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Abstract

In Neural Response Generation a system produces responses in a chit-chat dialogue cov-

ering a wide variety of topics. While the research community has long been focused

on task-speci�c systems, these open-domain queries have become an active area of re-

search thanks to advancements in deep learning and the availability of large amounts of

conversational data.

Early models were able to generate responses that are semantically valid responses with

respect to the query, however their outputs are often short, general, and provide little

information [81].

This work compares existing architectures that tackle these problems and try to generate

more diverse and informative dialogues. We train and evaluate existing models on our

Reddit corpus.

Two notable works for diversity and informativeness by Zhang et al., 2017 [89] and

Gao et al., 2019 [26] are based on an adversarial and a recurrent multi-tasking approach,

respectively. The two works are evaluated and compared to a baseline. The latter showed

the most promising results.

While Gao et al. outperform existing works in the diversity of their outputs recurrent

neural networks in general have di�culties when dealing with longer sequences of text

[90]. To further increase diversity and informativeness we propose two novel approaches.

We add a hierarchical encoder structure to Gao et al., 2019 in order to capture more

information in multi-turn dialogues. Secondly we build a Transformer with the same

multi-task setting, and leverage pre-training. The model shall both improve diversity and

informativeness by leveraging Gao et al.’s approach, the non-recurrent architecture, the

additional amount of parameters, and the high-volume of pre-training data (compared to

the size of our dataset).

Both solutions outperform the other evaluated models in Bilingual Evaluation Under-

study (BLEU), Metric for Evaluation of Translation with Explicit ORdering (METEOR),

and Recall-Oriented Understudy for Gisting Evaluation (Rouge), which are commonly

used to evaluate response generation tasks.
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Zusammenfassung

Die Masterarbeit nimmt sich dem Generieren von Antworten auf Dialoge mit neuronalen

Netzen an. Traditionell hat sich die Forschung in diesem Bereich hauptsächlich mit Syste-

men beschäftigt, die eine bestimme Aufgabe (task-speci�c) erledigen – wie beispielsweise

das Buchen eines Tisches in einem Restaurant. Dank immer größerer Datensätze und

Fortschritten im Bereich neuroanle Netze befassen sich aktuell mehrere Arbeiten mit

domänenübergreifenden Dialogen (open-domain), in denen die Teilnehmer nicht an ein

bestimmtes Thema gebunden sind.

Die ersten Modelle in diesem Bereich erzeugen semantisch korrekte Antworten, haben

jedoch oft das Problem, dass diese sehr generisch sind und wenig nützliche Informationen

enthalten.

In dieser Arbeit werden verschiedene Architekturen behandelt, die dafür sorgen, dass

Antworten eine größere Vielfalt und mehr Relevanz bieten. Dafür wird ein Datensatz mit

Dialogen von der Internetplattform Reddit erstellt. Auf diesen Texten werden neuronale

Netze trainiert und evaluiert.

Zwei wichtige Arbeiten für mehr Vielfalt und Relevanz in Dialogsystemen stammen

von Zhang et al., 2017 [89] und Gao et al., 2019 [26]. Letztere erzielt die besten Ergebnisse

auf dem vorgestellten Datensatz.

Weiter werden zwei neue Ansätze vorgestellt. Zum einen wird die Idee von strukturierten

latenten Räumen von Gao et al. mit einem Ansatz kombiniert, der Zusammenhänge

in Eingaben zuverlässiger erkennt. Letzteres kann bei längeren Texten in rekurrenten

neuronalen Netzen zu Problemen führen [69].

Im zweiten Ansatz werden strukturierte latente Räume auf die Transformer-Architektur

[76] angewandt.

Bei der Evaluation basierend auf den Metriken BLEU, METEOR und Rouge – welche

häu�g in ähnlichen Arbeiten verwendet werden [89, 26, 90] – erzielen beide neuen Ansätze

bessere Ergebnisse als die bestehenden.
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1. Introduction

1.1. Motivation

The majority of human conversation is based on "socialization, personal interests and

chit-chat" [22]. Naaman et al., 2010 found that just under 5 % of posts on the social-

media platform Twitter are questions, but 80 % of tweets revolve around "emotional state,

thoughts or activities" [55]. Thus the potential training data allows for a variety of deep

learning tasks revolved around such chit-chat conversations. However, these dialogue

systems often perform poorly and tend to be hard to evaluate [88]. Therefore current

approaches are mainly based on task-speci�c communication, such as question answering

or booking a table at a restaurant.

