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Far-Field Speaker Recognition
Qin Jin, Tanja Schultz, and Alex Waibel

Abstract—In this paper, we study robust speaker recognition
in far-field microphone situations. Two approaches are investi-
gated to improve the robustness of speaker recognition in such
scenarios. The first approach applies traditional techniques based
on acoustic features. We introduce reverberation compensation as
well as feature warping and gain significant improvements, even
under mismatched training–testing conditions. In addition, we
performed multiple channel combination experiments to make
use of information from multiple distant microphones. Overall, we
achieved up to 87.1% relative improvements on our Distant Mi-
crophone database and found that the gains hold across different
data conditions and microphone settings. The second approach
makes use of higher-level linguistic features. To capture speaker
idiosyncrasies, we apply n-gram models trained on multilingual
phone strings and show that higher-level features are more robust
under mismatching conditions. Furthermore, we compared the
performances between multilingual and multiengine systems,
and examined the impact of a number of involved languages
on recognition results. Our findings confirm the usefulness of
language variety and indicate a language independent nature
of this approach, which suggests that speaker recognition using
multilingual phone strings could be successfully applied to any
given language.

Index Terms—Far-field microphones, mismatched conditions,
multilingual phone strings, robust speaker recognition.

I. INTRODUCTION

AUTOMATIC speaker recognition has developed into an
important technology and is lately perceived to be crucial

to various speech-aided applications. Traditional approaches,
such as Gaussian mixture models (GMMs) [4] achieve very high
accuracies for speaker identification and verification tasks on
high-quality data when training and testing conditions are well
controlled. However, real-world speech-aided applications re-
quire handling a large variety of speech signals, corrupted by
adverse environmental conditions (noise, background, channel),
and mismatched training–testing conditions, i.e., scenarios in
which speaker models were trained in one signal condition but
deployed in different conditions.

GMM-based systems are known to degrade significantly
under adverse and mismatched conditions, often below the
threshold of being useful to real-world applications. This
degradation becomes even more severe when the speech signals
are captured from the distance [5]. However, while far-field
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Fig. 1. Distant table microphone setup in ICSI meetings.

speech recognition has been investigated for some time, far-field
speaker recognition has not received much attention yet.

This paper describes our efforts to improve the perfor-
mance of speaker recognition in far-field situations, focusing
on meeting scenarios that are recorded with multiple distant
microphones. We tackle this problem by two approaches
that differ in the level of applied linguistic knowledge. Our
low-level approach follows the traditional GMM techniques,
applying acoustic features. Here, we introduced reverberation
compensation, feature warping, and multiple channel combina-
tion techniques to alleviate the issues of acoustic mismatches.
In the high-level approach, we explore the potential of phonetic
speaker information and speaker pronunciation idiosyncrasy.

II. DATABASES

We use three distant microphone databases that differ in mi-
crophone positioning, room characteristics, and speaking style
for evaluation, in order to demonstrate the robustness of our ap-
proaches and to compare results across sites.

A. ICSI Meeting Database

The ICSI Meeting Database [3] contains 75 meetings with
simultaneous multichannel audio recordings collected at the In-
ternational Computer Science Institute (ICSI) in Berkeley, CA.
We selected 24 out of a total of 53 speakers for training and
testing based on the speakers’ position with respect to the micro-
phone and their total speaking time. Fig. 1 illustrates the distant
table microphone arrangement in the ICSI meeting room and
indicates the position of the selected speakers. The table micro-
phones are desktop omnidirectional pressure zone microphones
(PZMs). They were arranged in a staggered line along the table
center. We randomly selected 90 s of speech per speaker from
the meetings as training data. The remaining speech was used
for testing, which leads to 397 test trials in total for all speakers.
Test segments longer than 20 s were split into 20-s chunks.

B. 2-D Distant Microphone Database

The 2-D Distant Microphone database (2-D DMD) collected
at the Interactive Systems Labs in 2000 [14] contains record-
ings from microphones at various distances. Similar to the ICSI
setup, the microphones were arranged in a staggered line along
the table center. However, there were eight microphones used in
total, one close-talking Sennheiser headset microphone (Dis0),
one Lapel microphone (DisL) attached to the speaker’s lapel,
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Fig. 2. Microphone setup in 2-D DMD collection.

