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A Novel Objective Function for Improved Phoneme 
Recognition Using Time-Delay Neural Networks 

Abstract-This paper presents single and multispeaker recognition 
results for the voiced-stop consonants /b, d, g/ using time-delay neural 
networks (TDNN’s) with a number of enhancements, including a new 
objective function for training these networks. The new objective func- 
tion, which is called the classification figure of merit (CFM), differs 
markedly from the traditional mean-squared-error (MSE) objective 
function and the related cross entropy (CE) objective function. Where 
the MSE and CE objective functions seek to minimize the difference 
between each output node and its ideal activation, the CFM function 
seeks to maximize the difference between the output activation of the 
node representing the correct classification and all other nodes (rep- 
resenting incorrect classifications). The results presented here show that 
each of these three objective functions forms internal representations 
that differ substantially from those of its counterparts. On the basis of 
this finding, a simple arbitration mechanism is used with all three ob- 
jective functions to achieve a median 30% reduction in the number of 
misclassifications when compared to TDNN’s trained with the tradi- 
tional MSE back-propagation objective function alone. This reduction 
results in /b, d, g/ error rates that a re  consistently below 2% for 
TDNN’s trained with individual speakers; it yields a 1.4% error rate 
for a TDNN trained with three male speakers and a 2.9% error rate 
for a TDNN trained with six speakers (two female, four male). 

I. INTRODUCTION 
IME-delay neural network (TDNN) architectures have T been applied to the task of voiced-stop consonant 

phoneme recognition with excellent results [ 11-[3]. In 
moving from speaker-dependent phoneme recognition to 
speaker-independent recognition, this paper considers a 
collection of enhancements to the TDNN that yields im- 
proved single speaker and multispeaker recognition re- 
sults for the /b, d, g/ phoneme recognition task. These 
enhancements entail the development of an alternative ob- 
jective function for the N-dimensional gradient search of 
back-propagation learning [4], [5]. This new objective 
function is called the “classification figure of merit” 
(CFM) in reference to the emphasis it places on the clas- 
sification result obtained from the network. The mean- 
squared-error (MSE) and cross entropy (CE) [6] objective 
functions compare the actual output activations of the net- 
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work to an ideal set of activations for the given input 
stimulus. They seek to minimize this difference in order 
to produce the correct output activation corresponding to 
the correct classification outcome. The CFM objective 
function, in contrast, uses the ideal output activations only 
to identify the actual output node corresponding to the 
correct classification outcome. Once this “correct” node 
is identified, the CFM function seeks to maximize the dif- 
ference between it and all of the other (incorrect) nodes. 

The results presented here show that the CFM objective 
function’s quantitative performance compares favorably 
with the MSE and CE classifiers while its qualitative per- 
formance is markedly different. Specifically, the different 
objective functions produce comparable recognition per- 
formance, yet they engender substantially different fea- 
ture abstractions, resulting in largely disjoint misclassi- 
fied token sets. After training three versions of the same 
network architecture on the same training set using the 
three different objective functions, one can use a simple 
arbitration mechanism to resolve conflicting classification 
outcomes and reduce by 30% the number of misclassifi- 
cations made by the MSE classifier alone (unless stated 
otherwise, all statistics quoted in this paper are median 
values, owing to the small sample size [ n  = 81). This 
mechanism is called ‘‘conflict arbitration. ” The arbitra- 
tion process identifies or “flags” 80% of the post-arbi- 
tration misses, at the cost of flagging 8% of the post-arbi- 
tration hits as possible misses (a correct classification is 
referred to as a “hit,” and.an incorrect classification is 
referred to as a “miss”). These enhancements result in 
single-speaker /b, d ,  g/ error rates that are consistently 
below 2 % .  Additionally, they achieve a 1.4% error rate 
for a TDNN trained with three male speakers and a 2.9% 
error rate for a TDNN trained with six speakers (two fe- 
males and four males). 

The experimental conditions under which these findings 
were made are detailed in [ 13 and [2]; a condensed version 
of this work was presented in [7]. Japanese speech data 
was obtained from six professional announcers (two fe- 
male, four male), sampled at 12 kHz, parsed for the /b, 
d, g/ phonemes, and Hamming windowed; from this win- 
dowed data 256-point DFT’s were computed at 5 ms in- 
tervals. The DFT’s were used to generate 16 Melscale 
coefficient spectra at 10 ms intervals. These spectra were 
normalized to produce suitable input levels for the 
TDNN’s. Training tokens for individual speakers were 
shuffled randomly and interleaved to produce successive 
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Fig. 1 .  A time-delay neural network (TDNN) block diagram. 

/b, d ,  g/ tokens (approximately 200 training and 200 test- 
ing tokens per phoneme, per speaker). Training tokens for 
TDNN’s trained with multiple speakers were prepared 
similarly with the additional step of interleaving the to- 
kens across all speakers. Fig. 1 illustrates the TDNN ar- 
chitecture trained with this data. The input layer com- 
prises 15 16-coefficient Melscale spectra. TDNN 
connections between lower and higher layers of the net- 
work are linked in the time domain to engender shift- 
invariant pattern recognition. Details of this shift-invar- 
iant connectionist architecture can be found in [ 11 ,  [3]. 

In this paper we address the following issues. In Sec- 
tion I1 we review the mathematical forms of the MSE and 
CE objective functions and discuss why these forms may 
lead to suboptimal classification performance. In Section 
I11 we propose the alternative CFM objective function as 
a paradigm more suited to the classification task. In Sec- 
tion IV we show experimental results from applying these 
three objective functions to the task of training TDNN’s 
for single and multispeaker /b, d, g/ phoneme recogni- 
tion. We show that each objective function yields test data 
misclassifications that are largely disjoint, and we pro- 
pose a simple arbitration mechanism by which the number 
of misclassifications made by a TDNN trained on the MSE 
objective function alone can be reduced substantially. In 
Section V we discuss the findings of Section IV and vari- 
ations on the CFM objective function that might lead to 
improvements in its classification performance and learn- 
ing speed. We conclude with a brief summary of our find- 
ings. 