The existing solutions for open-domain response generation often produce short and

generic responses, such as "I agree", or "That is not true", which are bland and uninformative.

To tackle this issue this work explicitly focuses on controlling informativeness and diversity

for general conversations, which is called an open-domain dialogue.

1.2. Outline

This thesis explores di�erent methods to generate diverse and informative responses to

social dialogues. Chapter 2 Fundamentals contains an introduction to deep learning, which

is the technical basis of this work. This is followed by an introduction to Dialogue Systems
(2.2) and an overview of Metrics (2.3) used to evaluate them.

Chapter 3 Related Work presents di�erent works in dialogue generation. The aim of

this chapter is to give an overview of recent works in dialogue system that focus on the

open-domain task.

In 4 Models for Diversity and Relevance the technologies relevant for our work are

discussed in detail. Based on these technologies we create two novel approaches that

combine di�erent architectures. This part also gives an overview of the training setup and

data that we use to solve the problem of diversity and relevance in dialogue systems.

The above solutions are then compared in 5 Evaluation. Strengths and weaknesses of

the models are examined. We further asses the metrics themselves and compare their

results to a human evaluation.

The �nal chapter 6 Conclusion discusses the �nding of this work and gives an outlook

on potential future work.
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2. Fundamentals

This chapter gives a theoretical introduction to the topics relevant for this thesis. 2.1 Deep
Learning covers technologies that are relevant for this work. In 2.2 Dialogue Systems the

di�erent paradigms of human-machine conversation are compared and the �nal section

2.3 gives an overview of metrics that are often used to judge a dialogue system.

2.1. Deep Learning

Deep learning is the �eld of study concerned with neural networks that "learn [...] multiple

levels of representation in order to model complex relationships among data" based on

(arti�cial) neural networks [19]. While the idea of an arti�cial neural network has been

introduced in the middle of the 20th century [52, 66], very deep networks have only become

feasible in terms of computation with advancements in Graphics Processing Unit (GPU)s

in recent years [78].

2.1.1. Sequence to Sequence Learning

Sequence to Sequence (S2S) learning converts sequences from one domain to sequences in

another domain. Besides response generation, common objectives are machine translation

or summarization tasks [71].

Given a source x = (x1,x2, . . . ,xi) and a target sentence y = (y1,y2, . . . ,yj), let (x ,y) ∈
(X×Y) be corresponding sequence pairs, whereX undY are the source and target domains.

Formally a S2S model learns parameters θ ∈ Rn to estimate P(y |x ;θ ). The objective is

often formulated with log-likelihood:

L(θ ; (X × Y)) =
∑

(x ,y)∈(X×Y)

log P(y |x ;θ ).

The encoder-decoder is a framework for S2S learning, where the encoder creates a hidden

representation of the source sequence and the decoder generates the target sequence based

on the representation [71]. The most common architectures are based on Long Short-Term

Memory (LSTM) [36] or Convolutional Neural Network (CNN) [73, 27].

The following subsection introduces the Attention mechanism, that is relevant for the

models introduced later in this work.

2.1.1.1. Attention

The attention model is a modi�cation to S2S models.

Until 2017, deep learning for S2S problems such as machine translation, speech recognition,

3



2. Fundamentals

or response generation, was often based on Recurrent Neural Network (RNN)s [33, 5, 65].

The performance of these networks has been pushed by the introduction of the attention

mechanism. This algorithm has been proposed by Bahdanau et al., 2014 for machine

translation [5] and has later been applied to other language tasks [48, 56].

This section examines some problems of RNNs, and explains how attention can tackle

these. The next section then introduces a feed-forward architecture based on attention

called the Transformer.

When transforming one sequence into another sequence, recognizing dependencies

between tokens in a sequence is crucial, because in recurrent networks a sequence of

words is created word by word. It is a problem for a RNN to detect dependencies if there

is a long range of tokens inbetween two relevant ones.