Fig. 3. Microphone setup in 3-D DMD collection.

and six additional Lapel microphones, mounted on microphone
stands positioned at distances of 1 ft (Dis 1), 2 ft (Dis 2), 4 ft
(Dis 4), 5 ft (Dis 5), 6 ft (Dis 6), and 8 ft (Dis 8) to the speaker,
respectively.

Fig. 2 displays the microphone distance arrangement with re-
spect to the speaker (top) and that all microphones are posi-
tioned in the same vertical space, but not the same horizontal
one (bottom), hence the name “2-D” database.

The database consists of 30 speakers (16 female, 14 male).
Each speaker recorded five sessions using all eight microphones
in parallel. The speakers sit at the table and read articles. The
articles were different for each session. For each speaker we
randomly select 60 s from the first session as training data. The
remaining data was split into 20-s segments and used as test
trials, summing to 60 test trials.

C. 3-D Distant Microphone Database

We collected a second Distant Microphone Database (3-D
DMD) [14] to investigate robust speaker recognition with dis-
tant microphones arranged in the 3-D space. Five microphones
(labeled as 1 to 5) are hanging from the ceiling, while three mi-
crophones (6, 7, and 8) are mounted on the meeting table, as
depicted in Fig. 3 (left-hand side). The right hand-side of Fig. 3
illustrates the positioning of these eight microphones with re-
spect to the speaker. The cubical grid defines the distances of
the microphones to the speaker. A grid unit corresponds to 0.5
m. The recording room of the 3-D DMD was quieter and slightly
smaller than in the 2-D DMD setup.

For the recordings, we used miniature cardioid condenser mi-
crophones that are very similar to omnidirectional microphones.
Since the speaker (sound source) is not omnidirectional, the mi-
crophones will receive different signals even when they have
the same Euclidean distance to the speaker. Therefore, we de-
fined the distance between the microphone (receiver) and the

speaker (sound source) to be the Euclidean grid distance, which
is penalized by both the horizontal and vertical angles between
the speaker and the microphone. For example, the distance of
channel 5 is computed as

(1)

which is the Euclidean distance in both horizontal and vertical
planes divided by the cosine values of the angle in horizontal
plane and vertical plane, respectively. For Dis 6, Dis 7, and
Dis 8, no vertical angle penalty was applied since the speaker
is positioned in the same horizontal plane as the table micro-
phones. The distance calculations gave

and .
The 3-D DMD consists of 24 speakers (4 female, 20 male).

We recorded one session per speaker, in which they were asked
to talk about ten given topics in a spontaneous speaking style.
The duration varies from 8 to 20 min. As training data, we ran-
domly picked 2 min of speech from the first 80% of a speaker’s
recording. The remaining 20% of speech was split into 20-s seg-
ments, leading to a total of 183 test trials over all speakers. Al-
though the fact that test and training data are taken from the
same session may result in optimistic estimates, such experi-
mental design allows us to focus on far-field effects. All test
speakers are assumed to be enrolled in the system, i.e., we per-
form a closed-set speaker recognition task.

III. FEATURE PROCESSING FOR FAR-FIELD

A. Reverberation Compensation

Speech signals recorded by a distant microphone are more
prone to be degraded by additive background noise and rever-
beration. Considering room acoustics as a linear shift-invariant
system, the receiving signal can be written as

(2)

where the source signal is the clean speech, is the im-
pulse response of the room reverberation, and is the room
noise. Cepstral mean subtraction (CMS) [2] has been success-
fully used to compensate the convolution distortion. In order for
CMS to be effective, the length of the channel impulse response
has to be shorter than the short-time spectral analysis window,
which is usually 16–32 ms. Unfortunately, the duration of the
impulse response of reverberation usually has a much longer
tail, more than 50 ms. Therefore, traditional CMS will not be as
effective under these conditions.

Following the work of Pan [19], we separate the impulse re-
sponse into two parts and , where

otherwise

otherwise.

