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Abstract

Previously we have rcported on the extraction of prosodic cucs (such as
stress, pitch, duration) from continuous speech [1] and have reported on
possible uses of some prosodic information (e.g., temporal cues [2]) in
large vocabulary word recognition systems. In this paper we extend
these previous findings to a speaker-independent continuous speech
recognition system. Speaker-independent knowlcdge sources (KS)
were implemented that attempt to hypothesize words based on only
prosodic cues found in the signal. The prosodic cucs exploited were
temporal cues (syllable durations, ratics of unvoiced segment durations
to syllable durations, voiced segment durations), intensity profiles and
likelihoods of stressedness. Each KS extracts the appropriate prosodic
cue and scarches its knowledge base for words whose prosodic patterns
satisfy the constraints found in the signal. Usign a multispeaker
continuous speechdatabasc for evaluation, cach prosodic KS is shown
to hypothesize the correct word substantially better than chance. All
prosedic KSs were then combined and compared with a speaker-
independent acoustic-phonetic word hypothesizer. After applying the
prosodic KSs, the correct word ranked on average 25th (out of 252
words). The acoustic-phonetic KS alone yielded an average rank of 40
(out of 252) without the addition of prosodic information. Afer
prosodic and phonetic KSs were combined the average rank was
reduced to 15 out of 252. The results indicate that prosodic information
indeed adds complementary information that substantially improves
word hypothesization in speaker-indcpendent continuous speech
recognition systems.

1. Introduction

To this day, the prosodic cues in the speech signal, duration, rhythm,
intensity, pitch, and stress, are frequently being ignored in the
implementation of speech recognition systems. In systems aimed at
small vocabulary sizes, most rescarch has centered around suitable
representations of spectral information and around optimal scarch
procedures used to align the unknown pattern with reference word
template. In large vocabulary continuous spzech recognition systems,
atomic units of speech smaller than the word arc usually chosen and
recognition is performed by detecting and assembling phonemic or
phone like units into strings of hypothesized words. Several attempts at
using prosodic cues in speech recognition systems have mostly been
limited to aiding syntactic analysis by hvpothesizing phrase or clause
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boundaries (from pitch cxcursions) and/or hypothesizing phonemically
rcliable parts of the utterance (“islands of reliability™) from the amoint
of stress found in the signal [3]. Oaly a few studies have attempted to
usc these cues to aid in the hypothesization or verification of words in
English, despite the known strong contributions of prosodic cues 10
human word perception (see [4, 5] for a review). For isolated large
vocabulary word recognition it has been shown [2, 6] that tempceral cues
can indeed be uscd effectively to hypothesize words, cven in the
absence of phonetic information. Moreover, these prosodic cues are
shown 0 be predictable such that all necessary reference information
for particular word candidares could be syniiesized from text [2. 5}
These results, however, were limited to speaker dependent isolated
word recognition and used only the temporal information in the signal.

In this paper we expand on thesc cncouraging findings along scveral
dimensions. First, we cxplore three separate prosodic parameters. In
addition to temporal cucs, we will use intensity and stress patterns as
descriptors of the word. Second, we will be using (wo continuous
specch datapases. 'The former, a training and development database,
consists of S0 Harvard senicnces|7] and was recorded and hand-
labelled at CMU. The laiter, the testing database. consists of two sets of
these 50 Harvard sentences, read by different speakers at MIT. The
third dimension, finally is the spcaker dimension. All development and
testing will be performed using multiple speakers for our results to
measure specker independent performance. Ezach ten sentences in the
training and testing databases were therefore read by a different
spcaker.

The scctions of this paper are organized according to prosocic cues.
For cach cue. a KS was devcloped that using only this cue allempts to
hypothesize word candidates that arc most likely 10 satisfy the deteczed
prosodic pattern. We will report below the operation and performance
of cach of these KSs. We will then compare all prosodic KSs with each
other and combine them into and satistically optimal comoined
prosodic KS. The performance of these prosodic KSs will then also be
compared with a speaker-independent phonetic word hypothesizer
developed at CMU. We will show that the performance of the prosodic
KSs compares favorably with the performance of the phonetic XS and
that the combination of th: two results in dramatic overall
improvements.