11. A REVIEW OF THE MSE AND CE OBJECTIVE 
FUNCTIONS 

In presenting the CFM objective function, we first re- 
view therraditional MSE Objective function used in back- 
propagatkn [4], [5] and the closely related CE objective 
function [6]. The MSE function seeks to minimize the 
mean squared error between the network’s output nodes 
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Fig. 2 .  A graphic comparison of CFM and MSE/CE objective functions. 

(31, - * * , (3, and an ideal or desired set of outputs 
aI, * * , D, (see Fig. 2) 

N 

MSE = 1/N c ((3, - 33,)’ 

E = 1/2 c ((3, - a>,)* 

(1)  

(2) 

n =  I 

N 

n =  1 

where (2) is the form used in [4], [5] and E = MSE * 

N/2. 
The CE objective function views the actual real-valued 

state of an output node as the probability that the ideal 
binary output state of the node is “1.” It seeks to mini- 
mize the difference between actual ((3,) and ideal (9,) 
output states by minimizing the cross entropy between the 
actual and desired probability density functions driving 
each output node: 

N 

CE = -1/N n =  C I { Dn log ((3,) 

- ( 1  - 33,) log ( 1  - On)}. ( 3 )  
The actual probability density function associated with 
each output node is of course conditioned by the training 
set and expressed in the connections of the network. 
Equation (3) differs from that given in [6] by a constant 
of log ( 2 )  / N .  Both of these objective functions engender 
output states that tend to mimic an ideal pattern. We raise 
the question of whether the MSE and CE objective func- 
tions are optimal for training networks employed as clas- 
sifiers. We do so on the basis of how their mathematical 
forms affect the generalizing properties of the networks 
they are used to train. 

Generalizatioh is a term with broad implications in con- 
nectionist learning. For the purpose of our presentation, 
we address one aspect of its meaning for networks em- 
ployed as classifiers. In this restricted context, general- 
ization is a description of a network’s ability to form ab- 
stract representations of a training set’s salient features in 
order to maximize the number of correct classifications 
made on a disjoint test set. All the variables of a connec- 
tionist structure-the network architecture, its final con- 
nection strengths, the learning algorithm used to develop 
those connection strengths, and the statistical nature of 
the training set-play a role in determining the degree to 
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which a network forms general representations. These 
variables also determine the specific nature of the result- 
ing general representations. Reference [8] illustrates the 
importance of training set selection in the development of 
generalized representations, focusing on networks that 
deal with training patterns drawn from a finite, determin- 
istic ensemble. We suggest that the back-propagation ob- 
jective function also plays an important role in forming 
general representations, particularly in networks that ana- 
lyze training sets drawn from an infinitely large, stochas- 
tic ensemble characterized by a high degree of variance. 

For the case of a classifier network with N outputs (rep- 
resenting N possible classes) processing a single input 
pattern, one can show the following relationship, assum- 
ing that the desired output state of the network is binary: 
for a hit 

(4) 
N - 1  
N max MSEhit =: - 

max CEhit 00 (5) 

(6) 

(7) 

and for a miss 

min MSEmiss = 1 /(2N) 

2log (2)  
min CEmiss = ~ 

N ’  

For the CE expression of [6], equation (7) simplifies to 
min CEmiss = 2. For both classifiers these thresholds are 
overlapping, producing regions in the miss domain of state 
space that yield more optimal values for the objective 
function than do some regions in the hit domain of state 
space. In short, neither of these objective functions is 
monotonic on the hit-miss continuum of state space for 
N > 1. Table I and Fig. 3 help to clarify the concept of 
monotonicity. Table I lists the output state for three input 
tokens of a hypothetical two-output network employed as 
a classifier. Token 1 elicits an ideal classification output 
with zero MSE and zero CE. Since the network correctly 
classifies token 1 ,  the result is a hit. The network output 
is substantially different for token 2; in fact, the activation 
of O2 is higher than that of 01, so this token is misclas- 
sified. The MSE and CE scores for this token are 0.303 
and 0.799, respectively. The network output for token 3 
is again not ideal, but the activation of O1 exceeds the 
activation of 02, so the token is correctly classified. Note 
that the MSE and CE scores for token 3 are 0.363 and 
0.974, respectively-significantly higher than the scores 
for token 2. Both objective functions yield scores for to- 
ken 3 that are worse (higher) than the scores for token 2,  
despite the fact that token 3 is a hit, while token 2 is a 
miss. For this reason, the MSE and CE objective func- 
tions are nonmonotonic on the continuum connecting the 
best-case ((3, = 1 ,  O2 = 0)  and worst-case ((3, = 0, O2 
= 1)  output states of the network for an input belonging 
to class 1. We call this continuum the “hit-miss contin- 
uum” of state space. 

Fig. 3 illustrates the outputs O 1  and O2 for tokens 1-3 

TABLE 1 
COMPARISON OF THREE STATES OF A TWO-OUTPUT NETWORK EMPLOYED AS 
A CLASSIFIER: IN EACH CASE, THE INPUT OF THE NETWORK IS FROM CLASS 

1. MEAN-SQUARED ERROR AND CROSS ENTROPY ARE SHOWN FOR EACH 
OUTPUT STATE 

1 .o 
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Fig. 3 .  A contour plot of MSE for a two-output network; output 0 ,  rep- 
resents the correct class. 

in the network’s output state space. Superimposed on this 
state space are contours of constant MSE for the network 
when the true class of the network input is class 1 (i.e., 
when the ideal output state for the network is O 1  = D1 = 
1 ,  O2 = D2 = 0) .  The miss domain of state space is 
therefore the region for which (3, < 02, while the hit do- 
,main is the region for which O 1  > 02. The dark shaded 
region of “miss space” delineates the fraction of miss 
space with lower MSE than some portion of the light 
shaded region of “hit space.” That is, for every point in 
the light shaded region of hit space, there is some fraction 
of miss space that yields lower MSE. The shaded regions 
of Fig. 3 are shaped somewhat differently for the CE ob- 
jective function; indeed, a higher percentage of state space 
is shaded for the CE objective function, so it is less 
monotonic than the MSE objective function. For net- 
works with more than two outputs, the boundaries of the 
shaded regions in Fig. 3 becomes (hyper)spherical for the 
MSE objective function. As the number of outputs N in 
the classifier network becomes large, the fraction of miss 
space that is shaded increases. In the limit, for every point 
in hit space there exists some subregion of miss space with 
lower MSE. Again, the shaded regions of state space for 
the CE objective function have convex aspherical bound- 
aries, so networks trained with this objective function ap- 
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proach their nonmonotonic limit, as N grows, more rap- 
idly than their MSE-trained counterparts. 