We rewrite formula (2) as
. is a much shorter impulse response with length
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smaller than the DFT analysis window; thus, it can be compen-
sated by the conventional CMS. We treat similar
to additive noise and apply the noise reduction technique
based on spectrum subtraction. Assuming the noise

could be estimated from , the spectrum sub-
traction is performed as

where is the noise overestimation factor, and is the spec-
tral floor parameter to avoid negative or underflow values. We
can empirically estimate the optimum and on a devel-
opment dataset. We found that the system performance is not
sensitive to . Within the range of 20–40 ms there is no signif-
icant difference on the effect of the spectra subtraction. How-
ever, outside that range, there is obvious performance degrada-
tion. For the recording setup, we found and

to be optimal in most changing conditions,
based on development data described in [19]. Standard CMS
was applied after spectrum subtraction to eliminate the effect of

.

B. Feature Warping

The feature warping method applied here [1] warps the distri-
bution of a cepstral feature stream to a standardized distribution
over a specified time interval. The warping can be considered as
a nonlinear transformation , which transforms the original fea-
ture to a warped feature , i.e., . This can be im-
plemented by cumulative distribution function (CDF) matching
as described in [6], which warps a given feature such that its
CDF matches a desired distribution, for example the normal dis-
tribution. This method assumes that the dimensions of the Mel
frequency cepstral coefficient (MFCC) vectors are independent.
Therefore, each dimension is processed as a separate stream.
The CDF matching is performed over short time intervals by
shifting a window, and only warping the central frame of that
window. The warping executes as follows:

• For where is the feature dimension.
• Sort features of dimension in ascending order in a given

window.
• Warp the raw feature value in dimension of the

central frame to its warped value , which satisfies
, where is the probability den-

sity function (PDF) of the standard normal distribution,
i.e., and is its cor-
responding CDF value. Suppose has a rank and the
window size is . Then, the CDF value can be approxi-
mated as .

• Find by lookup in a standard normal CDF table.
In our experiments, we set the window size to 300 frames and

the window shift to one frame. Zeros are padded at the beginning
and at the end of the raw feature stream.

C. Experiments on Noise Compensation

Throughout this paper, the system performance is measured
using closed-set speaker identification accuracy, which corre-
sponds to the percentage of correctly recognized test trials over
all test trials. This GMM-based system was evaluated in NIST
CLEAR 06 and CLEAR 07 evaluations and achieved very com-
petitive results.

TABLE I
BASELINE SYSTEM (BASELINE-CMS) PERFORMANCE (%) ON 3-D DMD

The front-end processing relies on 13-dimensional MFCC
signal analysis every 10 ms. Noninformative frames are re-
moved by performing speech detection based on normalized
energy, with an empirically set threshold that is applied to all
microphone channels. The mean feature vector in CMS is com-
puted on the informative frames only, all noninformative frames
are discarded from training as well as from testing. The baseline
system (baseline-CMS) consists of the following components:
1) energy-based speech detection, 2) 13-dimensional MFCC
front-end processing and CMS, and 3) 128-mixture GMMs per
speaker model trained with the EM algorithm. The “improved
baseline system RC Warp CMS ” varies from the baseline
system only in applying reverberation compensation (RC) and
feature warping (Warp) in addition to CMS in the front-end
processing.

1) Results of the Baseline System: Table I presents the
baseline speaker recognition accuracies on the 3-D DMD.
Rows refer to training channels and columns refer to test
channels. Bold numbers indicate that accuracies of matched
training-testing conditions (i.e., speaker models trained and
tested on the same channel) are much higher than accuracies
of mismatched conditions (off the diagonal cells). From this
table, we also observe large differences in recognition results
among training and test pairs. For example, the performance
for training on CH1 and testing on CH2 (94%) differs a lot
from the performance when training on CH2 and testing on
CH1 (61.2%). This is expected as the quality of test speech has
a large impact on the system performance. Since microphone 1
is hanging from the ceiling behind the speaker (see Fig. 3), it
receives more reverberations, therefore the CH 1 signal is more
distorted. Also, CH 1 has the largest distance according to our
distance definition in Section II-C. Consequently, the average
performance on CH 1 is the worst among all the channels as
shown in Fig. 4.