2. Prosodic Knowledge Sources

Conceptually, cach KS described below consists of three mrajor
components: a prosodic parameter extraction algorithm, a knowledge
tase, and a maicher 1o scarch for suitable word candidates. [ie
parameter extraction algoritin perfonms the appropriate measurements
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on the acoustic signal to obtain the relevant prosodic cues. The
knowledge base contains for each word candidate onc or more (to allow
for alternates) entries. Each entry consists of parametric descriptions of
the word in terms of the KS-specific prosodic cue. To allow for such a
xnowledge base to be expanded to larger vocabularics, it is also
desirable that the prosodic representation of each word be valid across
different speakers or that it can be automatically predicted from text
without user training. The matcher, finally, uses the prosodic cue
measured by the extraction algorithm and searches the knowledge base
for similar tokens. This search is typically done by assigning a score to
each word candidate based on the similarity of its prosodic pattern to
the pattern found in the unknown signal. The list of word candidates is
then ranked according to their scores. At the absence of begin/end
points in continuous specch, this analysis was performed by cach KS
repeatedly for each possible word anchor point, given by each
hypothesized syllable boundary. Using the hand-labelled speech
databases described above, the ability of each KS to hypothesize words
based only on prosodic cues was then ecvaluated. The cvaluations
reported below will show the rates at which the correct word candidate
will be found among the N top ranking candidates.

2.1. Duration and Rhythm

Three measures of duration were cxplored in three KSs: the syllable
durations in a word, the ratios of the duration of the unvoiced scgments
in a syllable to the syllable duration, and the duration of vocalic
segments. A syllable boundary was defined to lie at the onsct of a rise
in vocalic energy. The syllable boundaries and the unvoiced/voiced
segment boundaries nceded for measurement of the rclevant duration
patterns were detected by a set of segmentation and syllabification
algorithms described in detail clsewhere [2,5]. Two knowledge bases
were evaluated. The first used duration measurements obtained from
the training databasc, i.c., the CMU-Harvard databasc. For the second,
all durations were synthetically gencrated using a knowledge compiler

developed earlier [2, 6].
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Figure 1. Percent Correct for Given Rank and for Different
Durational Knowledge Sourccs; Testing Data.

Fig. 1 shows the results obtained by the three durational KSs. For this
cvaluation the testing data (100 M1T-Harvard scniences) was used. The
knowledge base consisted of measured durations. All three duratonal
measurcments yicld comparable performance with the syllable duration
measure lagging behind sumewhat,  Fig. 2 shows perlormance resulls
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Figure 2. Percent Correct for Given Rank in Training and

Testing Data; Knowledge Bascs of Measured and
Synthetic Durations.

for the combination of the tnrce durational KSs using a simple
geometric mean of each KS's rank orderings. Here the cffect of
measured vs. synthetic knowledge base was evaluated. Also both
evaluation runs were perfonned for both the testing and the training
database. The  performance  dcgradation  due to
scgmentation/syllabification errors can be inferred in this figure from
the less than perfect perfonmance obtained when the training data was
used for both the knowledge base and as evaluation data. The inherent
variability of durational cucs is reflected by the additional decrement in
performance when evaluation was performed using different, e.g., the
testing data. Further degradation can be observed when measured
durations were replaced by the synthetically generated durations.
Despite these performance degrading factors, however, it is clear from
this evaluation that better-than-random word hypothesization can be
performed based on durational cucs only.

2.2, Stress
Similar in spirit 1o the previcus subsection, a KS based on stress

patterns was implemented and tested. The KS uses stress probabilities
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Figure 3. Percent Correct for Given Rank Using a Stress
Bascd Knowledge Source; Testing Data.
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obtained from a probabilistic stress detector{l, S}  Thus stress
probabilities rather than discrete stress assignments were used. This
provided a finer grain and hence a continuum of similarities between
tckens.

The knowledge base therefore contained stress probability as measured
in the training data. Fig. 3 shows the performance obtained when this
KS was cvaluated over the 100 MIT-Harvard test sentences. Although
word hypothesization can be better than random, these performance
results arc inferior to those obtained by the durational KSs. This is due
to the great variability in stressedncss that is indced found in
continuous speech. Considerable disagrcement about the levels of
stressedness was found in this data even for groups of human
subjects [S].

