
In Recent Advances in NLP: Current Issues in Linguistic Theory, Vol. 136, John Benjamins, Amsterdam,1996. Connectionist F-structure TransferYe-Yi Wang and Alex WaibelCarnegie Mellon UniversityAbstractA traditional transfer system in machine translation maps betweenlanguage structures and an intermediate representation. Our con-nectionist transfer system maps from f-structures of one language tof-structures of another language. It encodes the intermediate rep-resentation implicitly in neural networks' activation patterns. Thesystem is learnable, therefore it does not need any e�ort in hand-crafting the representation and mapping rules. Experiments showthe system has good scalability and generalizability performance.1 IntroductionMost of the current machine translation systems adopt an indirect strat-egy that maps between languages and an intermediate representation. Theinterlingua model (Nirenburg et al 1987) uses a language-independent in-termediate representation. Design of the representation requires cross-linguistic expertise. The intermediate representation in a transfer model(White 1987) is language-dependent. Its design is relatively easier. How-ever, multiple such representations are required for a multi-lingual trans-lator. Both models rely upon hand-crafted mapping rules, which demandtremendous human e�ort.The di�culties appeal for automatic learning mechanisms for interme-diate representations and mapping rules. Chrisman (1991) proposed a con-nectionist con
uent in
uence system that acquired the distributed inter-language representation of sentences during its learning to achieve the tightcoupling between the representations of sentences in two di�erent languages.



2 YE-YI WANG & ALEX WAIBELThe approach was hard to scale up for larger tasks or to generalize for unseeninputs, mostly due to its over-simpli�ed representation of sentences.We present here a connectionist mapper. It can learn the transfer froma source language (English) LFG f-structure (Bresnan 1982) into its corre-sponding target language (German) f-structure. It does not need explicitintermediate representation or mapping rules. Instead, the connection pat-terns of the neural networks implicitly encode the rules and representation.The domain of our task was the Conference Registration Telephony Con-versations. It covered a wide range of topics related to conferences, such asregistration, cancellation, hotel reservation, conference information inquiry,etc. The lexicon for the task contained about 400 English and 400 Germanwords in root forms. About 300 pairs of f-structures of the English andGerman sentences were available from symbolic parsers.A machine translation system for the Conference Registration task con-sisted of three parts: a parser deriving the f-structure from an input sourcelanguage sentence, a mapper generating a target language f-structure fromits source language counterpart, and a text generator producing a target lan-guage sentence from its f-structure. According to our experience, mappingbetween f-structures was the most di�cult part, which required the hand-crafting of an intermediate representation and the rules that map betweenf-structures and the intermediate representation. An automatic transfersystem is thus desirable. The system should have the following properties:Learnability: The system should be able to learn the structure transferautomatically from paired samples. It should not require hand-crafting ofany explicit representations and mapping rules.Scalability: With limited retraining, the system should be able to dealwith larger tasks with an expanded lexicon.Generalizability: The system should have satisfactory performance onunseen inputs.2 F-structure RepresentationsAn f-structure is a structured functional representation of a sentence ora phrase. It is composed of a head, terminal features, and sub-structures.For the f-structure in Figure 1a, *SEND is the head. The contents in theinner brackets are the sub-structures, whose grammatical relations or roles1are labeled next to the brackets. The rest parts in Figure 1a are the terminal1We will use Grammatical relation interchangeably with the term role.



CONNECTIONIST TRANSFER 3features. A sub-structure can be referred to with its grammatical relationor its phrasal category (NP, VP, ...). Thus the sub-structure [subj *YOU]can be called either a SUBJECT sub-structure or an NP sub-structure. TheSUBJECT, RECIP and OBJECT sub-structures are the three immediatesub-structures of the top level f-structure in Figure 1a, because there isno intervening structure between these sub-structures and the top level f-structure. The DET sub-structure is an immediate sub-structure of theOBJECT sub-structure. If A is an immediate sub-structure of B, then B isthe parent structure of A.A symbolic f-structure cannot be presented to a neural network directly.Figure 1c-f illustrates how an f-structure can be coded as a network's input.Below are the terms used for the representation.
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Figure 1: F-structure Representation. (a) an f-structure. (b) abbreviation.(c). lexical vector. (d). terminal feature vector. (e) HF-vector. (f)f-structure represented by HF-vectors.