Table I and Fig. 3 indicate that it is possible, at least 
in principle, for a network trained on a representative 
training set drawn from an infinitely large ensemble with 
high variance to minimize its MSE or CE objective func- 
tion for all training tokens without minimizing the number 
of misclassifications it makes on a disjoint test set [9]. In 
Section V we discuss possible characteristics of the ran- 
dom process being classified that would give rise to the 
nonmonotonic behavior described above. In that section 
we cite experimental evidence to suggest that nonmono- 
tonic behavior is manifest in some cases of “overlearn- 
ing” (i.e., when network recognition performance on a 
disjoint test set peaks and then degrades, while training 
set performance continues to improve). 

One typically attributes poor generalization to a train- 
ing set that is not truly representative of the ensemble from 
which it is drawn. Hence, one attempts to improve gen- 
eralization in one of three ways: 1) by expanding the 
training set, using its statistical variance to obscure “idio- 
syncratic” features (i.e., those that are not representative 
of the ensemble); 2) by “whitening” the training set with 
noise that obscures idiosyncratic features [IO]; or 3) by 
explictly selecting the training set, choosing tokens that 
are most representative of the ensemble and most effective 
in developing optimal classification boundaries [8]. The 
first solution is rarely possible because one does not have 
access to a sufficiently large sample set, and the second 
solution requires careful adjustment of the variance of the 
noise source in order to eliminate idiosyncrasies without 
obscuring truly representative features. The third solution 
requires a priori knowledge of those features that are rep- 
resentative of the ensemble; this presents a paradox, since 
one is often attempting to train the network to find these 
features. Additionally, the selection task becomes ex- 
tremely complex for training sets drawn from a very large 
high-variance ensemble. 

We suggest that the mathematical form of the objective 
function plays an important role in forming general rep- 
resentations of training data for networks employed as 
classifiers, and that a key element of its mathematical form 
is the degree to which the function is monotonic on the 
N-dimensional hit-miss continuum. 

111. THE CFM OBJECTIVE FUNCTION 
The CFM objective function has three essential features 

that distinguish it from the traditional MSE objective 
function. 

1) It has no notion of an ideal target classification out- 
put pattern to which it should match its output. Instead, 
it is only concerned that the output node representing the 
correct classification outcome (Fig. 2, (3,) has a higher 
activation state than any other output node. Its continuous 
mathematical form assesses a measure of the degree to 
which the correct classification has or has not been made- 
a classification figure of merit. 

2) In order to discourage the network from attempting 
to produce ideal output patterns (thereby tending toward 
specific rather than general representations of the training 
set), the objective function yields decreasing marginal 
“rewards” for increasingly ideal output patterns. 

3) In order to discourage the network from attempting 
to learn tokens that are extreme statistical outliers for their 
given class, the objective function yields decreasing mar- 
ginal “penalties” for increasingly bad misclassifications. 

The resulting CFM objective function first compares the 
activation level of the output node that should be at high 
state with the activations of all other nodes which, in a 
classifier, should be at low state (Fig. 2, left bank of 
nodes). It then applies a sigmoidal function to each of 
these differences. In this way, learning focuses most 
heavily on the reduction of misclassifications, rather than 
on attempts to mimic a target output exactly: 

l N  
CFM = - * E a [ 1  + exp(-@A, + ( ) ] - I  ( 8 )  N -  1 n = l  

f l + C  

where 

A,, = 0, - 0, 
(3, = the “correct” (i.e., correct classification) node, 
0, = the “bogus” (i.e., incorrect classification) node 

N = total number of classes, 
(Y = sigmoid scaling parameter, 

( = sigmoid lateral shift parameter. 

n ,  

= sigmoid discontinuity parameter, 

Thus 

( 9 )  

n + c  

where 

yn = [ I  + exp ( - 0 ~ ~  + s ~ ) ] - ’ .  

Equations (8) through (IO) are variants of the well- 
known sigmoid function and its derivative [4], [ 5 ] .  Fig. 
4 illustrates the CFM function over the [ - 1, 1 ] domain 
of A,, for some representative parameter values. Clearly 
there are many other functions that meet the CFM speci- 
fications itemized above; we present this particular form 
as an archetype from which further developments might 
be made. As mentioned earlier, (8) through (10) form a 
mathematically continuous expression of the degree to 
which the classifier produces the desired output classifi- 
cation. Note again that this measure of degree, this figure- 
of-merit, emphasizes the relative activations of all output 
nodes rather than their correspondence with some ‘‘ideal” 
output state. From (8) one can show that for a hit 

min CFMhit X CFM,(O) (11) 
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Fig. 4. CFM plotted for representative parameter values: 01 = 1.0, P = 
4.0, ( = 0.0. 

and for a miss 

1 
N - 1  

max C F M , ~ ~ ~  = ~ { ( N  - 

- CFM,,(I) + CFM,,(O)} (12) 

where 

CFM,(A) 2 a [ 1  + exp (-PAn + { ) ] - I  (13)  

a single term from the sum of (8) (the CFM paradigm 
requires that N L 2). Table I1 reviews the output states 
for the hypothetical two-output network described in Ta- 
ble I of Section 11. In Table 11, scores are shown for the 
CFM objective function in (8) with parameters Q! = 1.0, 
p = 4.0, { = 0.0. Increasing CFM scores indicate an 
increasingly ideal output state. Clearly, the CFM objec- 
tive function yields a score that is monotonic on the hit 
miss continuum. Equations (1 1) and (12) confirm that the 
CFM objective function is monotonic on the hit-miss con- 
tinuum for N = 2 (see Fig. 5) .  For N I 3, the CFM 
objective function of (8) is nonmonotonic, but a straight- 
forward modification to its form, described in Section V, 
produces a CFM variant that is monotonic for networks 
of arbitrary output dimensionality. 