The LSTM attempts to solve the shortcomings of the standard RNN, but still the chance

of the required information being stored in the LSTM’s memory decreases exponentially

with the absolute distance between sequence token indexes [11]. Hence large dependencies

remain a problem when only using the last hidden state as context vector.

With the attention mechanism a context vector is created for every token in the input

sequence. Hence we create n context vectors for a source sequence s1, s2...sn with length

n. In order to calculate the context vector we compute a attention score α :

αij =
eei j∑Tx
k=1

eeik
,

eij = a(si−1,hj),

where the score eij determines a weight for position j in the input with regards to position

i in the output.

The context vector ci is then calculated as follows:

ci =
Tx∑
j=1

αijhj ,

where hj is the hidden representation of the j-th token in the source sequence.

A RNN using attention can leverage all hidden token representations, but can only

process inputs sequentially. To allow for parallel inputs, the Transformer combines CNNs

with attention, since a convolutional layer can process the entire input sequence in parallel.

2.1.2. Transformer

Vaswani et al., 2017 introduced the idea of moving away from RNNs with their non-

recurrent Transformer model [76].

The Transformer they propose consists of 6 encoder and decoder layers respectively.

In the encoder each layer consists of a self-attention and a feed-forward part. Every

encoder features a residual connection followed by normalization [76], see Figure 2.1.

The decoder has a similar setup to the encoder, consisting of 6 layers that all contain a
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2.1. Deep Learning

Figure 2.1.: Transformer Encoder layer [1]

self-attention and a feed-forward layer. Between these two the decoder also contains a

“encoder-decoder attention” layer.

After the encoder has processed the input sequence, the output is transformed into

attention vectors K and V . These vectors are then passed to all six decoder layers, more

speci�cally to the “encoder-decoder attention” layers. Based on the previous output token

the decoder generates one token at a time.

The following sections provide an insight into the self-attention mechanism used by

the Transformer.

2.1.2.1. Self-Attention

The concept of self-attention allows the representation of a token to not only be based on

itself, but rather incorporate further context from other tokens in the same sequence.

For each token the attention algorithm takes the input of the encoder and produces

three vectors for every token: query q, keys k with dimension d and valuev . These vectors

are calculated by multiplying the embedding of the input token with three matrices. The

weights of each matrix are learned during training.

For the entire sequence these vectors are stored in matrices Q , K , and V . The outputs are

calculated as follows:

Attention(Q,K ,V ) = so f tmax(
QKT

√
d
)V ,

where softmax leads to a probability distribution determining how much attention should

be given to each token [76].

2.1.2.2. Multi-Headed Attention

Vaswani et al. found that the Transformer best detects dependencies in the input sequence

when employing multiple attention functions instead of just one [76].
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2. Fundamentals

In their initial work they compute 8 Attention matrices based on di�erent Q , K , and V ,

which are then concatenated and multiplied with a weight matrixW :

MultiHead(Q,K ,V ) = Concat(head1, . . . ,head8)W

headi = Atttention(QW
Q
i ,KW

K
i ,VW

V
i ),

where weight matricesW
Q
i ,W

K
i ∈ R

dmodel×dk
andW V

i ∈ R
dmodel×dv

,W 0 ∈ R8dv×dmodel
, and

dmodel/8 = 64.

The self-attention layer of the Transformer net features 8 attention heads.

2.1.2.3. Bidirectional Transformer

Bidirectional Encoder Representations from Transformers (BERT) is a pre-training tech-

nique introduced by Devlin et al., 2018 that archived state-of-the-art results in question

answering on the Stanford Question Answering Dataset (SQuAD) v1.1, and in natural

language inference on the Multi-Genre Natural Language Inference (MNLI) corpus [20].

Devlin et al. propose a bidirectional training process for the Transformer model, whereas

previous works processed text sequences from left to right or employed a combination

left-to-right and right-to-left training [20]. In training from left to right (forward) only the

information of the previous tokens are accessible to predict the next token and when train-

ing from right to left (backward) only the following tokens in the sequence are available

for the prediction of the current token. In bidirectional training however the information

of the entire sentence can be used to predict each token.