Fig. 4 shows the correlation between recognition accuracy
and channel distances on the 3-D DMD. Apparently, the per-
formance is a function of the distance value: after surpassing a
critical distance (mic 1, 4, 5) the performance decreases signif-
icantly. The worst performance is achieved for the two ceiling
microphones, which are mounted in the back of the speaker.

Fig. 5 summarizes for each test channel the performance of
the baseline system (baseline-CMS) under matched and mis-
matched conditions. The curve for the matched condition cor-
responds to the bold numbers in Table I. The curve for mis-
matched conditions gives the average performance, calculated
over each but the diagonal cell of a column in Table I. The
bars of the curve for mismatched conditions in Fig. 5 refer to
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Fig. 4. Correlation between performance and distance on the 3-D DMD.

Fig. 5. Baseline performance (matched versus mismatched) on 3-D DMD.

TABLE II
RC AND WARP IMPACT ON 3-D DMD

the performance range. The average accuracy under matched
conditions is 94.0% and compares to 74.2% for mismatched
conditions, which proves that the system performance degrades
severely under mismatched conditions. Furthermore, the range
varies strongly between the different channels and tends to be
smaller for the closer microphones.

2) Results From the Improved Baseline System: Table II
shows the performance and relative improvements over the
baseline results on the 3-D DMD when applying reverberation
compensation, feature warping, and their combination. Each
approach outperforms the baseline under both matched and
mismatched conditions. Furthermore, the combination of both
gives additional gains, indicating that the two techniques take
care of different signal degradation effects.

Fig. 6 summarizes the gains achieved by reverberation
compensation and feature warping RC Warp on all three
data sets. Significant improvements were achieved under both
matched and mismatched conditions on all three data sets. On
average, we achieved 45.5% and 41.6% relative improvements
under matched and mismatched conditions on 3-D DMD,
20.0% and 17.7% on 2-D DMD, and 31.9% and 34.1% on
the ICSI Meeting Database. These results confirm that the
applied methods are robust under different microphone posi-
tionings and distances, as well as for different speaking styles.

Fig. 6. Gains from RC Warp on 3-D (top), 2-D (middle), and ICSI (bottom);
all three figures share the same legend as shown in the top figure.

Consequently, we will use both techniques in all following
experiments and refer to this improved system as “improved
baseline RC Warp CMS .” In the next section, we will
investigate the concept of multiple channel combination for
further improvements.

IV. MULTIPLE CHANNEL COMBINATION

The setup of hands-free multiple distant microphones is
cheap and easy compared to arrangements such as microphone
arrays and becomes common practice in applications like
meetings and lectures. In order to benefit from such a multiple
channel setup, we investigated four approaches to combine
information from multiple channels.

A. Data Combination (DC)

In the DC approach, speaker models are trained by combining
data from multiple channels, here from all mismatching chan-
nels, i.e., for the evaluation on channel 1, the speaker models
are trained on all but channel 1 data. In the 3-D DMD case this,
would lead to an increase of training data by a factor of 7 (3-D
DMD has eight channels). However, since we aim to study the
effect of data variety rather than data volume, we limited the
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training data to the same size as in the matched condition. In
case of 3-D DMD, the training data for the speaker on channel
1 (CH 1) is formed by randomly selecting a fraction of th
data from the mismatched channels (CH 2 to CH 8).

B. Frame-Based Score Competition (FSC)

In the FSC approach, we compute the likelihood of ob-
serving a speaker based on a set of GMM models, where the
term “score” refers to the log likelihood. Before explaining
the FSC approach, we briefly review the likelihood calculation
and decision rules in a GMM-based system. The GMM of
speaker is defined as a mixture of Gaussian distributions

and the identifi-
cation decision is given by

, where is the recognized speaker identity, is the
total number of enrolled speakers, and is the log
likelihood score that the entire test feature set was generated
by the GMM .

The likelihood of an observation (here for feature vector )
given a GMM model of speaker is estimated as

(3)
The feature vectors are assumed to be independent and

identically distributed (i.i.d.). Accordingly, the likelihood of ob-
servation sequence given is estimated as

(4)

(5)

Since a multiple microphone setup emits speech sam-
ples from multiple channels, we can build multiple GMM
models for each speaker , one for each channel and refer
to them as . For a total number of channels we get

models for speaker .
The idea of the FSC approach is to use the set of multiple

GMM models rather than a single GMM model. In each frame,
we compare the incoming feature vector of channel to all
GMMs
of speaker but the GMM of the test channel . The highest
log likelihood score of all GMM models is chosen to be the
frame score. Finally, the log likelihood score of the entire test
feature vector set from channel is estimated as

(6)

Fig. 7. Speaker recognition procedure with FSC.