4 YE-YI WANG & ALEX WAIBELA lexical vector is used to code a lexical item. Assuming that every lex-ical item is an entry in a two-dimensional space instead of a one-dimensionalword list, we need two indices to specify the position of a lexical item inthe space. Lexical vector is a 0-1 vector with exactly two elements being 1(being activated). The positions of the two activated elements in the vectorspecify the two indices for an item in the 2D lexicon (Figure 1c)2.The terminal feature vector of an f-structure codes the terminalfeatures of the f-structure. Each element of the vector corresponds to afeature-value pair like (TENSE *PRESENT). The vector, again, is a 0-1 vector with the activated elements indicating that their correspondingfeature-value pairs are terminal features of the f-structure (Figure 1d). Sincethere are altogether around 60 di�erent values for all the features used inthe f-structure, the length of the terminal feature vector is around 60.The HF-Vector of an F-structure is the concatenation of the lex-ical vector of the head and the terminal feature vector of the f-structure(Figure 1e).Thus an f-structure can be represented by its HF-vector and its sub-structures' HF-vectors (Figure 1f).3 The MapperA mapper is a push-down transducer that consists of:1. a symbolic controller that assigns an f-structure transfer task to a neu-ral network and interpreting the network's output. According to theinterpretation, it recursively assigns the sub-structure transfer tasksto the related networks, and assembles these networks' results to thetarget f-structure;2. seven neural networks that map phrasal f-structures between two lan-guages. Each network is constructed for a phrasal category in thetarget language: IP(sentences), VP, NP, AP, PP, DP(determiners),and MP(miscellaneous, for phrases like \hello", \oh", etc.).3.1 Phrasal NetworksA phrasal network has four layers: input, feature, hidden, and outputlayers (Figure 2a). The input layer consists of three parts:2Viewing the lexicon as 2D reduces the length of the vector used to represent a lexical



CONNECTIONIST TRANSFER 5
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6 YE-YI WANG & ALEX WAIBELHF-vectors of the sub-structures with those possible roles.Grammatical relation of the input source structure in its context3.This input is a 0-1 vector with exactly one activated element indicating thegrammatical relation of the input structure.Lexical vector of the head of the output f-structure's parent struc-ture (p-head). Sometimes, one input f-structure may be responsible for thegeneration of multiple target f-structures at di�erent levels. For example,[sentence GOODBYE] corresponds to both [sentence AUF [obj WIEDERHO-EREN]] and its sub-structure [obj WIEDERHOEREN] in the training sam-ples. This input serves as a stack pointer, indicating the level at which theoutput f-structure should be generated.The HF-vectors at the input layer are the local representations for thewords and features in an f-structure. The activation patterns of the slots atthe feature layer can be viewed as the automatically learned distributedrepresentation of the input HF-vectors (Miikkulainen 1989). The input slotshave one-to-one connections to the feature slots (Figure 2b). The slot-slotconnections share weights in such a way that the connection from the ithunit in slot A at the input layer to the jth unit in slot A at the feature layerhas the same strength as the connection from the ith unit in slot B at theinput layer to the jth unit in slot B at the feature layer. The weight sharingmakes the same HF-vector at di�erent input slots result in the same patternin their corresponding feature slots.The output layer of a phrasal network has three parts:The HF-vector of the f-structure to be generated. From this vector thehead and the terminal features of the target f-structure can be recovered.The Sub-Structures' Input Speci�ers. It consists of slots of 0-1vectors. Each slot has at most one element being activated. And each slotcorresponds to a sub-structure of a speci�c role of the target f-structure.The role of the sub-structure is implied by the position of the slot in theoutput layer. Each vector of sub-structures' input speci�er is of the size(k input layer slots k+ 1). For an output slot in sub-structures' input spec-i�er, if it has one activated element, then the sub-structure with the corre-sponding role should be included as a part of the desired output f-structure.The position of the activated element in the slot indicates the input sub-structure (as speci�ed by the slot number in the input layer) that is thecounterpart of (and therefore is responsible for the generation of) the tar-3Slot position only indicates the role of sub-structures, not the role of the inputstructure, since the HF-vector of the input f-structure with di�erent roles always occupiesthe �rst slot.



