt 0.073
Energy | snrmaxutt 0.049
Energy | snrmeanutt 0.043
Duration | regr dur 0.041
FO fO_meanzcv 0.036
FO f0_meann 0.027
Duration | fO_num.goodutt 0.021
Duration | fO_num.utt 0.019
FO normendf0_mean 0.017
FO numaccn_rdur 0.016
FO fO_sd goodutt 0.015
Energy | meanenr.utt 0.009
FO fO_maxn 0.006
Energy | snrsdutt 0.006
Energy | rel_nrg_diff 0.005
Enrate | meanenrutt_norm 0.004
FO regr_startfO 0.003
FO finalb_amp 0.003

Since we were also interested in feature importance, iddalitrees were built using the leave-one-out
method, in which the feature listis systematically modiied a new tree is built for each subset of allowable
features. It was not feasible to leave out individual feagunecause of the large set of features used; we
therefore left out groups of features corresponding to #eure types as defined in the Method section.
We also included a matched set of “leave-one-in” trees fohes the feature types (i.e., trees for which
all otherfeature types were removed) and a single leave-two-in ne#t, post ho¢ which made available
the two feature types with highest accuracy from the leave-io analyses. Note that the defined feature
lists specify the featuresvailablefor use in building a particular prosodic model; whether ot features
areactuallyused is determined by the tree learning algorithm and dependhe data. Figure 1 shows
results for the set of leave-one-out and leave-one-in tueils the all-features tree provided for comparison.
The upper graph indicates accuracy values; the lower grapWsefficiency values. Each bar indicates a
separate tree.
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Figure 1: Performance of prosodic trees using differentuieasets for the classification of all seven

DAs (Statements, Questions, Incomplete Utterances, Backels, Agreements, Appreciations, Other).
N (number of samples in each class)=391. Chance accura@psl4Gray bars=exclude feature type;

white bars=include only feature type. Dur=Duration, Paaiz$e, FO=Fundamental frequency, Nrg=Energy,
Enr=Enrate (speaking rate), Gen=Gender features.

We first tested whether there was any significant loss in hgpoit a feature type, by doing pairwise
comparisons between the all-features tree and each ofdkie-tene-out tree¥. Although trees with more
features to choose from typically perform better than theike fewer features, additional features can hurt
performance. The greedy tree-growing algorithm does nuk khead to determine the overall best feature
set, but rather seeks to maximize entropy reduction locllgach split. This limitation of decision trees
is another motivation for conducting the leave-one-outys®s. Since we cannot predict the direction of
change for different feature sets, comparisons on tredtsasare conducted using two-tailed tests.

Results showed that the only two feature types whose rencausled a significant reduction in accuracy
were durationg < 0.0001) and enrates(< 0.05). The enrate-only tree, however, yields accuracies on pa
with other feature types whose removal did not affect oveefformance; this suggests that the contribution
of enrate in the overall tree may be through interactionfwther features. All of the leave-one-in trees
were significantly less accurate than the all-features tAdéhough the tree using only duration achieved
an accuracy close to that of the all-features tree, it wdkssgjnificantly less accurate by a Sign test
(r < 0.01). Adding FO features (the next-best feature set in theeleae-in trees) did not significantly
improve accuracy over the duration-only tree alone, suijggeghat for this task the two feature types are
highly correlated. Nevertheless, for each of the leaveiareces, all feature types except gender yielded
accuracies significantly above chance by a binomial test (0001 for the first five trees). The gender-only
tree was slightly better than chance by either a one- or ataved test®> However, this was most likely

1270 test whether one tree (A) was significantly better thartlzer(B), we counted the number of test instances on whichdA an
B differed, and on how many instances A was correct but B wé&swmthen applied a Sign test to these counts.

Bt is not clear here whether a one- or two-tailed test is mqmerepriate. Trees typically should not do worse than chance
however, because they minimize entropy and not accuraegdhuracy can fall slightly below chance.
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due to a difference in gender representation across classes

Taken together, these results suggest that there is coaklderedundancy in the features for DA
classification, since removing one feature type at a timbefothan duration) makes little difference
to accuracy. Results also suggest, however, that featweesia perfectly correlated; there must be
considerable interaction among features in classifyingsDBecause trees using only individual feature
types are significantly less accurate than the all-featinees

Finally, duration is clearly of primary importance to thiassification. This is not surprising, as the task
involves a seven-way classification including longer @bees (such as Statements) and very brief ones
(such as Backchannels like “uh-huh”). Two questions offerrtinterest regarding duration, however, are
(2) will a prosody model that uses mostly duration add amghd a language model (in which duration
is implicitly encoded), and (2) is duration useful for othasks involving classification of DAs similar in
length? Both questions are addressed in the following aealy

As just discussed, the all-features tree (as well as othehsding only subsets of feature types) provides
significant information for the seven-way classificatioskta Thus, if one were to use only prosodic
information (no words or context), this is the level of penfmnce resulting for the case of equal class
frequencies. To explore whether the prosodic informationl@d be of use when lexical information is
also available, we integrated the tree probabilities wkhlihoods from our DA-specific trigram language
models built from the same data. For simplicity, integmatiesults are reported only for the all-features tree
in this and all further analyses, although as noted eatisri$ not guaranteed to be the optimal tree.

Since our trees were trained with uniform class priors, walsimed tree probabilitie®(U| F') with the
word-based likelihood® (1|7 ) multiplicatively, as described in the Integration secttén

The integration was performed separately for each of ourtest sets (HLD and DEV), and within
the DEV set for both transcribed and recognized words. Reswe shown in Table 12. Classification
performance is shown for each of the individual classifiassyell as for the optimized combined classifier.