2.1.3. Generative Adversarial Networks

The Generative Adversarial Network (GAN) has been introduces by Goodfellow et al., 2014

[31]. While the adversarial training process has shown great success for image generation,

convergence issues and di�culties dealing with discrete data make the application of

GANs to the text domain challenging.

The following introduces GANs, as well as their applications to text and discusses the

reasons behind the problems of GANs with discrete data.

2.1.3.1. Real-Valued Data

GANs are an assumption-free method to estimate distributions and are therefore generative

models. The unsupervised machine learning technique is implemented by two neural

networks competing in a zero-sum game. They were introduced by Goodfellow et al., 2014

[30].

The adversarial process trains two models: a generative model G and a discriminative

model D. The goal of D is to estimate whether a given sample of data comes from the

training set or was created byG . The goal ofG is to create new samples that will eventually

be categorized as training samples by D, i.e. maximize the errors produced by D. In other

words, the two networks play a minmax game with the value function V (D,G) against

each other:

6



2.1. Deep Learning

Figure 2.2.: Illustration of Generator G and Discriminator D in a GAN for images. [28]

min

G
max

D
V (D,G) = Ex∼pdata (x)[logD(x)] + Ez∼pz (z)[log(1 − D(G(z)))],

where x is the input data, and pz(z) is de�ned as a prior on the input noise variables.

D and G are generally modelled as multi-layer perceptrons, and thus can be trained by

backpropagation [30].

The training process of GANs is sensitive and total collapse of the model in training is a

frequently encountered problem [67]. Therefore stabilizing the training process is a major

part of current research in generative image modelling [87, 67].

2.1.3.2. Discrete Data

In image generation a generatorG outputs a matrix of real values that represents an image.

This matrix is fed to discriminator D and classi�ed as real or fake. This behaviour can

not be directly applied for language. In a world-level RNN language model for every time

step t the input consists of two parts: the previous hidden state and the previous output.

Based on those, the new hidden state is being generated. The next word is chosen by

argmax. Thus for each time step a new word is generated. In back-propagation training

cross-entropy loss is used to compare the output of the softmax layer to the actual one-hot

encoding of the training sample [41].

Using this RNN language model for G in a GAN for response generation we no longer

minimize the cross-entropy loss function from the RNN, but rather the training objective

is to make D classify the sample as correct. However choosing the next word for every

time step t is not di�erentiable [89], therefore it is not possible to backpropagate gradients

through the model’s outputs. There are multiple approaches to work around this problem.

One is described in 4.3 Adversarial Approach.

2.1.4. Autoencoder

The last part of the Deep Learning section focuses on the Autoencoder, which is part of

two models in the main chapter of this work.

7



2. Fundamentals

An Autoencoder is an unsupervised neural network that consists of an encoder and

a decoder. The encoder encodes the input data in a lower dimensional space in order to

reduce noise. The features generated from the input are then passed to the decoder, which

aims to reconstruct the input data [29].

Parameters are trained using back-propagation to minimize reconstruction loss, which

measures the di�erence between input and output.

8



2.2. Dialogue Systems

Speech
Recognition

Language Understanding (LU)
• Domain Identification
• User Intent Detection
• Slot Filling

Dialogue Management (DM)
• Dialogue State Tracking (DST)
• Dialogue Policy

Natural Language
Generation (NLG)

Hypothesis
are there any action movies to
see this weekend

Semantic Frame
request_movie
genre=action, date=this weekend

System Action/Policy
request_location

Text response
Where are you located?

Text Input
Are there any action movies to see this weekend?

Speech Signal

Figure 2.3.: Components of a speech dialogue system. [51]

2.2. Dialogue Systems

Human-machine conversation is one of the core problems in Natural Language Processing.

Systems that solve this problem are called dialogue systems or conversational AI. The

input and output of a dialogue system can be text, speech, graphics, haptics, gestures [79],

or a combination of these.