CONNECTIONIST TRANSFER 7get sub-structure, or nil when no input sub-structure is a counterpart ofthe output sub-structure. If a network does not activate any element inan output slot, then the slot's corresponding sub-structure should not beexpected as a part of the desired target f-structure.The Sub-Structures' Categories. It consists of slots of 0-1 vectors.There can be at most one element being activated in each slot, specifying oneof the seven phrasal categories for the corresponding target sub-structure.According to a network's output, the controller can build sub-structuresrecursively by assigning subsequent sub-structure mapping tasks to the net-works of the categories speci�ed in the output of sub-structures' categoriesat the output layer. The input f-structures of those mapping tasks arespeci�ed in the output of sub-structures' input speci�ers. By combining therecursively built sub-structures and the head and the terminal features fromthe output HF-vector, the desired target f-structure can be produced.4 An ExampleThe following example illustrates how the system works.Source Sentence: I would like to register for the conferenceSource F-structure: [sentence [subj I] WOULD [xcomp [subj I] LIKE [xcomp [subj I]REGISTER [pp�adj FOR [obj [det THE] CONFERENCE]]]]]Target Sentence: Ich wuerd mich gerne zur Konferenz anmelde(0) IP networkInput:source: [sentence [subj I] WOULD [xcomp [subj I] LIKE [xcomp REGISTER]]]Output:head: NILsubs: sentence <WOULD VP>4 (1)5features: (MOOD *DECLARATIVE)F-structure assembled by the controller:[sentence [subj PRONOUN] WERDE[xcomp [subj PRONOUN] [adj GERNE] ANMELDEN [obj PRONOUN][pp�adj FUER [obj [det DER] KONFERENZ]]]](1) VP network



8 YE-YI WANG & ALEX WAIBELInput:source: [sentence [subj I] WOULD [xcomp [subj I] LIKE [xcomp REGISTER]]]context: NILrole: sentencep-head:6 NILOutput:head: WERDEsubs: subj <I NP> (2)xcomp <LIKE VP> (3)features: ((CAT V) (PERSON 1) (MODAL +) (FORM FIN) ...)F-structure assembled by the controller:[ [subj PRONOUN] WERDE[ [subj PRONOUN] [adj GERNE] ANMELDEN [obj PRONOUN][pp�adj FUER [obj [det DER] KONFERENZ]]]]In step (0), the controller �rst activates the IP network with the sourceinput f-structure. There is no context input for the IP network, since thesentential f-structures are the top level f-structures in our task. From thenetwork's output, the controller knows that the head of the IP is NIL7.It also generates the sentential feature (MOOD *DECLARATIVE). And itinterprets the output as that the only sub-structure of the sentence is a Ger-man VP, whose English counterpart is the (non-proper) sub-structure withthe head WOULD8. Therefore it builds the target f-structure framework [NIL (MOOD *DECLARATIVE) [sentence *]], and activates the VP networkin step (1). Upon receiving the VP sub-structure returned from step (1), itcombines that sub-structure with the f-structure framework, and collapsesthe NIL-headed f-structure to form the assembled f-structure shown as theoutput in step (0).4The sub-structure's input speci�er and category are combined into a tuple here.5The number in the parenthesis indicates the subsequent step of network activationfor this sub-structure.6P-head is the head of the target f-structure's parent structure7NIL-headed f-structure happens only when there is only one sub-structure or whenthere is an xcomp sub-structure. The NIL-headed f-structure must collapse into the onlysub-structure in the �rst case, or into the xcomp sub-structure in the second case. Allterminal features and other sub-structures are moved into the collapsed-into sub-structureduring collapsing.8The network actually speci�es the slot at the input layer instead of the lexical itemWOULD.