Table 12: Accuracy of Individual and Combined Models for &eWay Classification

Knowledge HLD Set | DEV Set DEV Set
Source true words| true words| N-best output
samples 2737 287 287
chance (%) 14.29 14.29 14.29
tree (%) 41.15 38.03 38.03
words (%) 67.61 70.30 58.77
words+tree (%)  69.98 71.14 60.12

As shown, for all three analyses, adding information from titee to the word-based model improved
classification accuracy. Although the gain appears modeabsolute terms, for the HLD test set it was
highly significant by a Sign tesf, » < .001. For the smaller DEV test set, the improvements did not

1The relative weight assigned to the prosodic and the woddilikods was optimized on the test set due to lack of an additi
held-out data set. Although in principle this could biasutess we found empirically that similar performance is abél using a
range of weighting values; this is not surprising since anjingle parameter is estimated.

150One-tailed, because model integration assures no lossinaay.
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reach significance; however, the pattern of results suggdkat this is likely to be due to the small sample
size. Itis also the case that the tree model does not perfsnwedl for the DEV as the HLD set. This is
not attributable to small sample size, but rather to a mismbetween the DEV set and the training data
involving how data were segmented, as noted in the MethatibsecThe mismatch in particular affects
duration features, which were important in these analysedisctussed earlier. Nevertheless, word-model
results are lower for N-best than for true words in the DEVadathile by definition the tree results stay the
same. We see that accordingly, integration provides afdavgefor the recognized than for the true words.
Thus, we would expect that results for recognized wordsHeHLD set (if they could be obtained) should
show an even larger win than the win observed for the true wiordhat set.

These results provide an answer to one of the questions pasiégt: does prosody provide an advantage
over words if the prosody model uses mainly duration? Thelteedicate that the answer is yes. Although
the number of words in an utterance is highly correlated wlitihation, and word counts are represented
implicitly by the probability of the end-of-utterance markin a language model, a duration-based tree
model still provides added benefit over words alone. Oneoreasay be that duration (reflected by the
various features we included) is simply a better predictddA than is word count. Another independent
possibility is that the benefit from the tree model comes fitsability to threshold feature values directly
and iteratively.

Dialog Act Confusions Based on Word Information

Next we explored additional tasks for which prosody couttiA classification. Since our trees allow
N-ary classification, the logical search space of poss#skd was too large to explore systematically. We
therefore looked to the language model to guide us in idgngfparticular tasks of interest. Specifically,
we were interested in DAs that tended to be misclassified givem knowledge of the true words. We
examined the pattern of confusions made when our seven DA elassified using the language model
alone. Results are shown in Figure 2. Each subplot repeseatdata for one actual DR.Bars reflect
the normalized rate at which the actual DA was classified els eathe seven possible DAs, in each of the
three test conditions (HLD, DEV/true, and DEV/N-best).

8Because of the heterogeneous makeup of the “Other” DA chessyere noper seinterested in its pattern of confusions, and
hence the graph for that data is not shown.
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Figure 2: Classification of DAs based on word trigrams only
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As shown, classification is excellent for the Statementschagth few misclassifications even when only
the recognized words are us¥dFor the remaining DAs, however, misclassifications occaoatiderable
rates*® Classification of Questionsis a case in point: even withwagls, Questions are often misclassified
as Statements (but not vice versa), and this pattern is exaiggl when testing on recognized as opposed
to true words. The asymmetry is partially attributable te finesence of declarative Questions. The effect
associated with recognized words appears to reflect a higbfeissed initial “do” in our recognition output,
as discovered in independent error analyses (Jurafsky,et388b). For both Statements and Questions,
however, there is little misclassification involving therraining classes. This probably reflects the length
distinction as well as the fact that most of the propositi@eatent in our corpus occurred in Statements
and Questions, whereas other DAs generally served to mahag®mmmunication—a distinction likely to
be reflected in the words. Thus, our first subtask was to exathirole of prosody in the classification of
Statements and Questions. A second problem visible in €igus the detection of Incomplete Utterances.
Even with true words, classification of these DAs is at only0%6 accuracy. Knowing whether or not a
DA is complete would be particularly useful for both langeagodeling and understanding. Since the
misclassifications are distributed over the set of DAs, andeslogically any DA can have an incomplete
counterpart, our second subtask was to classify a DA asr@itb@mplete or not-incomplete (all other DAS).
A third notable pattern of confusions involves Backchaarmeld explicit Agreements. This was an expected
difficult discrimination as discussed earlier, since the thasses share words such as “yeah” and “right”.
In this case, the confusions are considerable in both dbrext

Subtask 1: Detection of Questions

As illustrated in the previous section, Questions in ouposrwere often misclassified as Statements
based on words alone. Based on the literature, we hypo#tetiat prosodic features, particularly those
capturing the final FO rise typical of some Question typesnglih, could play a role in reducing the rate
of misclassifications. To investigate the hypothesis, wilt &iseries of classifiers using only Question and
Statement data. We first examined results for an all-featiee, shown in Figure 3. Each node displays the
name of the majority class, as well as the posterior proltglof the classes (in the class order indicated in
the top node). Branches are labeled with the name of therteanhd threshold value determining the split.
The tree yields an accuracy of 74.21%, which is significaallgve the chance level of 50% by a binomial
test,p < .0001; the tree reduces the number of bits necessary to dedte class of each datapoint by
20.9%.

The high classification rate for Statements by word infofotatvas a prime motivation for downsampling our data in otder
examine the inherent contribution of prosody, since aschitéhe Method section, Statements make up most of the dakésin
corpus.