The technology’s popularity increased with the rise of virtual personal assistants, such

as Siri, Google Now, and Amazon Echo throughout the 2010s [57]. According to statista 1.8

billion people will use virtual assistants by 2021 worldwide [57]. Therefore research has

not only been carried out at universities but to a large extend at technology companies,

such as Google, Amazon, or Apple [23].

Dialogue systems can be categorized into two paradigms: open-domain dialogue systems

and task-based dialogue systems.

Traditionally research focused on task-oriented dialogue systems [83]. These solve Human-

machine conversation in a speci�c scenario, for example ordering movie tickets or reserving

a table in a restaurant.

Systems that do not only solve a single user scenario are called open domain dialogue

systems, and have made some advances in the last few years, see Shum et al., 2018 [70]

and Radford et al., 2019 [62].

Both systems are typically limited in the number of dialogue turns, meaning that there

is a �xed amount of possible back-and-fourth turns between the dialogue system and the

user.

The area of research that uses neural networks to generate textual responses is some-

times referred to as neural response generation [82, 81].

The technical foundation of dialogue systems has transformed from statistical methods

being used until the beginning of this century from where on deep learning methods have

started to make end-to-end systems possible.

9



2. Fundamentals

2.2.1. Speech Dialogue Systems

Speech dialogue systems, sometimes referred to as conversational agents or spoken lan-

guage systems, have several applications such as call routing and virtual personal assistants

like Apple’s Siri. This section aims to give a more complete overview of dialogue sys-

tems, and therefore covers more than the neural response generation systems that will be

discussed later in this work.

The traditional structure of such a system can be seen in Figure 2.3. The central com-

ponent is the dialogue manager, that receives the processed user input and keeps track

of the state of the dialogue. Additionally it communicates with the task manager and

sends outputs to the components that generate the synthesized response to the input.

This component can be modelled as a Markov Decision Process, a �nite state, or a neural

network [51]. The component for natural language understanding transforms the input to

a structured representation of the meaning of a sentence. This was traditionally often done

by a Hidden Markov Model (HMM) [51]. The speech recognition model architecture is

based on HMM or a neural network, and processes the speech input. A content planner in

the language generation block is responsible for the decision on what content is returned

to the user. Based on that, the language generation block generates synthesized speech

[51].

Dialogue systems today can often be end-to-end systems that do not follow the archi-

tecture of Figure 2.3, see 3 Related Work.

2.2.2. Open-Domain Dialogue Systems

Open-domain dialogue system, as is covered in this work, do not only solve one speci�c

task, therefore they are sometimes referred to as non-goal-driven.

Open-domain publications often train on posts of social media platforms, thanks to the

large amount of data accessible online [69, 63]. Ritter et al., 2011 were the �rst to introduce

a generative probabilistic model for conversations on social-media posts [69]. They

formulated the problem as statistical machine translation, where one post is translated into

its response. The work notes that this would be "more di�cult than translating between

languages, due to the wider range of possible responses, the larger fraction of unaligned

words/phrases, and the presence of large phrase pairs whose alignment cannot be further

decomposed." [63]
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2.3. Metrics

The following introduces metrics to evaluate neural response models. Most of them are

derived from other natural language processing tasks.

2.3.1. BLEU

BLEU [58] is a metric proposed for evaluating the results of machine translations. The

generated translation is referred to as the candidate, and is being compared to one or more

translations, called references.

Apart from translation, BLEU is used as metric for a variety of natural language pro-

cessing tasks, including response generation [47]. In response generation the reference is

one or more target sentences that respond to the same source sentence. The synthetically

generated response is called the candidate or hypothesis.

BLEU evaluates based on word-level n-grams. An n-gram in this case is every combina-

tion of n adjacent words. The sentence "I like Tokyo" for example contains the following

bigrams (2-grams): "# I", "I like", "like Tokyo", and "Tokyo #", where "#" is a delimiter for

the start and end of a sentence. For each n-gram in a candidate sentence BLEU generates

the maximum occurrence in any of the references. There are several versions of BLEU.

They are typically named BLEU-n, where n is the length of the n-gram [14].

Formally BLEU is calculated by computing the percentage of tuples from the hypothesis

that appear in the reference as well:

P(n) =
Matched(n)

H (n)
,

with H (n) being the amount of n-gram tuple in the hypothesis.