CONNECTIONIST TRANSFER 9In step (1), the input source was determined in step (0), since the sen-tence sub-structure's head was \WOULD" according to the IP network'ssub-structure's input speci�er in step (0). The context input is NIL becausethe source f-structure does not have a parent f-structure. The input role hasthe value sentence because the slot position of the output sub-structure instep (0) implies the grammatical relation of the sub-structure is sentence.The input p-head is NIL because the head of target f-structure in step (0)was NIL as speci�ed by the output HF-vector there.The VP network maps the input f-structure to its German counterpartby specifying (a) the head of the German VP structure WERDE and theterminal features of the German VP structure in the output HF-vector,and (b) the input speci�ers and the categories of the sub-structures of thetarget German VP f-structure. To build detailed sub-structures for this VPf-structure, the controller will activate the NP network with the input of theEnglish sub-structure with the head \I" and the VP network with the inputEnglish sub-structure with the head \LIKE" in the subsequent steps, andcombine the sub-structures returned from these subsequent steps into thef-structure framework [[subj *] WERDE [xcomp *]]. The combined structureis then returned to step (0) to be integrated into the top level f-structureframework there.5 Training, Testing and PerformanceFrom the 300 sentential f-structure pairs, we extracted all the GermanNP sub-structures, their grammatical relations and their parent structures'heads. We labeled their English counterparts9. These were all the infor-mation required for the training of the NP network. About 700 samplesfor the NP networks were created this way. The training samples for theother networks were prepared in the same way. The NP network had themost samples, while the MP network had the least of 89 samples. Stan-dard back-propagation was used to train the networks. We also tried theinformation-theoretical networks (Gorin et al 1991) to generate the head ofa target structure in the HF-vector, which required less training time andachieved comparable performance as the network trained with pure back-propagation algorithm (Wang 1994). The training took 500 to 2000 epochsfor di�erent networks, and the training time ranged from one hour to threedays on DECStation 5000. The mapper achieved 92.4% accuracy on the9An NP's counterpart is not necessary to be an NP.



10 YE-YI WANG & ALEX WAIBELtraining data10.Learnability: The connectionist f-structure transfer described abovedid not require any hand-crafted rules or representations. The structuretransfer was learned automatically. By clustering the distributed represen-tations of words learned by the networks, i.e., the activation patterns of afeature slot when a lexical item was presented to its connected input slot,we had some interesting �ndings about what was learned by the networks.One of them was that the feature patterns for English nouns in the DPnetwork were clustered into three classes, which re
ected the three gendersof German nouns: the German translations of the words in each class wereroughly of the same gender. Another �nding was about the classi�cation ofverbs. When we clustered the feature patterns for verbs in the VP networks,we found some intransitive verbs like register in the same class as most ofthe transitive verbs. This seemly strange classi�cation is not odd at all if weconsider the fact that the German translation for register, \anmelden", is atransitive verb. These two independent �ndings reveal the networks' abilityto discover some linguistic features of the target language and use it in therepresentation of an entity of the source language which does not possessthose features. This is exactly what a symbolic transfer are supposed to do:using an intermediate representation which re
ects the linguistic features ofthe two languages in question (even if one of the languages may have degen-erated form for a speci�c feature,) and thus being able to make a \transfer"at both the lexical and structural level into corresponding structure in thetarget language. Our system learned the intermediate representation au-tomatically, although it was not expressed explicitly in symbolic forms butencoded in the networks' activation patterns. Because the development ofthis representation was integrated into the process of automatic learning off-structure mapping, it tended to include in the intermediate representationthe important language speci�c linguistic features which were directly rele-vant for the ultimate purpose of structure transfer. In the other words, thelearning of the intermediate representation was focused on the purpose ofimproving the transfer performance. This is one of the biggest advantageof this approach over the hand-crafted intermediate representation.Scalability: We did a preliminary scalability experiment. We extendedthe source and target language lexicon by 2%, and made 30 new f-structureswith these new lexical items. Trying to scale up from what was alreadylearned, we froze all but the input-feature connections, trained the network10A source language f-structure is said to be accurately mapped if the generated targetlanguage f-structure is exactly the same as desired in the sample.