8exact classification accuracy values for the various DAswhia Figure 2 are provided in the text as needed for the skbtas
examined, i.e. under “words” in Tables 15, 17, and 18.
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Figure 3: Decision tree for the classification of StateméB)sand Questions (Q)

Feature importance The feature usage of the tree is summarized in Table 13. Adigied, FO
features help differentiate Questions from Statementjrathe expected direction (Questions have higher
FO means and higher end gradients than Statements). Whatavadvious at the outset is the extent
to which other features also cue this distinction. In thefeditures tree, FO features comprise only about
28% of the total queries. Two other features, rdgr and conispeechfirames, are each queried more often
than the FO features together. Questions are shorter itid@om starting to ending voiced frame) than
Statements. They also have a lower percentage of framesntmaous speech regions than Statements.
Further inspection suggests that the pause feature in #sis tand also most likely for the seven-way
classification discussed earlier) indirectly capturesimfation about turn boundaries surrounding the DA
of interest. Since our speakers were recorded on diffefemtcels, the end of one speaker’s turn is often
associated with the onset of a long pause (during which therapeaker is talking). Furthermore, long
pauses reduce the frame count for the continuous-speactefr feature enrate measure because of the
windowing described earlier. Therefore, this measuregtslthe timing of continuous speech spurts across
speakers, and is thus different in nature from the othergoéaeatures that look only inside an utterance.
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Table 13: Feature Usage for Classification of Questions éaigiBents

Feature | Feature Usage
Type

Duration | regr dur 0.332
Pause contspeechframesn | 0.323
FO f0_meann 0.168
FO fO_meanzcv 0.088
Enrate | stdevenr.utt 0.065
FO endgrad 0.024

To further examine the role of features, we built additiomeés using partial feature sets. Results are
summarized in Figure 4. As suggested by the leave-one-ees tthere is no significant effect on accuracy
when any one of the feature types is removed. Although weiqtestithat Questions should differ from
Statements mainly by intonation, results indicate thaga with no FO features achieves the same accuracy
as a tree with all features for the present task. Removall giaaise features, which resulted in the largest
drop in accuracy, yields a tree with an accuracy of 73.43%chvis not significantly different from that of
the all-features treen(= .2111, n.s.). Thus, if any feature type is removed, otheufedlypes compensate
to provide roughly the same overall accuracy. However, itasthe case that the main features used are
perfectly correlated, with one substituting for anothaatthas been removed. Inspection of the leave-one-
out tree reveals that upon removal of a feature type, newresit(features, and feature types, that never
appeared in the all-features tree) are used. Thus, therbighadegree of redundancy in the features that
differentiate Questions and Statements, but the relatipresnong these features and the allowable feature
sets for tree building is complex.
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Figure 4: Performance of prosodic trees using differentui@asets for the classification of Statements
and Questions. N for each class=926. Chance accuracy = 50%. Gray bars=exdkature type;
white bars=include only feature type. Dur=Duration, Paaizg®e, FO=Fundamental frequency, Nrg=Energy,
Enr=Enrate (speaking rate), Gen=Gender features.

Inspection of the leave-one-in tree results in Figure 4datlis, not surprisingly, that the feature types
most useful in the all-features analyses (duration andg)atislid the highest accuracies for the leave-one-in
analyses (all of which are significantly above chanee; .0001). It is interesting, however, that enrate,
which was used only minimally in the all-features tree,&Balassification at 68.09%, which is better than
that of the FO-only tree. Furthermore, the enrate-onlysifes is a mere shrub: as shown in Figure 5,
it splits only once, on amnnormalizedfeature that expresses simply the variability in enrater dlie
utterance. As noted in the Method section, enrate is exgeoteorrelate with speaking rate, although for
this work we were not able to investigate the nature of tHeti@nship. However, the result has interesting
potential implications. Theoretically, it suggests thas@lute speaking rate may be less important for DA
classification than variation in speaking rate over an attee; a theory of conversation should be able to
account for the lower variability in questions than in staéats. For applications, results suggest that the
inexpensive enrate measure could be used alone to helpgliggh these two types of DAs in a system in
which other feature types are not available.
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stdev_enr_utt <0.17445\ stdev_enr_utt >= 0.17445

S
0.384 0.616

Q
0.748 0.252

Figure 5: Decision tree for the classification of StateméBjsind Questions (Q), using only enrate features

We ran one further analysis on question classification. Tinenaas to determine the extent to which our
grouping of different kinds of questions into one classci#fd the features used in question classification.
As described in the Method section, our Question class deduYes-No Questions, Wh-questions, and
Declarative Questions. These different types of questamsexpected to differ in their intonational
characteristics (Quirk et al., 1985; Weber, 1993; Haan gt1#197a, 1997b). Yes-No Questions and
Declarative Questions typically involve a final FO rise;stlig particularly true for Declarative Questions
whose function is not conveyed syntactically. Wh-Questjam the other hand, often fall in FO, as do
Statements.

We broke down our Question class into the originally coded-Me Questions, Wh-Questions, and
Declarative Questions, and ran a four-way classificationgwith Statements. The resulting all-features
tree is shown in Figure 6, and a summary of the feature usggevaded in Table 14.
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Figure 6: Decision tree for the classification of StatemégBjs Yes-No Questions (QY), Wh-Questions

(QW), and Declarative Questions (QD)

Table 14: Feature Usage for Main Feature Types in Classditatf Yes-No Questions, Wh-Questions,

Declarative Questions, and Statements

Feature | Usage
Type

FO 0.432
Duration| 0.318
Pause 0.213
Enrate 0.037

The tree achieves an accuracy of 47.15%, a highly significeonease over chance accuracy (25%)
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by a binomial testp < .0001. Unlike the case for the grouped Question class, the quesied feature
type is now FO. Inspection of the tree reveals that the patéresults is consistent with the literature
on question intonation. Final rises (egdad, normfO_diff, and uttgrad) are associated with Yes-No and
Declarative Questions, but not with Wh-Questions. Wh-@uaas show a higher average FO (fideanzcv)
than Statements.

To further assess feature importance, we again built trées selectively removing feature types.
Results are shown in Figure 7.
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Figure 7: Performance of prosodic trees using differentuigasets for the classification of Statements,
Yes-No Questions, Wh-Questions, and Declarative Questiak for each class=123. Chance=25%.
Gray bars=exclude feature type; white bars=include onbtue type. Dur=Duration, Pau=Pause,
FO=Fundamental frequency, Nrg=Energy, Enr=Speaking Géa=Gender features.