Matched(n) =
∑
tn

min (Ch(tn),max

j
Chj(tn),

where tn is a n-gram tuple from hypothesis h and Ch(tn) is the amount of occurrences of

tn in hypothesis, Chj(tn) the number of occurrences in reference j of the hypothesis. The

�nal score is calculated as:

BLEU = (
N∏
i=1

P(i))
1

N ,

where N is the n-gram order, which most commonly is 4 [17].

2.3.2. Distinct

Li et al., 2015 proposed the distinct-n metric for measuring diversity in hypotheses. The

metric does not take into account the source or reference of a response, but is purely based

on n-grams in the hypotheses.

The metric counts the distinct n-grams divided by the number to total words [42]. The

division by total words avoids favoring long sequences.
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With C , H and tn from the previous section, Distinct is calculated as follows:

Distinct =
Cn(tn)

H (1)

2.3.3. Entropy

To account for the di�erent frequency of n-grams that are not accounted for in the Distinct
score, Zhang et al., 2018 [88] proposed the Entropy metric, which takes into account how

the n-grams are distributed. For all n-grams N :

Entropy = −
1∑

w∈N ν (w)

∑
w∈N

ν (w) log
ν (w)∑

w∈N ν (w)
,

where ν is the frequency of an n-gram.

2.3.4. METEOR

The METEOR has been proposed for machine translation by Banerjee et al., 2005 [8].

Based on unigram matches (or word matches), the score is calculated based on precision,

recall, and a fragmentation measurement. The latter aims to judge the quality of the

word order. For machine translation METEOR has shown stronger correlation to human

evaluation than BLEU.

With wt as the number of unigrams in the hypothesis and m being the number of

unigrams in the hypothesis:

Precision =
m

wt
,

Recall =
m

wr
,

with wr being the number of unigrams in the references.

Based on Precision and Recall the weighted harmonic mean is calculated as follows:

Fmean =
10PR

R + 9P

The penalty p is calculated based on longer n-grams than just unigrams (compared to

Precision and Recall ). A chunk consists of a set of unigrams that appear in both hypothesis

and reference. We calculate the minimal amount of chunks c:

p = 0.5(
c

um
)3,

where um is the amount of mapped unigrams. Based on this term METEOR is calculated

as follows:

METEOR = Fmean(1 − p)
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2.3.5. Rouge

The Rouge scores has been used as a metric for informativeness in previous response

generation works [89, 81].

There are �ve di�erent variations of this score – two of which are relevant for this work:

• Rouge-n: the n-gram overlap in reference and hypothesis

• Rouge-l: based on the longest sequence occurring in both reference and hypothesis

With the the number of unigrams in the hypothesis mh , the number of unigrams in the

referencesmr and the number of n-gram overlaps on:

PrecisionRouдe−n =
on
mh
,

RecallRouдe−n =
on
mr
.
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3. RelatedWork

This chapter aims to give an overview of open-domain dialogue system research. More

speci�cally, this chapter focuses on works about generation of conversational responses

with deep learning.

There are several challenges that arise when creating an open-domain dialogue system,

such as semantics, consistency, and interactiveness [37]. In this work however we focus

on diversity and informativeness. Increasing such characteristics has become a part of

dialogue research, since ordinary S2S models produce responses that are often bland [89]

(sometimes called dull response problem [6]). This behaviour can be observed in human

dialogue as well, where the response will often be "safe but bland" when there is a lack of

understanding [37]. We try to mitigate this behaviour in this work.

When creating less bland, and thus more diverse responses, a pitfall is to create very

diverse responses that do not carry meaningful information with regard to the source

sentence. Therefore this work aims to create diverse and informative responses.

The �rst section below introduces di�erent models for diverse and informative response

generation. The second part gives an overview of publications about response generation

metrics.

3.1. Models

One of the �rst works with an objective function that promotes diversity has been published

by Li et al., 2015 [42]. Compared to the standard maximum-likelihood objective the results

that they present outperform the previous state of the art in response generation measured

with BLEU. Their work measures diversity as number of distinct unigrams (distinct-1)

Message S2S Li et al., 2015
I did not get the report

from an mi-6 agent.