Because one seeks to maximize the CFM objective 
function, the weight-deflection equation of [4], [ 5 ]  must 
be changed to perform gradient ascent (as opposed to gra- 
dient descent) : 

AW(t) = +E- + aAW(t  - 1 ) .  (14) aww 
The parameter of (8) determines how discontinuous the 
sigmoid function is. As becomes large, the CFM func- 
tion approximates the Heaviside step function, and its de- 
rivative approximates the Dirac delta function. The P pa- 
rameter allows one to modify the CFM function in terms 
of the degree of decreasing marginal credit it assigns to 
an increasingly strong hit as well as the amount of de- 

\ 

Fig. 5. A contour plot of CFM ( a  = 1.0, 0 = 4.0, { = 0.0) for a two- 
output network; output (3, represents the correct class. 

creasing marginal penalty it assigns to an increasingly 
strong miss. The { parameter sets the relative credit as- 
signed to a classification that is on the borderline between 
a hit and miss (i.e., A,, = 0 for some n ) .  The a parameter 
is a simple scaling factor, typically equal to unity. Our 
initial results show that the CFM classifier is quite re- 
sponsive to changes in the p parameter. In particular, large 
values of @ ( ~ 2 0 )  engender connection strengths that 
yield remarkedly weak marginal hits with high MSE in 
both training and testing data, while smaller values of @ 
( = 4)  yield strong hits that exhibit MSE comparable with 
that produced by the MSE classifier. Additionally, it ap- 
pears that large values of engender a diminished ability 
to discern subtle features necessary for high accuracy 
classification (manifest in reduced phoneme recognition 
rates). This is because the objective function is essentially 
flat for large values of A,,; as a result, it does not alter 
classification boundaries in response to more subtle fea- 
tures of the training set. Furthermore, since large values 
of P yield an increasingly discontinuous CFM function, 
they tend to engender slow, unstable searches. Although 
the detailed effects of altering { are not well known, we 
include it in (8)-(10) in order to provide a mechanism for 
specifying the relative magnitude of the CFM function for 
borderline tokens. In our preliminary studies, we have 
found that the parameter choices @ = 4.0, { = 0.0, and 
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Network 

TDNN 

a = 1.0 yield recognition rates for the /b, d, g l  recogni- 
tion task that compare the favorably to those for the MSE 
and CE classifiers (see Section IV-A). These parameter 
choices effectively reduce the CFM to a one-parameter 
function. For 4 I 0 5 20 we have not yet found evidence 
to suggest that the CFM function exhibits the overlearn- 
ing tendency of the MSE and CE functions-a definite 
advantage for the CFM function which we discuss further 
in Section V. 

Speaker MSE CE CFM 

MAU 1.7 2.0 1.1 

MHT 0.3 0.6 0.5 

IV. EXPERIMENTAL RESULTS 

single 

speaker 

A. Objective Function Comparisons 
Table I11 shows the results of training a TDNN with 

tokens from six individual speakers as well as two com- 
binations of speakers using the MSE, CE, and CFM ob- 
jective functions. Error rates for MSE and CE-trained 
TDNN’s are based on training sessions monitored for the 
inception of overlearning (i.e., training was monitored for 
optimal recognition performance on the disjoint test set in 
order to discount the effect of overlearning). CFM rec- 
ognition rates are based on unmonitored training sessions. 
Under these conditions, we find the error rates for the three 
classifiers roughly equivalent. The median single-speaker 
CFM error rate is lower than those of the other two func- 
tions, and the total number of errors (summed over all six 
single-speaker trials) for the CFM function is 14% and 
19% lower than it is for the MSE and CE functions, re- 
spectively. Fig. 6 displays the single-speaker error statis- 
tics of Table 111 in box plot form [ 111. In brief, the box 
of each plot has vertical extrema that match the first and 
third quartiles of the sample data; the horizontal line di- 
viding the box delineates the median of the sample data; 
the inner and (if shown) outer T-shaped “fences” of each 
plot define the outer limits of so-called “adjacent” and 
“outer” extreme values [ 113, respectively. Extreme sam- 
ples falling beyond the outer fence(s) are plotted as dots. 
Table I11 and Fig. 6 suggest that the CFM objective func- 
tion yields higher classification performance. A one-sided 
paired t-test [12], [13] of the hypothesis that the mean 
CFM error rate is significantly lower than those of its 
competitors is rejected for p = 0.95 but accepted for p = 
0.90. A two-sided paired t-test fails to reject the hypoth- 
esis that the mean MSE and CE error rates are identical 
fo rp  > 0.70. In summary, we find that the CFM classi- 
fier compares favorably with its counterparts, particularly 
because we monitored the MSE and CE training sessions 
for optimal test set performance. The multispeaker results 
in Table I11 for the three different classifiers are virtually 
identical; we discuss possible reasons for this in Section 
V. 

In developing the CFM classifier, our principal goal was 
to produce a more appropriate objective function for con- 
nectionist classifiers; a by-product of this goal has been 
the development of an objective function that forms in- 
ternal abstract representations of training tokens markedly 
different from those of the MSE classifier. A number of 
peripheral observations support this assertion. First, we 

MNM 2.6 2.3 2.8 

FKN 2.4. 2.4 2.2 

FSU 1.8 1.9 1.5 

MMS 2.3 2.5 1.5 

:l MSE CE CFM 
Classifier Classifier classifier 

3% 

0% 
Fig. 6 .  A comparison of M S E ,  C E ,  and CFM /b, d, g/ single-speaker error 

rates ( n  = 6) .  

take a number of weight vectors for fully MSE-trained 
TDNN’s and use these as input weight vectors for CFM 
training sessions. The CFM classifier consistently evalu- 
ates these initial weight vectors as suboptimal, yielding 
final CFM weight vectors that are substantially different 
from their MSE starting points. It is not unusual to find 
CFM weight vectors computed in this manner nearly or- 
thogonal to their initial MSE values. Additionally, we 
consistently find that the set of MSE misses and the set of 
CFM misses are largely disjoint. 