In contrast to Figure 4, in which accuracy was unchanged moval of any single feature type, the
data in Figure 7 show a sharp reduction in accuracy when ROreaare removed. This result is highly
significant by a Sign tesp(< .001, two-tailed) despite the small amount of data in theyeses, resulting
from downsampling to the size of the least frequent questititlass. For all other feature types, there was
no significant reduction in accuracy when the feature type eenoved. Thus, FO plays an important role
in question detection, but because different kinds of qoesiare signaled in different ways intonationally,
combining questions into a single class as in the earlidyaisasmoothes over some of the distinctions. In
particular, the grouping tends to conceal the featuresceestsa with the final FO rise (probably because the
rise is averaged in with final falls).

Integration with language model To answer the question of whether prosody can aid Question
classification when word information is also availableetprobabilities were combined with likelihoods
from our DA-specific trigram language models, using an optiweighting factor. Results were computed
for the two test sets (HLD and DEV) and within the DEV set fotlbtvanscribed and recognized words.
The outcome is shown in Table 15.
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Table 15: Accuracy of Individual and Combined Models for Betection of Questions

Knowledge| HLD Set | DEV Set DEV Set
Source| true words| true words| N-best outpuf]
samples| 1852 266 266
chance (%), 50.00 50.00 50.00
tree (%)| 74.21 75.97 75.97
words (%)| 83.65 85.85 75.43
words+tree (%)  85.64 87.58 79.76

The prosodic tree model yielded accuracies significanttgbthan chance for both test seis{ .0001).
The tree alone was also more accurate than the recognizetbatame for this task. Integration yielded
consistent improvement over the words alone. The larger ldeDshowed a highly significant gain in
accuracy for the combined model over the words-only moglet, .001 by a Sign test. Significance tests
were not meaningful for the DEV set because of a lack of powergthe small sample size; however, the
pattern of results for the two sets is similar (the spreadésgst for the recognized words) and therefore
suggestive.

Subtask 2: Detection of Incomplete Utterances

A second problem area in the words-only analyses was thsifitadion of Incomplete Utterances.
Utterances labeled as incomplete in our work included tdiierent main phenomens:

Turn exits: (A) We have young children.
— (A) So...
(B) Yeah, that's tough then.
Other-interruptions: — (A) We eventually —
(B) Well you've got to start somewhere.
Self-interruptions: — (A) And they were definitely —
(repairs) (A) At halftime they were up by four.

Althoughthe three cases represent different phenomegyaati similar in that in each case the utterance
could have been completed (and coded as the relevant typajalsunot. An all-features tree built for the
classification of Incomplete Utterances and all other eassmbined (Non-Incomplete) yielded an accuracy
of 72.16% on the HLD test set, a highly significant improvetreuer chancep < .0001.

Feature analyses The all-features tree is complex and thus not shown, butifeaisage by feature
type is summarized in Table 16.

In addition, the class included a variety of utterance tygeamed “uninterpretable” because of premature cut-off.
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Table 16: Feature Usage for Main Feature Types in Detecfimtomplete Utterances and Non-Incomplete
Utterances

Feature | Usage
Type
Duration | 0.557
Energy | 0.182
Enrate 0.130
FO 0.087
Pause 0.044

As indicated, the most-queried feature for this analystkiistion. Not surprisingly, Incomplete Utter-
ances are shorter overall than complete ones; certainjyateby definition shorter than their completed
counterparts. However, duration cannot completely dfiéiate Incomplete from Non-Incomplete utter-
ances, because inherently short DAs (e.g., Backchanngigefents) are also present in the data. For
these cases, other features such as energy and enrate play a r

Results for trees run after features were selectively leftame shown in Figure 8. Removal of duration
features resulted in a significant loss in accuracy, to 88,63< .0001. Removal of any of the other feature
types, however, did not significantly affect performanceurtfrermore, a tree built using only duration
features yielded an accuracy of 71.28%, which was not sagmifly less accurate than the all-features tree.
These results clearly indicate that duration features aneguy for this task. Nevertheless, good accuracy
could be achieved using other feature types alone; for @distexcept the gender-only tree, accuracy was
significantly above chance, < .0001. Particularly noteworthy is the energy-only tree, etachieved an
accuracy of 68.97%. Typically, utterances fall to a low gyeralue when close to completion. However,
when speakers stop mid-stream, this fall has not yet oatuaed thus the energy stays unusually high.
Inspection of the energy-only tree revealed that over 75%efqueries involved SNR rather than RMS
features, suggesting that at least for telephone speeslaritcial to use a feature that can capture the energy
from the speaker over the noise floor.
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Figure 8: Performance of prosodic trees using differentuieasets for the detection of Incomplete Ut-
terances from all other typesN for each class=1323. Chance=50%. Gray bars=exclude &#atpe;
white bars=include only feature type. Dur=Duration, Paaiz$e, FO=Fundamental frequency, Nrg=Energy,
Enr=Speaking rate, Gen=Gender features.

Integration with language model We again integrated the all-features tree with a DA-speleifiguage
model to determine whether prosody could aid classificatwéh word information present. Results are
presented in Table 17. Like the earlier analyses, intemmatnproves performance over the words-only
model for all three test cases. Unlike earlier analyses gvew the relative improvement when true words
are used is minimal, and the effect is not significant foresitihe HLD/true-words or the DEV/true-words
data. However, the relative improvement for the DEV/N-lmaste is much larger. The effect is just below
the significance threshold for this small dataget(.067), but would be expected, based on the pattern of
results in the previous analyses, to easily reach signideéor a set of data the size of the HLD set.

Table 17: Accuracy of Individual and Combined Models for Betection of Incomplete Utterances

Knowledge| HLD Set | DEV Set DEV Set
Source| true words| true words| N-best outpuf]
samples| 2646 366 366
chance (%), 50.00 50.00 50.00
tree (%) 72.16 72.01 72.01
words (%) 88.44 89.91 82.38
words+tree (%) 88.74 90.49 84.56

Results suggest that for this task, prosody is an importamiedge source when word recognition is not
perfect. When true words are available, however, it is negaicivhether adding prosody aids performance.