This multiple-channel competition process differs from the one-
channel standard scoring process in that the per-frame log like-
lihood scores are not necessarily derived from the same micro-
phone. Fig. 7 illustrates how the standard procedure gets re-
placed by the circled portion to form the “frame-based score
competition” speaker recognition approach.

C. Segment-Based Score Fusion (SSF)

The term “segment” refers to the entire test utterances, i.e.,
the complete set of test feature vectors . In the “segment-based
score fusion” approach, we compute the score of a test utter-
ance from channel given the set of GMM models

for speaker by a fusion of all GMM
models scores but the one from

(7)

The fusion weights are simply set to be equal across chan-
nels.

D. Segment-Based Decision Voting (SDV)

In the “segment-based decision voting” approach, the entire
set of feature vectors is evaluated multiple times by particular
speaker models that were trained on one mismatched channel.
As a consequence, the speaker identity decision rule delivers

identity values, one for each mismatched channel. The
final decision for the speaker’s identity is made by picking the
identity value which appears the most often among the
values. In case of a tie, we pick the one with the highest log-
likelihood score.

E. Experimental Results on Mismatched Conditions

We investigated the performance of all proposed multiple-
channel combination approaches on the three described data
sets. Fig. 8 presents the performance improvements under mis-
matched conditions for 3-D DMD (top), 2-D DMD (middle) and
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Fig. 8. Multiple-channel combination on 3-D (top), 2-D (middle), ICSI
(bottom); all three figures share the same legend as shown in the top figure.

ICSI (bottom) and shows that significant improvements were
achieved for all combination approaches.

On average, “Data Combination” gives 72.8% relative im-
provement over the improved baseline RC Warp CMS and
84.1% relative improvement over the baseline (baseline-CMS),
i.e., DC achieves additional gains over reverberation compen-
sation and feature warping. Since we controlled the amount of
data in the DC approach to be the same as in the baseline, the
gains prove that more variability in training data significantly
improves the robustness of speaker recognition. 77.8% relative
improvement was achieved by the “frame-based score compe-
tition,” 62.4% by the “segment-based score fusion” and 57.9%
by “segment-based decision voting” over the improved baseline
RC Warp CMS . This indicates that it is beneficial to use

information from multiple sources, even though each single one
is not very powerful. We also tested the DC approach using all
data from all channels and observed 76.9% relative improve-
ment over the improved baseline RC Warp CMS . Com-
pared to the 72.8% above from the controlled data amount, this
testifies that the significant improvement is mostly due to the
larger variability rather than the larger amount in training data.
Even higher relative gains are achieved on the 2-D DMD. We

TABLE III
RELATIVE IMPROVEMENT BY MULTIPLE-CHANNEL COMBINATION

Fig. 9. Multiple-channel combination for all channels (3-D DMD).

see 81.9%, 91.0%, 77.4%, and 64.7% relative improvements by
DC, FSC, SSF, and SDV, respectively. On the ICSI Meeting
Database, we got 9.7%, 11.4%, 6.8%, 3.5% relative improve-
ment by DC, FSC, SSF, and SDC over the improved baseline
RC Warp CMS under mismatched conditions. The im-

provement differences among the three databases might be a re-
sult of the range of speaking styles (2-D is read speech, 3-D
is spontaneous but monologue, ICSI is meeting style). The sig-
nificantly smaller gains for ICSI might be due to the smaller
number of channels, which makes channel combination less
powerful. Table III summarizes these findings for all four mul-
tiple-channel combination approaches on the three databases
and shows that the “frame-based score competition” approach
achieves the highest improvements, while “segment-based de-
cision voting” gives the lowest gains. We think the reason why
the FSC approach works best among the multiple channel com-
bination approaches is that FSC combines multiple sources at
the finest granularity, i.e., at the frame level, while the other ap-
proaches combine at the segment level.