The scatter plots of Figs. 7 and 8 illustrate this phenom- 
enon for all phonemes (b, d, and g) of the TDNN trained 
with three speakers, listed in Table 111. The results for this 
network are representative of the other trials in Table 111. 
Each plot shows the level of activation for the most active 
bogus output node (i.e., the most active node that does 
not represent the correct classification) versus the level of 
activation for the correct output node. Thus, the layout of 
the scatter plots is very similar to that of Fig. 3. Hits fall 
below and to the right of the dashed line, and misses fall 
above and to its left. In both plots hits and misses com- 
mon to both classifiers are shown as “*”. Fig. 7 shows 
results for the MSE classifier and identifies those MSE 
misses that are CFM hits ( 0). Likewise, Fig. 8 identi- 
fies CFM misses that are MSE hits ( U ) . It is clear from 
both figures that the two classifiers have few common 
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Fig. 7 .  Scatter plot of MSE classifier outcomes. 0 indicates MSE miss 

correctly classified by CFM. 

STRONG MISS 

0 

0 
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STRONG HIT 
Fig. 8 .  Scatter plot of CFM classifier outcomes. 0 indicates CFM miss 

correctly classified by MSE. 

misses. If one considers the union of all missed tokens for 
the two classifiers, one typically finds that only 30% of 
these are common to both classifiers, while the remaining 
70% are disjoint: In fact, the missed token sets of all three 
classifiers are largely disjoint, as illustrated in the pair- 
wise comparisons of Fig. 9. 

B. Conjlict Arbitration 
One can exploit the disjoint nature of these missed to- 

ken sets to decrease the number of misclassifications made 
by the MSE-trained network alone. In [7] we outlined a 
simple rule-based approach to arbitrating the classifica- 
tion decision when MSE and CFW-trained networks used 
for recognition yielded conflicting classification out- 
comes. Since then we have tried a number of arbitration 
schemes (some involving arbitration networks); we have 
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STRONG HI1 
Fig. 10. Scatter plot of arbitrated MSE/CFM classifier outcomes. 0 in- 

dicates post-arbitration miss correctly classified by MSE. 0 indicates 
post-arbitration miss correctly classified by CFM. 

found that the most effective and most computationally 
efficient means of arbitration is simply the summation of 
the two classifiers’ output states. Fig. 10 illustrates the 
reduction in MSE misclassifications (Fig. 7) achieved 
through this form of conflict arbitration using the MSE 
and CFM objective functions. Comparing Fig. 10 with 
Figs. 7 and 8, one can see that the arbitration scheme is 
particularly effective in eliminating those misses that fall 
along the hit-miss borderline. 

Using the summation form of conflict arbitration with 
all three classifiers (i.e., training three identical TDNN’s 
with identical training data using the three different ob- 
jective functions, and processing test data with all three 
networks, summing their outputs for the final classifica- 
tion decision), we correct a median 30% of the misses 
made by the MSE classifier alone. Fig. 11 illustrates the 
3-way arbitration implementation. The MSE, CE, and 
CFM-trained TDNN’s all share the same input layer and 
develop independent outputs (representing the phoneme 
classification outcome) which are then summed and nor- 
malized (i.e., divided by the number of classifiers-3 in 
the case of the 3-way arbitration scheme illustrated). In 
Fig. 11 the ambiguous MSE classification is corrected by 

1 I 1 I ‘I 
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Fig. 1 1 .  Three-way conflict arbitration using TDNN's trained with the 
MSE, CE, and CFM objective functions. Note that the ambiguous MSE 
output is corrected by the arbitration scheme. 

arbitration with the unambiguous CE and CFM classifi- 
cations. 

Table IV summarizes the error rates for the MSE clas- 
sifier, the three possible pair-wise arbitration schemes, 
and the 3-way arbitration scheme (for the arbitration 
schemes, right-hand column values show the percentage 
of MSE errors corrected). At the bottom of the table a 
summary shows the median error rate and the total num- 
ber of errors (summed across all single and multispeaker 
trials) for the MSE classifier and arbitrated classifiers. Fig. 
12 graphically compares the error rates of the various 
classifiers. Three-way arbitration decreases the median 
error rate from 2.4% to 1.5% by reducing the number of 
classification errors by 30 % . A one-sided paired t-test ac- 
cepts the hypothesis that the mean error rates of all the 
arbitrated classifiers is significantly lower than that of the 
MSE classifier for p = 0.975. In fact, this hypothesis is 
accepted withp = 0.99 for all but the MSE/CE arbitrated 
classifier. Comparing 3-way arbitration with the three 2- 
way schemes, we find that 3-way arbitration yields a sig- 
nificantly lower error rate than MSE/CFM and MSE/CE 
arbitration schemes ( p = 0.95). The comparison of mean 
error rates for 3-way and CEKFM arbitration is less clear; 
3-way arbitration is not judged significantly better than 
CEKFM for p = 0.95, but it is judged better for p = 
0.90. Our empirical results indicate that 3-way arbitration 
is convincingly superior to all of the 2-way arbitration 
schemes for multispeaker tasks. We attribute this to the 
higher acoustic variance of multispeaker data, which gen- 
erates a higher proportion of ambiguous classification out- 
comes for the individual classifiers; 3-way arbitration 
proves more effective at resolving these ambiguities than 
2-way arbitration. 