37



One factor underlying this pattern of results may be thattteée information is already accounted for in
the language model. Consistent with this possibility isféa that the tree uses mainly duration features,
which are indirectly represented in the language model byetid-of-sentence marker. On the other hand,
typically the word lengths of true and N-best lists are samiand our results differ for the two cases, so it
is unlikely that this could be the only factor.

Another possibility is that when true words are availabktain canonical Incomplete Utterances can
be detected with excellent accuracy. A likely candidateeheithe turn exit. Turn exits typically contain
one or two words from a small inventory of possibilities—migicoordinating conjunctions (*and”, “but”)
and fillers (“uh”, “um”). Similarly, because Switchboardrists mainly of first-person narratives, a typical
self-interrupted utterance in this corpus is a noncommfatae start such as “I—" or “I think—". Both the
turn exits and the noncommittal false starts are lexicaligccand are thus likely to be well captured by a
language model that has true words available.

A third possible reason for the lack of improvement over twards is that the prosodic model loses
sensitivity because it averages over phenomena with diff@haracteristics. False starts in our datatypically
involved a sudden cut-off, whereas for turn exits the prewpdpeech was often drawn out as in a hesitation.
As a preliminary means of investigating this possibility twilt a tree for Incomplete Utterances only, but
breaking down the class into those ending at turn boundémeasly turn exits and interrupted utterances)
versus those ending within a speaker’s turn (mainly falagst The resulting tree achieved high accuracy
(81.17%) and revealed that the two subclasses differed wradeatures. For example, false starts were
longer in duration, higher in energy, and had faster spepidates than the turn exit/other-interrupted class.
Thus, as we also saw for the case of Question detection, agicomodel for Incomplete Utterances is
probably best built on data that have been broken down tatsslubsets of phenomena whose prosodic
features pattern differently.

Subtask 3: Detection of Agreements

Our final subtask examined whether prosody could aid in thectien of explicit Agreements (e.g.,
“that’s exactly right”). As shown earlier, Agreements wenest often misclassified as Backchannels (e.g.,
“uh-huh”, “yeah”). Thus, our experiments focused on theidetion by including only these two DAs in the
trees. An all-features tree for this task classified the datla an accuracy of 68.77% (significantly above
chance by a binomial tegt,< .0001) and with an efficiency of 12.21%.

Feature analyses The all-features tree is shown in Figure 9. It uses durafgause, and energy
features. From inspection we see that Agreements are tensyslonger in duration and have higher
energy (as measured by mean SNR) than Backchannels. The feafisre in this case may play a role
similar to that discussed for the question classificatisk.t@&lthough Agreements and Backchannels were
about equally likely to occur turn-finally, Backchannelsresemore than three times as likely as Agreements
to be theonly DA in a turn. Thus, Backchannels were more often surroungatbinspeech regions (pauses
during which the other speaker was typically talking), ¢éagghe contspeechframes window to not be
filled at the edges of the DA and thereby lowering the valudeffeature.
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cont_speech_frames_n < 23.403, cont_speech_frames_n >= 23.403

B A
0.693 0.307 0.353 0.647

ling_dur < 0.485 | ling_dur >=0.485 ling_dur < 0.415

B A A
0.754 0.246 0.497 0.503 0.426 0.574

ling_dur_minus_min10pause < 0.56§ ling_dur_minus_min10pause >= 0.565

B
0.635 0.365

ling_dur >=0.415

A
0.2790.721

snr_mean_utt < 0.4774

snr_mean_utt >= 0.4774

Figure 9: Decision tree for the classification of Backchasii®) and Agreements (A)

Significance tests for the leave-one-out trees showed #madval of the main feature types used in
the all-features tree—that is, duration, pause, and ene@yres—resulted in a significant reduction in
classification accuracyp < .001,p < .05, andp < .05, respectively. Although significant, the reduction
was not large in absolute terms, as seen from the figure andligwels for significance. For the leave-one-in
trees, results were in all cases significantly lower thamh dhghe all-features trees; however, duration and
pause features alone each yielded accuracy rates neaf thatail-features tree. Although neither FO nor
enrate was used in the all-features tree, each individuabable to distinguish the DAs at rates significantly
better than chance (< .0001).
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Figure 10: Performance of prosodic trees using differeatLiee sets for the classification of Backchannels
and Agreements for each class=1260. Chance=50%. Gray bars=exclude é&gpe; white bars=include
only feature type. Dur=Duration, Pau=Pause, FO=Fundamhizaguency, Nrg=Energy, Enr=Speaking rate,
Gen=Gender features.

Integration with language model Integration results are reported in Table 18. Several mwasens
are noteworthy. First, integrating the tree with word madehproves performance considerably for all
three test sets. Sign tests run for the larger HLD set showegldy significant gain in accuracy by adding
prosody,p < .00001. The DEV set did not contain enough samples for sufigewer to reject the null
hypothesis, but showed the same pattern of results as theddt.r both true and recognized words, and
thus would be expected to reach significance for a larger sttaSecond, for this analysis, the prosodic
tree has better accuracy than the true words for the HLD detd;Tcomparison of the data for the different
test sets reveals an unusual pattern of results. Typicalig {n the previous analyses), accuracy results
for tree and word models were better for the HLD than for theVD¥et. As noted in the Method section,
HLD waveforms were segmented into DAs in the same manneoifsatically) as the training data, while
DEYV data were carefully segmented by hand. For this taskelhiewresults for both tree and word models
are considerably better for the DEV data, i.e., the misnedatase (see also Figure 2). This pattern can
be understood as follows. In the automatically segmenggdifig and HLD data, utterances with “bad”
estimated start or end times were thrown out of the analgsigjescribed in the Method section. The
DAs most affected by the bad time marks were very short DAspynad which were brief, single-word
Backchannels such as “yeah”. Thus, the data remaining itréiteing and HLD sets are biased toward
longer DAs, while the datain the DEV set retain the very HDAK. Since the present task pits Backchannels
against the longer Agreements, an increase in the pereentaiporter Backchannels (from training to test,
as occurs when testing on the DEV data) can only enhancerdisability for the prosodic trees as well as
for the language model.