F. Matched and Mismatched Conditions

In the experiments above, we focused on the performance
impact of multiple-channel combination approaches under mis-
matched-channel conditions. For this purpose, we use only data
of mismatched channels. However, this does not imply that we
always assume to have prior knowledge about the channel origin
of the test signal. The intention was rather to prove that very
high speaker recognition accuracies can be achieved, even when
no data of particular microphone positions are available. In this
section, we investigate if the performance can be further im-
proved by including training material of the matched channel.
Fig. 9 compares the performance of multiple-channel combina-
tion with the improved baseline RC Warp CMS when
all channel data including the matched channel are used for
training. The results show that, on average, DC and FSC out-
perform the improved baseline, while SSF and SDV do not gain
but stay within close range.
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Fig. 10. Performance of FSC versus number of training samples (3-D DMD).

The strength of the multiple-channel combination shows
when training data gets scarce. Fig. 10 compares the perfor-
mance of the improved baseline RC Warp CMS with
FSC for varying number of training samples (in seconds).
Obviously, the performance differences increase with smaller
amount of training data. With 120 s of training material, the
relative improvements of FSC over the improved baseline
RC Warp CMS is 24.2%, while with 30 s, the gain

increases to 62%.

V. FAR-FIELD PHONETIC SPEAKER RECOGNITION

Recently, the focus in automatic speaker recognition has ex-
tended from utilizing low-level acoustic features to “higher-
level” features, originally proposed by [12] in the context of
speaker recognition. Most prominent example of this phonetic
speaker recognition are phonetic n-gram models, which are sup-
posed to capture speaker idiosyncrasies and other phonetic and
lexical speaker patterns [7]–[11], [13].The basic idea is to de-
code speech by various phone recognizers and to use the relative
frequencies of phone n-grams as features for training and evalu-
ating speaker models. In this section, we describe our extension
of phonetic speaker recognition to the far-field speaker recog-
nition task. We enrich existing algorithms by applying a larger
number of language independent phone recognizers, compare
multilingual to multiengine system combinations, and study the
number of languages involved in decoding the speech.

A. Phonetic Speaker Model Training and Evaluation

To decode the speaker’s speech into phone sequences, we
used phone recognizers from the GlobalPhone project [17]
available in eight different languages: Mandarin Chinese (CH),
German (DE), French (FR), Japanese (JA), Croatian (KR),
Portuguese (PO), Spanish (SP), and Turkish (TU). Fig. 11
shows the phoneme error rate in relation with number of
phonemes modeled in each phone recognizer. Phone recogni-
tion is performed with a Viterbi search using a fully connected
null-grammar network of mono-phones with equal-probable
language model, i.e., no prior knowledge about phone statistics
is applied to the decoding. For further details on the phone
recognizers, we refer the reader to [16]. Silence labels of dura-
tion greater than 0.5 s in the obtained phonetic sequences were
wrapped together as an end of utterance to capture information

Fig. 11. Phoneme error rate versus modeled phonemes.

about how a speaker interacts with others by for example
pausing frequently.

Based on the postprocessed phonetic sequences, we gener-
ated language-dependent speaker phonetic models (LSPM) by
applying n-grams modeling. Bigram models were estimated
from the CMU-Cambridge Statistical Language Modeling
Toolkit (CMU-SLM) [15]. In the following, LSPM refers to
the language-dependent phonetic bigram model of speaker
in language . To train a speaker model for speaker , each of
the phone recognizers decodes the
training data of speaker to produce phonetic sequences.
Based on these phonetic sequences, LSPMs are created for
speaker . No transcriptions of speech data are required at any
step of model training. To recognize a speaker, each of the
phone recognizers of language (the very same as used
for generating the phonetic sequences) decodes the test speech.
The resulting phonetic strings are scored against LSPMs in
language that matches the language of the phone recognizer.
The scoring is performed by calculating the perplexity
of the test sequence on LSPM . Finally, the perplexity scores
from all languages are combined into a final decision score
IDS for speaker , with an (equal) fusion weight for each
language

IDS

An unknown speaker is identified as by

IDS

where refers to the total number of enrolled speakers. We
refer to this approach as LSPM-pp and illustrate the recognition
process in Fig. 12 for .