For all the arbitration schemes in Table IV we have 
found that comparing the assumed post-arbitration min A,, 

TABLE IV 
A SUMMARY OF MSE VERSUS CONFLICT ARBITRATION RESULTS FOR THE 

MSE, CE, AND CFM CLASSIFIER COMBINATIONS (  ERROR RATE~PERCENT 
MSE ERRORS CORRECTED/[ ) 

5% MSE MSEICFM MSEICE CElCFM 3-WAY 

4% 1 

Fig. 12. A graphic comparison of MSE and conflict arbitrated error rates 
(percent errors, n = 8) .  

of (8) to a threshold provides an effective means of flag- 
ging tokens that are possible post-arbitration misses. Since 
one does not know a priori which output node represents 
the correct classification when one is processing test data, 
one assumes that the network has yielded the correct clas- 
sification for the purpose of this differential comparison. 
If min A,, falls below the threshold, the token is flagged 
as a possible miss. This scheme consistently flags 80% of 
the post-arbitration misses, at the cost of flagging 8% of 
the post-arbitration hits as possible misses. 

C. Control Experiments 
The recognition performance improvements afforded by 

conflict arbitration are significant. However, it is not clear 
from the error rates alone that the success of arbitration 
rests on qualitative differences in the internal representa- 
tions engendered by the different objective functions. It is 
conceivable that different training sessions using the same 
objective function but starting at different points in weight 
space could follow different trajectories through state 
space to optima that produce disjoint missed test token 
sets equally effective in conflict arbitration. To test this 
hypothesis we ran six training sessions on speaker MAU 
using the MSE objective function. Each of these sessions 
began at a different, randomly selected point in weight 
space. Fig. 13 summarizes our findings from using these 
six trials to generate 15 MSE/MSE arbitrated recognition 

I 
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Fig. 13. A graphic summary of an MSE/MSE conflict arbitration control 
experiment on speaker MAU: error rates and percent disjoint misses 
(MSE:n = 6 ;  MSE/MSE:n = 15) .  

trials on test data. The median percentage of disjoint 
misses between trial pairs is still quite high (58% versus 
70 % for arbitration involving different objective func- 
tions), but this statistic does not translate to substantive 
error reductions through arbitration. In fact, the median 
error rate afforded by MSE/MSE arbitration is 1.7%, 
identical to that for the MSE classifier alone. Addition- 
ally, a one-sided t test fails to reject the hypothesis that 
the mean error rates for both classifiers are equal for p 2 
0.90. 

The statistics of Fig. 13 are significant in two ways: the 
high percentage of disjoint tokens between trials suggests 
that there are many near-global optima for a given con- 
nectionist learning task in weight space; the disparity be- 
tween the error correction powers of arbitration schemes 
using different objective functions and one using the same 
objective function suggests that the efficacy of arbitration 
rests on fundamental differences in the internal represen- 
tation generated by different objective functions. It is not 
enough that the missed token sets used in an arbitration 
scheme be disjoint, they must also be qualitatively differ- 
ent in order that the postarbitration outcome not be am- 
biguous. 

We have also tested the supposition that the success of 
arbitration rests on our use of multiple networks to per- 
form the classification task: the argument is that such a 
method is tantamount to running the classification task on 
a single network with more hidden units and thus more 
powers of discrimination. Arbitration does effectively 
employ a larger network to achieve improved recognition, 
but it does so by engendering markedly different repre- 
sentations of the training data in what can be thought of 
as separate subnets. These networks learn independently 
so that their representations are complementary. This is 
not the case in a single, larger network. We find that using 
a single TDNN with twelve units in the first hidden layer 
instead of eight (see Fig. 1) actually increases error rates 
by more than 1 /2% on any given speaker. Lang and Hin- 
ton have obtained similar results and attributed this phe- 
nomenon to a TDNN architecture that has too many hid- 
den units, enabling it to learn idiosyncratic details of the 
training set [3]. This results in degraded powers of gen- 
eralization and degraded recognition performance on test 
sets. 

V. DISCUSSION 
Our initial evaluation of the CFM objective function is 

encouraging from a number of standpoints. From our trials 
it appears to perform marginally better on the /b, d ,  g/ 
recognition task than the MSE and CE objective func- 
tions, particularly for single-speaker trials. We feel that 
this stems from the issue of the objective function’s 
monotonicity on the N-dimensional hit-miss continuum 
(i.e., how closely the classification objective and the 
function used to express that objective match). 

A .  Possible Conditions Giving Rise to Degraded 
Class$cation Performance of Nonmonotonic Objective 
Functions 

In Section I1 we described the nonmonotonic nature of 
the MSE and CE objective functions. While their non- 
monotonic behavior is unquestionably possible, the con- 
ditions that would give rise to such behavior are not so 
clear. We hypothesize that nonmonotonic behavior can 
occur when networks are trained to classify stochastic 
processes. Fig. 14 shows the probabilistic nature of a hy- 
pothetical random vector Z, which is depicted as a scalar 
for the purposes of illustration. Z can belong to one of two 
classes. Although the prior probabilities of classes 1 and 
2 are equal, the class conditional densities p ( Z l  C , )  and 
p ( I (  C,) are quite different. The class conditional density 
for class 1 is the lognormal PDF [14] with parameters 
plog, = -2.2, @fog[ = 0.7, while the conditional density 
for class 2 is the uniform PDF. The differences between 
the two class conditional densities are extreme for illus- 
trative purposes. 