40



Table 18: Accuracy of Individual and Combined Models for Betection of Agreements

Knowledge| HLD Set | DEV Set DEV Set
Source| true words| true words| N-best outpuf]
samples| 2520 214 214
chance (%), 50.00 50.00 50.00
tree (%) 68.77 72.88 72.88
words (%) 68.63 80.99 78.22
words+tree (%)  76.90 84.74 81.70

SUMMARY AND GENERAL DISCUSSION

Feature Importance

Across analyses we found that a variety of features werailfsefDA classification. Results from the
leave-one-out and leave-one-in trees showed that theam&derable redundancy in the features; typically
there is little loss when one feature type is removed. listargly, although canonical or predicted features
such as FO for questions are important, less predictablereesa(such as pause features for questions) show
similar or even greater influence on results.

Duration was found to be important not only in the seven-wagsification, which included both long
and short utterance types, but also for subtasks withinrgetength categories (e.g., Statements versus
Questions, Backchannels versus Agreements). Duratiomlsagound to be useful as an added knowledge
source to language model information, even though thelteingtords of an utterance is indirectly captured
by the language model. Across tasks, the most-queriedidoratures were not raw duration, but rather
duration-related measures that relied on the computafiother feature types.

FO information was found to be important, as expected, ferdhssification of Questions, particularly
when questions were broken down by type. However, it was@isse in many other classification tasks.
In general, the main contribution from FO features for all the Question task came from global features
(such as overall mean or gradient) rather than local feafisech as the penultimate and end features, or the
intonational event features). An interesting issue to @epln future work is whether this is a robustness
effect, or whether global features are inherently bettedfmtors of DAs than local features such as accents
and boundaries.

Energy features were particularly helpful for classifyingomplete Utterances, but also for the classi-
fication of Agreements and Backchannels. Analysis of thgeisd energy features over all tasks revealed
that SNR-based features were queried more than 4.8 timé®ass features based on the raw RMS energy.
Similarly, when the individual leave-one-in analyses foemy features were computed using only RMS
versus only SNR features, results were consistently biettehe SNR experiments. This suggests that for
telephone speech or speech data collected under noisytiomsglit is important to estimate the energy of
the speaker above the noise floor.

Enrate, the experimental speaking-rate feature from Morgaal. (1997), proved to be useful across
analyses in the following way. Although no task was signiftba affected when enrate features were
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removed, enrate systematically achieved good performasgsn used alone. It was always better alone
than at least one of the other main prosodic feature typaseald-urthermore, it provided remarkable
accuracy for the classification of Questions and Statemeiitisout any conversation-level normalization.
Thus, the measure could be a valuable feature to include ystem, particularly if other more costly
features cannot be computed.

Finally, across analyses, gender was not used in the trées stiggests that gender-dependent features
such as FO were sufficiently normalized to allow genderjoahelent modeling. Since many of the features
were normalized with respect to all values from a conveosaside, it is possible that men and women do
differ in the degree to which they use different prosodiddess (even after normalization for pitch range),
but that we cannot discern these differences here becaaakesg have been normalized individually.

Overall, the high degree of feature compensation foundsactasks suggests that automatic systems
could be successful using only a subset of the feature tygeaever, we also found that different feature
types are used to varying degrees in the different tasksitamdot straightforward at this point to predict
which features will be most important for a task. Therefdog best coverage on a variety of classification
tasks, it is desirable to have as many different featuresyvailable as possible.

Integration of Trees with Language Models

Not only were the prosodic trees able to classify the datatesrsignificantly above chance, but they also
provided a consistent advantage over word informationaldio summarize the integration experiments:
all tasks with the exception of the Incomplete Utteranck simwed a significant improvement over words
alone forthe HLD set. For the Incomplete Utterance taskiltefor the DEV set were marginally significant.
In all cases, the DEV set lacked power because of small sastggiemaking it difficult to reach significance
in the comparisons. However, the relative win on the DEV sa&$ wonsistently larger for the experiments
using recognized rather than true words. This pattern eflt®suggests that prosody can provide significant
benefit over word information alone, particularly when wegdognition is imperfect.

FUTURE WORK

Improved DA Classification

One aim of future work is to optimize the prosodic featurasd adetter understand the correlations
among them. In evaluating the contribution of featuress itnportant to take into account such factors as
measurement robustness and inherent constraints leadmig$ing data in our trees. For example, duration
is used frequently, but it is also (unlike, e.g., FO inforroa} available and fairly accurately extracted for all
utterances. We would also like to better understand whicduofeatures capture functional versus semantic
or paralinguistic information, as well as the extent to Whieatures are speaker-dependent.

A second goal is to explore additional features that do npedd on the words. For example, we
found that whether or not an utterance is turn-initial antiion-final, and the rate of interruption (including
overlaps) by the other speaker, can significantly improge performance for certain tasks. In our overall
model, we consider turn-related features to be part of tAédbdigrammar. Nevertheless, if one wanted
to design a system that did not use word information, turtufes could be used along with the prosodic
features to improve performance overall.
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Third, although we chose to use decision trees for the reagiven earlier, we might have used any
suitable probabilistic classifier, i.e., any model thatreates the posterior probabilities of DAs given the
prosodic features. We have conducted preliminary experigi® assess how neural networks compare to
decision trees for the type of data studied here. Neural or&svare worth investigating since they offer
potential advantages over decision trees. They can learside surfaces that lie at an angle to the axes of the
input feature space, unlike standard CART trees, whichywsalit continuous features on one dimension
at a time. The response function of neural networks is cantiis (smooth) at the decision boundaries,
allowing them to avoid hard decisions and the complete fexgation of data associated with decision tree
guestions. Most important, neural networks with hidderisicaén learn new features that combine multiple
input features. Results from preliminary experiments onngle task showed that a softmax network
(Bridle, 1990) without hidden units resulted in a slight irmgement over a decision tree on the same task.
The fact that hidden units did not afford an advantage ind&that complex combinations of features (as
far as the network could learn them) may not better predics ok the task than linear combinations of our
input features.