2.3. intensity

An intensity based KS was also implemented and evaluated. The peak-
to-peak amplitude of the signal wavefonn was chosen as a mcasure of
intensity. The knowledge base contained coarse amplitude patterns for
the words in the vocabulary. Matching was done by measuring the
similarity between the incoming patterns and the patterns in the
knowledge base. Allowance was made for slight misalignments of
corresponding patterns.
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Figure 4. Percent Correct for Given Rank Using an Intensity
Based Knowledge Source; Testing Data,

Fig. 4 shows the results from an evaluation run using the testing
database. It can be scen that word hypothesization performance
considerably better than randoni can be obtained from this KS.

3. Combination of Prosodic and Phonetic
Knowledge Sources

In the preceding scction we have demonstrated that prosodic cucs can
indeed be used at the word level to rank appropriate word hypotheses
better thar chance and speaker independently in continuous speech. In
this section we would like to combine and cvaluate all prosodic KSs
and compare their performance with a speaker independent phonctic
word hypothesizer.  Fuithermore, we would like to experimentally
determine whether prosodic KS do lead to complementary information,
that would be useful in addition to a phonctic word hypothesizer.

We start with the combination of prosodic XSs. To obtain a statisticaily
optimal combination of the all five KSs described in the previous
scctions, we have collected variances and covariances of the scores
obtained from cach KS. The resulting covariance matrix was then used
to compute a Mahalanobis distance as a combined prosodic similarity
measure. In this fashion the contributions from cach KS were weighted
according to their relative merit in the light of the performance of the
other competing KSs. The resulting perfermance graph (using the tesi-
database) is shown in Fig. 5. Note, that the intensity KS appears to be
yielding near optimal performance.
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Figure 5. Combination of Prosodic Knowledge Sources
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Figure 6. Comparison of Prosodic and Phonetic Knowledge Sources

Using ten test sentences a more detailed evaluation of these prosodic
KSs and a spcaker-independent phonctic ward hypothesizer was
subscquently carried out. The performance results arc shown in Fig 8
in the form of a bar graph. For cach KS the average rank of the corres:
word in the list of word candidate is given 2s a percenrage of vocebuian
size. Thus, for cxample, an average rank of 88 (for the syllable durazon
KS) is given as 26%, based on a vocabulury size of 252 words. Fror:
Fig. 6 we can scc again that intensity patterns were the most vses:
prosodic cue for word identification (lowest rank). 'This can in part be
explained by the comparatively robust prosodic parameter extraciion s
this case. Following the five bars representing cach prosodic XS, Fig.
then shows the combination of all five prosadic KSs as discusie
before. It is worth noting that not only was the average rank of e
combined prosodic KSs better than each individual XS by itself, sus
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that the standard deviation of the combination (not shown in this
graph) was found to be considcrably lower. More robust performance
can therefore be expected from the cxploitation of alf cues. This
combined prosodic performance measure was then compared with a
spcaker-independent word hypothesizer developed at CMU. It should
be mentionned, that this word hypothesizer was only a preliminary
version of 2 more advanced word hypothesizer that is currently under
development. Fig. 6 shows that the rank of the combined prosodic KSs
is actually lower than the phonetic word hypothesizer.  Finally,
combination of prosodic and phonetic KSs leads to substantaily
reduced hypothesization rank. It can be scen that adding prosodic
information to the phonetic word hypothesizer reduced the average
rank of the correct word hypothesis to about 1/3.

4, Conclusion
In this paper we have demonstrated that the prosodic cues of duration,

intensity, and stress can be effectively used in word hypothesization.
Using prosodic cues only, performance comparable or better than a
speaker-independent  phonctic word hypothesizer was obtained.
Morcover, the combination of prosodic and phonetic KSs leads w0
dramatic improvements over phonetic word hypothesization alore.
This result clearly demonstrates, that prosodic cues yield

complementary information. Speech recognition systems can therefore
benefit censiderably from the exploitation of these cues. This paper has
shown only one strategy towards achieving effective integration of
prosodic analysis. Alternate strategics, such as top down verification of

confusable word hypotheses are conceivable and work along thesc lines
is in progress.
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