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Abstract 

We present a large vocabulary, continuous speech recognition system based 
on Linked Predictive Neural Networks (LPNN's). The system uses neu­
ral networks as predictors of speech frames, yielding distortion measures 
which are used by the One Stage DTW algorithm to perform continuous 
speech recognition. The system, already deployed in a Speech to Speech 
Translation system, currently achieves 95%, 58%, and 39% word accuracy 
on tasks with perplexity 5, 111, and 402 respectively, outperforming sev­
eral simple HMMs that we tested. We also found that the accuracy and 
speed of the LPNN can be slightly improved by the judicious use of hidden 
control inputs. We conclude by discussing the strengths and weaknesses 
of the predictive approach. 

1 INTRODUCTION 

Neural networks are proving to be useful for difficult tasks such as speech recogni­
tion, because they can easily be trained to compute smooth, nonlinear, nonpara­
metric functions from any input space to output space. In speech recognition, the 
function most often computed by networks is classification, in which spectral frames 
are mapped into a finite set of classes, such as phonemes. In theory, classification 
networks approximate the optimal Bayesian discriminant function [1], and in prac­
tice they have yielded very high accuracy [2, 3, 4]. However, integrating a phoneme 
classifier into a speech recognition system is nontrivial, since classification decisions 
tend to be binary, and binary phoneme-level errors tend to confound word-level 
hypotheses. To circumvent this problem, neural network training must be carefully 
integrated into word level training [1, 5]. An alternative function which can be com-
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puted by networks is prediction, where spectral frames are mapped into predicted 
spectral frames. This provides a simple way to get non-binary distortion measures, 
with straightforward integration into a speech recognition system. Predictive net­
works have been used successfully for small vocabulary [6, 7] and large vocabulary 
[8, 9] speech recognition systems. In this paper we describe our prediction-based 
LPNN system [9], which performs large vocabulary continuous speech recognition, 
and which has already been deployed within a Speech to Speech Translation system 
[10]. We present our experimental results, and discuss the strengths and weaknesses 
of the predictive approach. 

2 LINKED PREDICTIVE NEURAL NETWORKS 

The LPNN system is based on canonical phoneme models, which can be logically 
concatenated in any order (using a "linkage pattern") to create templates for dif­
ferent words; this makes the LPNN suitable for large vocabulary recognition. 

Each canonical phoneme is modeled by a short sequence of neural networks. The 
number of nets in the sequence, N >= 1, corresponds to the granularity of the 
phoneme model. These phone modeling networks are nonlinear, multilayered, feed­
forward, and "predictive" in the sense that, given a short section of speech, the 
networks are required to extrapolate the raw speech signal, rather than to classify 
it. Thus, each predictive network produces a time-varying model of the speech 
signal which will be accurate in regions corresponding to the phoneme for which 
that network has been trained, but inaccurate in other regions (which are better 
modeled by other networks). Phonemes are thus "recognized" indirectly, by virtue 
of the relative accuracies of the different predictive networks in various sections of 
speech. Note, however, that phonemes are not classified at the frame level. Instead, 
continuous scores (prediction errors) are accumulated for various word candidates, 
and a decision is made only at the word level, where it is finally appropriate. 

2.1 TRAINING AND TESTING ALGORITHMS 

The purpose of the training procedure is both (a) to train the networks to become 
better predictors, and (b) to cause the networks to specialize on different phonemes. 
Given a known training utterance, the training procedure consists of three steps: 

1. Forward Pass: All the networks make their predictions across the speech sam­
ple, and we compute the Euclidean distance matrix of prediction errors between 
predicted and actual speech frames. (See Figure 1.) 

2. Alignment Step: We compute the optimal time-alignment path between the 
input speech and corresponding predictor nets, using Dynamic Time Warping. 

3. Backward Pass: Prediction error is backpropagated into the networks according 
to the segmentation given by the alignment path. (See Figure 2.) 

Hence backpropagation causes the nets to become better predictors, and the align­
ment path induces specialization of the networks for different phonemes. 

Testing is performed using the One Stage algorithm [11], which is a classical exten­
sion of the Dynamic Time Warping algorithm for continuous speech. 
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Figure 1: The forward pass during training. Canonical phonemes are modeled by 
sequences of N predictive networks, shown as triangles (here N=3). Words are 
represented by "linkage patterns" over these canonical phoneme models (shown in 
the area above the triangles), according to the phonetic spelling of the words. Here 
we are training on the word "ABA". In the forward pass, prediction errors (shown 
as black circles) are computed for all predictors, for each frame of the input speech. 
As these prediction errors are routed through the linkage pattern, they fill a distance 
matrix (upper right). 
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Figure 2: The backward pass during training. After the DTW alignment path has 
been computed, error is backpropagated into the various predictors responsible for 
each point along the alignment path. The back propagated error signal at each such 
point is the vector difference between the predicted and actual frame. This teaches 
the networks to become better predictors, and also causes the networks to specialize 
on different phonemes. 
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3 RECOGNITION EXPERIMENTS 

We have evaluated the LPNN system on a database of continuous speech recorded 
at CMU. The database consists of 204 English sentences using a vocabulary of 402 
words, comprising 12 dialogs in the domain of conference registration. Training 
and testing versions of this database were recorded in a quiet office by multiple 
speakers for speaker-dependent experiments. Recordings were digitized at a sam­
pling rate of 16 KHz. A Hamming window and an FFT were computed, to produce 
16 melscale spectral coefficients every 10 msec. In our experiments we used 40 
context-independent phoneme models (including one for silence), each of which had 
a 6-state phoneme topology similar to the one used in the SPICOS system [12]. 
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Figure 3: Actual and predicted spectrograms. 