Fig. 14 identifies the optimal (Bayesian) classification 
boundary ( Z  = 0.8)  for the random vector Z with shaded 
arrows. Note that the two class conditional densities have 
some overlap, so the classes are not completely separable. 
Fig. 15 illustrates a random sample of Z (sample size = 
2000); the histograms have been normalized so that their 
areas are unity. One can view these histograms as esti- 
mates of the class conditional densities of Z in Fig. 14. 
Note that for this sample size the optimal classification 
boundary is equivalent to that of Fig. 14. One would ex- 
pect a network trained on the data depicted in Fig. 15 
using the MSE or CE objective functions to form a sep- 
arating surface at the optimal class boundary, since there 
are tokens from each class in close proximity to the 
boundary. We suggest that this may not happen; instead, 
the network may form a separating surface somewhere to 
the left of the optimal boundary, within a transition region 
that contains a relatively minute number of tokens from 
class 1. This can happen because the size of the network’s 
hidden layer(s) will have been constrained in order to pre- 
vent the network from overparameterizing Z (i.e., the net- 
work architecture will have been restricted in order to pre- 
vent poor generalization on disjoint test data). Owing to 
the large disparity in the numbers of class 1 and class 2 
tokens in the vicinity of the optimal classification bound- 
ary, the network will minimize its global mean-squared 



HAMPSHIRE A N D  WAIBEL: NOVEL OBJECTIVE FUNCTION FOR PHONEME RECOGNITION 225 

’i E z 

I : : : : I : i : i I -t +--, 
0.0 0.5 1 .o 1.5 

I 
Fig. 14. Class conditional densities for a two-class problem (with equal 

class “priors”). 
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Fig. 15. A sample training set for the two-class problem; 1000 samples 
are drawn from each class. 

error or cross entropy by focusing on the tokens from class 
2. 

The handful of class 1 tokens in the vicinity of the op- 
timal classification boundary will have their mean-squared 
error or cross-entropy minimized subject to the class 2 
tokens’ domination of the error minimization process. 
This constraint will mean that some test tokens of Z in the 
transition region of Fig. 15 will engender network outputs 
that fall in the dark shaded region of miss space depicted 
in Fig. 3-these values of Z will produce misses. These 
misses are not caused by poor network architecture; 
rather, they are caused by the nonmonotonic nature of the 
objective function used to train the network. This sug- 
gests that overall network classification performance is a 
function of both optimal network topology and appropri- 
ate objective function form. Nonmonotonic behavior may 
persist as the number of independent tokens used to train 

the network increases if the network architecture is fixed, 
particularly if the class-conditional densities of the input 
random vector are dramatically different (like those in 
Figs. 14 and 15). However, if the network architecture is 
augmented as the training set size increases-subject to 
the constraints imposed by good generalization on test to- 
kens-the network will be able to minimize MSE or CE 
for the class 1 tokens in the transition region despite the 
class 2 tokens’ domination of the error minimization pro- 
cess. This, in turn, will reduce and ultimately eliminate 
the misclassifications caused by nonmonotonicity of the 
objective function (see Section V-B). 

We submit that because the CFM objective function is 
more monotonic on the hit-miss continuum than its MSE 
and CE counterparts, it avoids the misclassification aris- 
ing from the phenomenon described above. In Section 
V-C we describe a variant of the CFM expression in (8) 
that is strictly monotonic on the hit-miss continuum for 
networks with arbitrarily large output dimensionality. We 
are currently conducting a series of experiments designed 
to directly confirm the hypothesis of this section. Mean- 
while, we have indirectly confirmed that the issue of 
monotonicity plays a role in the over-learning phenome- 
non. When training with the MSE and CE classifiers, we 
find that as the global set of network outputs associated 
with the training token set descends the non-monotonic 
objective (error) function in state space, most outputs 
nominally follow a steepest descent trajectory along the 
error function’s surface (e.g., Fig. 3: this is a state-space 
trajectory, governed by-but not to be confused with-the 
back-propagation search trajectory in weight-space). 
However, a small minority of training set outputs and, in 
effect, a small minority of test set outputs follow trajec- 
tories that are not along the objective function’s state- 
space gradient. These trajectories tend to trace a contour 
within the dark shaded region of miss space depicted in 
Fig. 3 along which the value of the objective function 
remains virtually constant. Some of these trajectories ap- 
pear to stem from borderline crossings from hit to miss 
domains of state space; in such cases the global error met- 
ric is reduced for the vast majority of tokens without any 
counter-acting increase due to such trajectories. This in- 
dicates that the objective function does indeed play a role 
in the development of general representations, that it has 
an effect on the degree to which such pathological errors 
are made. We have not seen these manifestations of 
overlearning with the CFM function and believe that this 
is due to the fact that it more closely approximates a truly 
N-monotonic objective function (see (4)-(7) and (1 1)- 
(13)). 

B. The Asymptotic Equivalence of Diferent Objective 
Functions 

In the multispeaker trials the CFM classifier did not 
perform significantly better than its MSE and CE coun- 
terparts. We attribute this to the higher variance of the 
multispeaker training data obscuring idiosyncratic fea- 
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tures that, combined with the less monotonic objective 
functions, would give rise to diminished generalization. 
Leung and Zue have shown results that support this con- 
clusion [15]. They used a weighted MSE objective func- 
tion to train a multilayer perceptron for speaker-indepen- 
dent vowel recognition. This weighted MSE objective 
function was more nearly monotonic on the N-dimen- 
sional hit-miss continuum for arbitrary N (a characteristic 
hereafter referred to as “N-monotonic”) than the MSE 
function. Leung and Zue found that the weighted MSE 
objective function produced lower error rates for rela- 
tively small training sets, but as training set size grew 
large (corresponding to a large increase in the number of 
speakers used for training) the error rates for the two clas- 
sifiers converged. 

C. A Monotonic CFM Variant 
We have found that the MSE and CE objective func- 

tions typically learn to classify training sets perfectly, yet 
they often produce gross misclassifications (i.e., strong 
misses) on test data. In contrast, we find that the CFM 
objective function rarely learns training data perfectly, 
while it produces a large proportion of test set misses that 
are predictable by (1 1) and (12). Indeed, Fig. 8 shows a 
large number of misses in the upper right-hand comer of 
the plot: these are borderline misses with CFM = max 
CFM,,,,. This indicates that the CFM function is making 
these borderline errors because the function is nonmono- 
tonic for N = 3. We suggest that by virtue of its non- 
monotonicity for N = 3, the CFM classifier forms clas- 
sification boundaries on its training set that equate to 
slightly suboptimal classification boundaries for test data. 
As a result, a number of test tokens are borderline misses. 