For the LSPM-pp approach, the data amount per speaker is
crucial in order to estimate reliable probabilities for the bigram
speaker models. Therefore, we tested this approach on the 2-D
DMD as this database has the most data per speaker. The first
four sessions in 2-D DMD are used for training (about 7 min per
speaker, which corresponds to roughly 5000 phone tokens). The
evaluation is carried out on the remaining fifth session, resulting
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Fig. 12. Decision score computation with LSPM-pp (one enrolled speaker).

TABLE IV
PERFORMANCE PER LANGUAGE ON DIS0 UNDER MATCHED CONDITION (%)

in about 1 min of speech per speaker, corresponding to 1000
phone tokens.

We developed two systems for phonetic speaker recognition.
The first uses the eight phone recognizers from the eight Glob-
alPhone languages, refered to as the “multilingual system.”
The second system called “multiengine system” was produced
by English phone recognizers trained on multiple condi-
tions (conversational telephone speech—SWB, spontaneous
wide-band dialogues—Verbmobil, and planned broadcast news
monologues—BN). Since the first system draws information
from complementary phone recognizers, we anticipate greater
robustness. Furthermore, the multilingual system is expected to
be somewhat language independent.

B. Multilingual LSPM-pp Speaker Identification Results

Table IV gives a breakdown for language-dependent speaker
recognition accuracy of the LSPM-pp approach at different test
length under matched conditions for distance Dis0. It shows that
the performance decreases significantly with shorter test dura-
tion on single languages, but that the fusion of multilingual in-
formation from all eight languages can overcome this shortfall.
Table V compares the multilingual LSPM-pp recognition results
for all distances on varying test durations under matched and
mismatched conditions. In case of mismatched conditions, we
apply all phonetic models LSPM for speaker ,
where is the total number of distant channels, i.e., we do not

TABLE V
LSPM-PP PERFORMANCE UNDER MATCHED

AND MISMATCHED CONDITIONS (%)

assume to know the test channel. For this scenario, final deci-
sion score is computed as

IDS

where is the decision score in language on the distant
channel . The decision rule is given as

IDS

where is the index of enrolled speakers, and is the total
number of enrolled speakers. Since we used all the channels
under mismatched conditions, we sometimes see better perfor-
mance than under matched condition.

C. Multiengine LSPM-pp Speaker Identification Results

Implicit to our strategy is the assumption that phone strings
originating from different language-dependent phone rec-
ognizers yield crucial complementary information. In the
following experiment, we explore if the success of this ap-
proach indeed results from language diversity or from simply
using different recognizers. If the latter is the case, a multi-
engine approach, in which phone recognizers are trained on
the same language but different conditions, might perform
equally well. To test this hypothesis, we trained three English
phone recognizers on different channel conditions (telephone,
channel-mix, clean) and speaking styles (highly conversational,
spontaneous, planned) using data from Switchboard, Broadcast
News, and Verbmobil.

The experiments were carried out on matched conditions on
all distances for 60-s chunks. For a fair comparison, we gener-
ated all possible language triples out of the set of eight languages
( triples) and calculated the average, minimum, and
maximum performance over all triples. The results are given in
Table VI.

The results show that the multiple-engine approach lies in
all but two cases within the range of the multiple-language
approach. However, the best performance of the multiple-lan-
guage approach mostly outperforms the multiple-engine
approach, i.e., most of the language triples achieve better
results than the single language multiple-engines. We conclude
that multiple English language recognizers provide less useful
information than multiple language phone recognizers, at least
for the given choice of multiple engines in the context of
speaker identification. The fact that the multiple engines were
trained on English, i.e., the same language which is spoken in
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TABLE VI
PERFORMANCE COMPARISON OF MULTILINGUAL VERSUS MULTIENGINE (%)

Fig. 13. SID performance over number of languages.

the speaker identification task, whereas the multiple languages
were trained on eight languages but English, makes the mul-
tiple-language approach even more appealing as it indicates
language independence and thus great potential for portability
to speaker recognition in any language. Further experiments
in which the multiengine recognizers were combined with the
multilingual recognizers did not give additional improvements.