Thus, whether or not substantial gains can be obtained adi@gative classifier architectures remains
an open question. One approach that looks promising givenettiundancy among different feature types
is a combination of parallel classifiers, each based on aase@ory of features, for example using the
mixture-of-experts framework (Jordan & Jacobs, 1994). Vilkalso need to develop an effective way to
combine specialized classifiers (such as those investigatehe subtasks in this study) into an overall
classifier for the entire DA set.

Finally, many questions remain concerning the best way tegiate the various knowledge sources.
Instead of treating words and prosody as independent kigo@lsources, as done here for simplicity, we
could provide both types of cues to a single classifier. Thualdvallow the model to account for interactions
between prosodic cues and words, such as word-specificgiogsatterns. The main problem with such an
approach is the large number of potential input values tvard features” can take on. A related question
is how to combine prosodic classifiers most effectively wiiddog grammars and the contextual knowledge
sources.

Automatic Dialog Act Classification and Segmentation

Perhaps the most important area for future work is the auticreegmentation of dialogs into utterance
units. As explained earlier, we side-stepped the segmentatroblem for the present study by using
segmentations by human labelers. Eventually, however|ladutomatic dialog annotation system will
have to perform both segmentation and DA classification. dwby is this combined task more difficult,
it also raises methodological issues, such as how to eeatbatDA classification on incorrectly identified
utterance units. One approach, taken by Mast et al. (1998) @valuate recognized DA sequences in terms
of substitution, deletion, and insertion errors, analagtmithe scoring of speech recognition output.

As noted in the Introduction, a large body of work addressggrentation into intonational units or
prosodic phrases, and utterance segmentation can be ewmthids a special case of prosodic boundary
detection. To our knowledge, there are no published resaitperforming utterance-level segmentation
of spontaneous speech by using only acoustic evidence without knowledge of the correct words.
Studies have investigated segmentation assuming that lsochef word-level information is given. Mast
et al. (1996) and Warnke et al. (1997) investigate DA segatemt and classification in the (task-oriented)
Verbmobil domain, combining neural-network prosodic meagth N-gram models for segment boundary
detection, as well as N-gram and decision tree DA models Witram discourse grammars for DA
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classification, in a mathematical framework very similatite one used here. Stolcke and Shriberg (1996)
and Finke et al. (1998) both investigated segmentationmftgmeous, Switchboard-style conversations using
word-level N-gram models. Stolcke and Shriberg (1996) pheskthat word-level N-gram segmentation
models work best when using a combination of parts-of-dpe@ed cue words, rather than words alone.

Both Warnke et al. (1997) and Finke et al. (1998) propose asearch for integrated DA segmentation
and labeling. However, the results of Warnke et al. (199@)sbnly a small improvement over a sequential
(first segment, then label) approach, and Finke et al. (1f@@8)d that segmentation accuracy did not change
significantly as a result of modeling DAs in the segment laggumodel. These findings indicate that a
DA-independent utterance segmentation, followed by DAligly using the methods described here, will
be a reasonable strategy for extending our approach to mesggd speech. This is especially important
since our prosodic features rely on known utterance bouesl&or extraction and normalization.

Dialog Act Classification and Word Recognition

As mentioned in the Introduction, in addition to dialog midgas a final goal, there are other practical
reasons for developing methods for automatic DA classifinatin particular, DA classification holds the
potential to improve speech recognition accuracy, sinngdage models constrained by the DA can be
applied when the utterance type is known. There has be&nwitrk involving speech recognition output
for large annotated natural speech corpora. One relevaetienent has been conducted as part of our larger
WS97 discourse modeling project, described in detail eteser(Jurafsky et al., 1998Db).

To put an upper bound on the potential benefit of the appraa@hmost meaningful to consider the
extent to which word recognition accuracy could be improfexhe’s automatic DA classifier had perfect
accuracy. We therefore conducted experiments in which anguage models were conditioned on the
correct (i.e., hand-labeled) DA type. From the perspeativeverall word accuracy results, the outcome
was somewhat discouraging. Overall, the word error ratppled by only 0.9% absolute, from a baseline
of 41.2% to 40.9%. On the other hand, if one considers thechitard corpus statistics, results are in
line with what one would predict for this corpus. In Switclaod, roughly 83% of all test set words were
contained in the Statement category. Statements are tteasiglwell-represented in the baseline language
model. Itis not surprising, then, that the error rate fot&teents was reduced by only 0.5%. The approach
was successful, however, for reducing word error for othér tpes. For example, for Backchannels
and No-Answers, word error was reduced significantly (by b 88%, respectively). But because these
syntactically restricted categories tend to be both lesguient and shorter than Statements, they contributed
too few words to have much of an impact on the overall wordreate.

The DA-specific error reduction results suggest that algfoaverall word accuracy for Switchboard
was little improved in our experiments, DA classificatiommbsubstantially benefit word recognition results
for other types of speech data, or when evaluating on sp&itypes. This should be true particularly for
domains with a less skewed distribution of DA types. SinyldDA modeling could reduce word error for
corpora with a more uniform distribution of utterance ldmgtor for applications where it is important to
correctly recognize words in a specific subset of DAs.