CONNECTIONIST TRANSFER 11for about 40 epochs with the new data, then �ne-tuned all the connectionswith old and new data for a few epochs. In doing so, we let the networks �rstlearn the new words to derive their distributed representations, and thenlearn the structure mapping for the new data later. This approach wasbased on the observation that a big portion of the new English words weretranslated to some German words already in the lexicon, which in turn wastranslated from some English words in the old training data. These old En-glish words were mostly the synonyms of the new English words. By freezingthe other connections and training only the input-feature connections, wehoped the networks to be able to develop the distributed representation fora new word similar to the already-learned representations of its synonyms.This approach greatly reduced the learning time for new words, sincethe one layer back-propagation was much fast than the full-blown learning.The mapper with the new phrasal networks that were retrained this wayachieved 83.3% accuracy on the new data, without a�ecting the performanceon the old data.Generalizability: A separate set of data was used to test the gener-alization performance of the system. The testing data was collected frompeople not associated with our researches. The data was compared withthe training corpus, and the sentences that appeared in the training datawere removed. An LR parser parsed the sentences to English f-structures.The English were translated into German manually, and the translationswere parsed by a German LR-parser. We picked the most probable struc-ture when a parsing result was ambiguous. There were 154 f-structure pairsafter we eliminated the wrongly-parsed sentences. The mapper achieved61.7% accuracy on the testing data. Considering the limited number oftraining samples, this performance was encouraging. Previous research asin (Chrisman 1991) did not generalize to deal with unseen data.6 DiscussionThe application of the connectionist transfer described in this paperhas its restrictions. First, it requires well-formed f-structures for both theinput and output sentences. This greatly limits the applicable domain ofthe approach to well-structured \clean" languages. It is di�cult to use thisapproach for spoken language where performance data like ungrammaticalutterances, noises, false starts are pervasive.Another restriction is that this approached can only achieve satisfactoryperformance when the input and output languages are similar, in the sense



12 YE-YI WANG & ALEX WAIBELthat the translation equivalents in the two languages mostly have similarrecursive f-structures. Although the system can deal with structurally dif-ferent input/output sentences, like the aforementioned example of [sentenceGOODBYE] and [sentence AUF [obj WIEDERHOEREN]], we believe that theperformance would drop signi�cantly if drastic structure di�erences betweentranslation equivalents are very common for the two languages in question.Fortunately, as shown by our data, the structural di�erence between Englishand German is not so drastic to ruin our system's performance.Although we had done some scalability experiment, it is unclear howthe system will perform if we increase the lexicon signi�cantly instead of by2%. Because of the limitation of available data, we found it very di�cultto conduct scalability experiments with much more expanded lexicon. Wehope that with stable incremental performance, the system can be graduallyand easily retrained to deal with more complicated problems.



CONNECTIONIST TRANSFER 137 ConclusionAiming at the di�culties in symbolic transfer, we have proposed a connec-tionist transfer system that maps between f-structures of two languages. Itcan discover meaningful linguistic features by learning. Its performance ispromising with respect to learnability, scalability and generalizability.REFERENCESBresnan, Joan. 1982. The Mental Representation of Grammatical Relations.Cambridge: MIT Press.Chrisman, Lonnie. 1991. \Learning recursive distributed representations forholistic computation". Connection Science, 3(4):345{366.Gorin, Allen L., Steve E. Levinson, A. N. Gertner &E. Goldman. 1991. \Adptiveacquisition of language". Computer Speech and Language, (5):101{132.Miikkulainen, Risto & Michael G. Dyer. 1989. \A modular neural networkarchitecture for sequential paraphrasing of script-based stories". Proceedingsof the International Joint Conference on Neural Networks. IEEE.Nirenburg, Sergei, Victor Raskin & Allen B. Tuker. 1987. \The structure of inter-lingua in TRANSLATOR". Machine Translation: Theoretical and Method-ological Issues ed. by Sergei Nirenberg. Cambridge: Cambridge UniversityPress.Wang, Ye-Yi. 1994. \Dual-coding theory and connectionist lexical selection".Proceedings of the 32nd Annual Meeting of the Association for ComputationalLinguistics, student session, pages 325{327.White, John S. 1987. \The research environment in the METAL project". Ma-chine Translation: Theoretical and Methodological Issues ed. by Sergei Niren-berg. Cambridge: Cambridge University Press.