D. Number of Languages Versus Identification Performance

We investigated the impact of the number of languages,
i.e., the number of phone recognizers on speaker recognition
performance. Fig. 13 plots the speaker identification rate over
the number of languages on matched conditions on 60 s of
data. For these experiments, we applied phone recognizers from
GlobalPhone available in 12 languages, the eight as described
above plus Arabic (AR), Korean (KO), Russian (RU), and
Swedish (SW). The performance is given in average over the
out of 12 language m-tupel for Dis0. The average speaker
identification rate increases for all distances with the number of
languages. For some distances, a saturation effect takes place
after six languages involved (such as Dis0 and Dis1), while for
others distances even adding the 12th language has a positive
effect on the average performance (such as Dis4, Dis6, and
DisL). It also shows that the maximum performance of 96.7%
can already be achieved using two languages. Among the total
of language pairs, CH-KO and CH-SP gave the best
results. However, we were not able to derive an appropriate
strategy to predict the best language tupels. Therefore, it is
comforting that the chances of finding suitable language tupels
get better with the number of applied languages. While only
4.5% of all 2-tupels achieved highest performance, 35% of
4-tupels, 60% of all 6-tupels, and 88% of all 10-tupels gave
optimal performance. We furthermore analyzed whether the
performance gain is related to the total number of phones rather

Fig. 14. Low-level system (GMMs) versus high-level system (phonetic).

than the number of different engines, but did not find evidence
for such a correlation.

E. GMM Versus Phonetic Approach

Finally, we compared the traditional GMM-based approach
incorporating reverberation compensation and feature warping
techniques to the phonetic approach. Fig. 14 shows the compar-
ison between three systems for mismatched conditions on 2-D
DMD, the GMM system with and without channel combination,
and the phonetic system. As can be seen, the phonetic approach
outperforms the GMM system in the single-channel condition.
Overall, the GMM system with multiple channel combination
achieves the best performance. Additionally, we used simple
linear fusion to combine the GMM and the phonetic systems but
did not see any additional gains. More elaborated fusion strate-
gies may be investigated in the future.

VI. CONCLUSION

We studied robust speaker recognition in far-field micro-
phone situations and investigated two approaches to improve
the robustness of speaker recognition: the traditional GMM
technique based on low-level acoustic features and the pho-
netic speaker recognition technique using high-level phonetic
information. For the low-level approach, we introduced re-
verberation compensation and feature warping to the feature
preprocessing step. Both methods lead to significant gains, even
under mismatched training-testing conditions. On mismatched
conditions, 41.6% relative improvement is achieved on the
3-D Distant Microphone Database, 17.1% on the 2-D Distant
Microphone Database, and a 34.1% on the ICSI Meeting Data-
base. In addition, we performed multiple-channel combination
experiments to make use of information from multiple distant
microphones. Four different combination methods were intro-
duced “data combination,” “frame-based score competition,”
“segment-based score fusion,” and “segment-based decision
voting.” All four achieve additional gains on mismatched
conditions. Overall, we observed 72.8%, 77.8%, 62.4%, and
57.9% relative improvements over the improved baseline
RC Warp CMS on the 3-D DMD. We also found that

the gains hold across the three different databases. The results
indicate that variability in the training data combined with
supplementary information from multiple sources improves the
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TABLE VII
RELATIVE GAINS BY RC, WARP, AND MULTIPLE-CHANNEL

COMBINATION OVER BASELINE-CMS

overall system robustness. Table VII summarizes the findings
for mismatched conditions.

The second approach makes use of higher-level linguistic
features. To capture speaker idiosyncrasies, we apply n-gram
models trained on multilingual phone strings and show that
higher-level features are more robust under mismatching con-
ditions. Our results show that the phonetic approach is also
very robust against channel mismatch; however, one major
limitation of phonetic speaker recognition is the requirement
for large amounts of training data to reliably estimate phonetic
n-gram models. Furthermore, we compared the performances
between multilingual and multiengine systems, and examined
the impact of number of involved languages on recognition
results. Our findings confirm the usefulness of language variety
and indicate a language-independent nature of this approach,
which suggests that speaker recognition using multilingual
phone strings could be successfully ported to any language.
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