CONCLUSION

We have shown that in a large database of natural human-hoomeersations, assuming equal class
prior probabilities, prosody is a useful knowledge souarafvariety of DA classification tasks. The features
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that allow this classification are task-dependent. Althocgnonical features are used in predicted ways,
other less obvious features also play important roles. @\trere is a high degree of correlation among
features, such that if one feature type is not availablegrdatures can compensate. Finally, integrating
prosodic decision trees with DA-specific statistical lange& models improves performance over that of the
language models alone, particularly in a realistic settifgere word information is based on automatic
recognition. We conclude that DAs are redundantly markettéa conversation, and that a variety of
automatically extractable prosodic features could aigptioeessing of natural dialog in speech applications.
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APPENDIX A: TABLE OF ORIGINAL DIALOG ACTS

The following table lists the 42 original (before groupimga classes) dialog acts. Counts and relative
frequencies were obtained from the corpus of 197,000 utteaused in model training.
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| Dialog Act | Tag | Example | Count | % |
Statement-non-opinion sd Me, I'm in the legal department. 72,824| 36
Acknowledge (Backchannel) b Uh-huh. 37,096| 19
Statement-opinion sV | think it’s great. 25,197| 13
Agree/Accept aa That’s exactly it. 10,820 5
Abandoned or Turn-Exit %...-/ | So, -/ 10,569 5
Appreciation ba | can imagine. 4,633 2
Yes-No-Question qy Do you have to have any special training? 4,624 2
Non-verbal X <Laughter-,<Throat clearing> 3,548 2
Yes-Answer ny Yes. 2,934 1
Conventional-closing fc Well, it's been nice talking to you. 2,486 1
Uninterpretable % But, uh, yeah. 2,158 1
Wh-Question qw Well, how old are you? 1,911 1
No-Answer nn No. 1,340 1
Acknowledge-Answer bk Oh, okay. 1,277 1
Hedge h I don’t know if ’'m making any sense or not. 1,182 1
Declarative Yes-No-Question gy’d | Soyou can afford to get a house? 1,174 1
Other o,fo Well give me a break, you know. 1,074 1
Backchannel-Question bh Is that right? 1,019 1
Quotation q He’s always saying “why do they have to be herg?” 934| 5
Summarize/Reformulate bf Oh, you mean you switched schools for the kids. 919| 5
Affirmative Non-Yes Answers na Itis. 836| .4
Action-directive ad Why don’t you go first 719 4
Collaborative Completion "2 Who aren’t contributing. 699 4
Repeat-phrase b"m Oh, fajitas. 660 .3
Open-Question go How about you? 632 .3
Rhetorical-Questions gh Who would steal a newspaper? 557 .2
Hold before Answer/Agreement “h I’'m drawing a blank. 540 .3
Reject ar Well, no. 338 2
Negative Non-No Answers ng Uh, not a whole lot. 2921 1
Signal-non-understanding br Excuse me? 288 1
Other Answers no I don’t know. 279 1
Conventional-opening fp How are you? 220 1
Or-Clause qrr or is it more of a company? 207 1
Dispreferred Answers arp,nd | Well, not so much that. 205 A
Third-party-talk t3 My goodness, Diane, get down from there. 115 1
Offers, Options & Commits 0o,cc,co| I'll have to check that out. 109 A
Self-talk t1 What'’s the word I'm looking for? 102, 1
Downplayer bd That'’s all right. 100, 1
Maybe/Accept-part aap/am | Something like that. 98| «.1
Tag-Question “g Right? 93| «.1
Declarative Wh-Question gw'd | You are what kind of buff? 80| <.1
Apology fa I’'m sorry. 76 | <.1
Thanking ft Hey thanks a lot. 67| <.1
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APPENDIX B: ESTIMATED ACCURACY OF TRANSCRIPT-BASED LABELI NG

The table below shows the estimated recall and precisioranflttabeling utterances using only the
transcribed words.

The estimates are computed using the results of “Round &beding with listening to speech (see
the Method section) as reference labels. DA types are sbstdtieir occurrence count in the relabeled
subcorpus of 44 conversations.

For a given DA type, let be the number of original (labeled from text only) DA tokehsat type b the
number of DA tokens after relabeling with listening, anthe number of tokens that remained unchanged
in the relabeling. Recall is estimated asnd precision as.
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| Dialog Act | Tag | Recall (%) | Precision (%) | Count |
Statement-non-opinion sd 98.8 98.9| 2147
Statement-opinion sV 97.9 97.7 989
Acknowledge (Backchannel) b 99.1 95.4 986
Abandoned/Uninterpretable % 99.8 99.4 466
Agree/Accept aa 86.5 99.3 327
Yes-No-Question qy 100.0 98.0 144
Non-verbal X 100.0 100.0 99
Appreciation ba 100.0 94.6 70
Yes-Answer ny 95.7 98.5 70
Wh-Question qw 98.3 100.0 59
Summarize/Reformulate bf 100.0 97.8 44
Hedge h 93.0 97.6 43
Quotation q 100.0 100.0 38
Declarative Yes-No-Question qyd 92.1 97.2 38
Acknowledge-Answer bk 100.0 100.0 34
No-Answer nn 100.0 100.0 33
Other o,fo 100.0 100.0 33
Open-Question go 100.0 100.0 27
Backchannel-Question bh 955 100.0 22
Action-directive ad 100.0 95.5 21
Collaborative Completion "2 100.0 94.7 18
Hold before Answer/Agreement “h 100.0 100.0 18
Affirmative Non-Yes Answers na 100.0 100.0 18
Repeat-phrase b"m 100.0 100.0 17
Conventional-closing fc 100.0 100.0 16
Reject ar 100.0 100.0 13
Or-Clause qrr 100.0 100.0 11
Other Answers no 100.0 100.0 10
Rhetorical-Questions gh 80.0 100.0 10
Signal-non-understanding br 100.0 87.5 7
Negative Non-No Answers ng 100.0 100.0 6
Maybe/Accept-part aap/am 100.0 100.0 5
Conventional-opening fp 100.0 100.0 5
Tag-Question g 100.0 100.0 4
Offers, Options & Commits 00,Cc,Cco 100.0 100.0 3
Thanking ft 100.0 100.0 2
Downplayer bd 100.0 100.0 1
Declarative Wh-Question gwd 100.0 100.0 1
Self-talk t1 100.0 50.0 1
Third-party-talk t3 100.0 100.0 1
Dispreferred Answers arp,nd - - 0
Apology fa - - 0
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