Figure 3 shows the result of testing the LPNN system on a typical sentence. The 
top portion is the actual spectrogram for this utterance; the bottom portion shows 
the frame-by-frame predictions made by the networks specified by each point along 
the optimal alignment path. The similarity of these two spectrograms indicates that 
the hypothesis forms a good acoustic model of the unknown utterance (in fact the 
hypothesis was correct in this case). In our speaker-dependent experiments using 
two males speakers, our system averaged 95%, 58%, and 39% word accuracy on 
tasks with perplexity 5, 111, and 402 respectively. 

In order to confirm that the predictive networks were making a positive contribu­
tion to the overall system, we performed a set of comparisons between the LPNN 
and several pure HMM systems. When we replaced each predictive network by a 
univariate Gaussian whose mean and variance were determined analytically from 
the labeled training data, the resulting HMM achieved 44% word accuracy, com­
pared to 60% achieved by the LPNN under the same conditions (single speaker, 
perplexity 111). When we also provided the HMM with delta coefficients (which 
were not directly available to the LPNN), it achieved 55%. Thus the LPNN was 
outperforming each of these simple HMMs. 
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4 HIDDEN CONTROL EXPERIMENTS 

In another series of experiments, we varied the LPNN architecture by introducing 
hidden control inputs, as proposed by Levin [7]. The idea, illustrated in Figure 4, 
is that a sequence of independent networks is replaced by a single network which is 
modulated by an equivalent number of "hidden control" input bits that distinguish 
the state. 

Sequence of 
Predictive Networks 

Hidden Control 
Network 

Figure 4: A sequence of networks corresponds to a single Hidden Control network. 

A theoretical advantage of hidden control architectures is that they reduce the 
number offree parameters in the system. As the number of networks is reduced, each 
one is exposed to more training data, and - up to a certain point - generalization 
may improve. The system can also run faster, since partial results of redundant 
forward pass computations can be saved. (Notice, however, that the total number 
of forward passes is unchanged.) Finally, the savings in memory can be significant. 

In our experiments, we found that by replacing 2-state phoneme models by equiva­
lent Hidden Control networks, recognition accuracy improved slightly and the sys­
tem ran much faster. On the other hand, when we replaced all of the phonemic 
networks in the entire system by a single Hidden Control network (whose hidden 
control inputs represented the phoneme as well as its state), recognition accuracy 
degraded significantly. Hence, hidden control may be useful, but only if it is used 
judiciously. 

5 CURRENT LIMITATIONS OF PREDICTIVE NETS 

While the LPNN system is good at modeling the acoustics of speech, it presently 
tends to suffer from poor discrimination. In other words, for a given segment 
of speech, all of the phoneme models tend to make similarly good predictions, 
rendering all phoneme models fairly confusable. For example, Figure 5 shows an 
actual spectrogram and the frame-by-frame predictions made by the /eh/ model 
and the /z/ model. Disappointingly, both models are fairly accurate predictors for 
the entire utterance. 

This problem arises because each predictor receives training in only a small region 
of input acoustic space (i.e., those frames corresponding to that phoneme). Con­
sequently, when a predictor is shown any other input frames, it will compute an 
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Figure 5: Actual spectrogram, and corresponding predictions by the /eh/ and /z/ 
phoneme models. 

undefined output, which may overlap with the outputs of other predictors. In other 
words, the predictors are currently only trained on positive instances, because it is 
not obvious what predictive output target is meaningful for negative instances; and 
this leads to problematic "undefined regions" for the predictors. Clearly some type 
of discriminatory training technique should be introduced, to yield better perfor­
mance in prediction based recognizers. 

6 CONCLUSION 

We have studied the performance of Linked Predictive Neural Networks for large vo­
cabulary, continuous speech recognition. Using a 6-state phoneme topology, without 
duration modeling or other optimizations, the LPNN achieved an average of 95%, 
58%, and 39% accuracy on tasks with perplexity 5, 111, and 402, respectively. This 
was better than the performance of several simple HMMs that we tested . Further 
experiments revealed that the accuracy and speed of the LPNN can be slightly 
improved by the judicious use of hidden control inputs. 

The main advantages of predictive networks are that they produce non-binary dis­
tortion measures in a simple and elegant way, and that by virtue of their nonlinearity 
they can model the dynamic properties of speech (e.g., curvature) better than lin­
ear predictive models [13]. Their main current weakness is that they have poor 
discrimination, since their strictly positive training causes them all to make con­
fusably accurate predictions in any context. Future research should concentrate 
on improving the discriminatory power of the LPNN, by such techniques as cor­
rective training, explicit context dependent phoneme modeling, and function word 
modeling. 
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