One way to assure that the CFM objective function is 
N-monotonic for arbitrary N is to alter the expression of 
(8) so that it contains only one term under the summation, 
the term with the smallest value of A,: 

(15) CFM,- monotonic 6 CFM, (min A,) 

where CFM,(A) is given in (13). We have found that 
altering the CFM objective function in this manner does 
reduce test set error rates (converting some of the border- 
line misses to borderline hits), although the resulting 
search is considerably slower owing to the reduced mag- 
nitude of the gradient of (15) versus that of (8). These 
improvements are small, on the order of tenths of a per- 
cent. In unpublished research [19] ,  K. Lang experimented 
with what amounts to a linear form of this N-monotonic 
CFM paradigm. Instead of (15), Lang’s objective func- 
tion was min A,. Lang found that his linear model did not 
perform as well as the MSE and CE classifiers. However, 
its proportion of borderline misses to total misses was sig- 
nificantly higher than those of its counterparts (i.e., his 
N-monotonic classifier made far fewer gross misclassifi- 
cations than the MSE and CE classifiers did). We hypoth- 
esize that the nonlinear CFM form may account for the 
improved performance results we have seen in our trials. 

D. A Faster Learning CFM Variant 
The CFM function in (8) learns more slowly than its 

MSE and CE counterparts. We are currently investigating 
nonsigmoidal variants of the CFM function to increase its 
learning speed and its classification accuracy in the non- 
monotonic form of (8) and the N-monotonic form of (15). 
Fig. 16 shows a promising “maximally flat” variant based 
on the log-magnitude response of the Butterworth filter 
model [16]. The maximally flat equivalent of (8) is given 
by 

l N  
CFMMF - * C - (Y 

N - 1 n = l  
n # c  

- l o g ( 1  (16) 

where all parameters are positive in value and identical in 
function to those of (8). 

Thus 

(17) 

c 20‘ (18) 

dCFMMF - 2 4 ?  (I - -=-- 
do, N - 1 1 + (I- A,)’O 

( I  - An)2s-’ 

do, N -  1 ;;;l + ( { - A , )  
dCFMMF - 243 _ _ _ _ _ _ _ .  

In our inital trials with this maximally flat CFM variant, 
we find the parameter values of (Y = 10, p = 5 ,  and { = 
1.5 (shown in Fig. 16) ( p = 5 denotes a fifth-order But- 
terworth amplitude response characteristic) yield a maxi- 
mally flat CFM objective function that learns consider- 
ably faster than its sigmoidal counterpart. Table V 
compares the median MSE, CE, CFM, and CFMMF error 
rates and learning times for six trials of the MAU /b, d, 
g/ training task (in terms of epochs, or full passes through 
the training set). The parameter values for the two CFM 
variants are CFM: (Y = 1, 6 = 4, I = 0 and CFMMF:(Y 
= 10, 

These six trials are separate from the single trial pre- 
sented in Table III-this accounts for the slightly different 
MAU error rates in Tables 111 and V. The results of Table 
V indicate that the maximally flat CFM objective function 
has a significantly higher error rate than its sigmoidal 
counterpart. However, this statistic does not reflect the 
nature of the misses produced by the maximally flat CMF 
function; more than 75% of these misses are borderline 
misses. This suggests that an N-monotonic form of (16) 
(i.e., the single term under the summation of (16), iden- 
tified by (15)) would yield very low error rates while 
maintaining an acceptable learning speed. 

Beyond the CFM objective function alone, we believe 
that our results show compelling evidence that the differ- 
ent objective functions engender consistently different in- 
ternal representations in the networks they are used to 
train. In this light, conflict arbitration offers a means of 
avoiding a substantial number of misclassifications that 
the MSE classifier would make alone. Additionally, it 
provides a sensitive and relatively specific means of iden- 

= 5 ,  I = 1.5. 
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Fig. 16. A nonsigmoidal, “maximally flat” variant of the CFM function 
(a! = 10, @ = 5 ,  b = 1.5).  

tify ing post-arbitration misses-a feature that could prove 
useful for resolving phoneme recognition ambiguities at a 
higher level of a hierarchical classification mechanism. 
We have employed conflict arbitration extensively in a 
hierarchical connectionist architecture known as the 
“ Meta-Pi” network [ 171, [ 181. This architecture uses 
multiple conflict-arbitrated TDNN modules to achieve 
multi-speaker (males and females) phoneme recognition 
at speaker-dependent recognition rates. These arbitration- 
based improvements are not without their price, they re- 
quire that three networks be trained on each training set. 
Nevertheless, we feel that the benefit warrants the cost, 
as the 1.4% error rate for three male speakers represented 
in a “single” arbitrated TDNN illustrates. We made no 
effort to choose three speakers with similar vocal char- 
acteristics (beyond choosing three males, as opposed to a 
mix of males and females). Clearly there is a limit to the 
acoustic variance allowable within a given class of speak- 
ers. The TDNN trained with six speakers (two of whom 
were women) displays recognition performance consid- 
erably below that of its three-speaker counterpart. This 
degraded performance corresponds to 15% of the post- 
arbitration hits being flagged as possible misses, almost 
twice the percentage of post-arbitration hits flagged for 
single-speaker trials. This statistic is tangential proof of 
the high acoustic variance of voiced stop speech from a 
mix of male and female speakers. 

VI. CONCLUSIONS 
We believe that the CFM objective function represents 

a substantive improvement in connectionist classifier per- 

formance. The function is less prone to overlearning than 
its MSE and CE counterparts. Our initial findings suggest 
that it is also better at a forming general representations 
of training data. We attribute these characteristics, at least 
in part, to the fact that it is a closer approximation to a 
monotonic function on the N-dimensional hit-miss contin- 
uum than are the MSE and CE objective functions. 

Arbitrated classification techniques-that is, classifica- 
tion procedures that evaluate independently developed 
outcomes, arbitrate a decision when those outcomes con- 
flict, and in the process evaluate their own performance 
by flagging suspect classifications-represent an effective 
approach to the complex real-time pattern classification 
task of speech recognition. These kinds of techniques 
could form an integral part of large connectionist systems 
capable of resolving pattern classification ambiguities at 
many levels of a distributed representation of the speech 
signal. 
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