I don’t think that’s

a good idea.

You did the right

thing, did you?

You haven’t been given

an assignment in this case.

I don’t know what

you are talking about.

I’ve been looking

all over for you.

I’m losing my grip.

I don’t know what

you are talking about.

I’m the only one

in the world.

I am ready to help. Come on, come on

I have something

we need to talk about.

Table 3.1.: Results of Li et al., 2015 [42] compared to a S2S baseline.

15



3. Related Work

and bigrams (distinct-2) and exceeds previous works in both metrics [42]. Table 3.1 shows

responses of this work compared to a a 4-layer S2S baseline.

Following Li et al., several works have tried to improve diversity and informativeness

with S2S [69], adversarial [44], and reinforcement learning [45] approaches.

Li et al., 2017 were among the �rst to leverage adversarial training for response genera-

tion. The generative model produces responses, while the discriminator decides whether

a response is generated by a human or a machine. Their evaluation shows bene�ts of the

adversarial training process [44], however does not speci�cally evaluate the diversity of

the responses.

Zhang et al., 2018 explicitly leveraged the adversarial training process for informative-

ness and diversity. Their results outperform existing models on Reddit and Twitter data

they collected but did not publish [91]. A more detailed description of their approach can

be found in 4.3 Adversarial Approach.

While diversity can be improved with adversarial networks or reinforcement learning,

other works have published adjustments to S2S models that lead to more diverse and

informative responses.

Serban et al., 2016 apply the hierarchical recurrent encoder-decoder network to the re-

sponse generation task [69]. In their evaluation they outperform existing works, however

they note that the responses are "somewhat generic" [69]. The hierarchical approach is

included in this work as well, see 4.4 Hierarchical Geometrical Approach.

Another improvement to S2S dialogue models is the geometrical approach by Gao et al.,

2019. The framework increases diversity with an additional Autoencoder. Their work is

incorporated into this work and is described in 4.4 Hierarchical Geometrical Approach as

well.

While there have been improvements in diversity and informativeness in recent years

[89, 26], the recurrent architecture is still prone to perform poorly in leveraging long-range

dependencies in sequences. In 4.5 Section Recurrent Hierarchical Approach we introduce a

novel approach that brings a hierarchical structure to the encoder-part of encoder-decoder

model to address this issue.

3.1.1. Large-Scale Pre-Training

Following Vaswani et al.’s introduction of the Transformer architecture [76], pre-training

has become a prominent topic for language tasks.

The models discussed above employ a supervised learning scheme, where the network

is trained on a task-speci�c dataset. Devlin et al., 2018 (BERT) [20] and Radford et al., 2019

(Generative Pretrained Transformer 2 (GPT-2)) [62] pre-train their models in an unsupervised

fashion. The datasets used for pre-training in those works consist of text from websites,

Wikipedia, books, or a combination of them. These models can then be �ne-tuned on task-

speci�c datasets for response generation or other tasks such as question answering. Even

without �ne-tuning (zero-shot) these models have outperformed some non-Transformer
architectures that have been �ne-tuned on a speci�c task [62].
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In this work we build a novel Transformer model that addresses diversity and informa-

tiveness in Section 4.7 Geometrical Masked Transformer by combining the idea of structured

latent spaces [26] with the Transformer.
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Name Utterances Turns References

CMU DOG 193 31.6 1

DailyDialog 13,118 7.9 1

DSTC7 2,800,000 n/a

≥ 1 (train, validation),

≥ 6 (test)

Our Reddit dataset 7,300,000 ≥ 2 ≥ 10

PersonaChat 164,356 >7 1

Topical-Chat 248,014 22 1

Ubuntu Dialog Corpus 7,100,000 7.7 1

Wizard of Wikipedia 201,999 9 1

Table 3.2.: Datasets with open-domain dialogues compared

3.2. Datasets

The works introduced above mostly rely on data from Reddit or Twitter [89, 26, 90]. Due

to copyright issues these datasets are often not published [89, 26], however sometimes

instructions on how to recreate them are provided [90]. In the following section we will

give an overview of publicly available datasets.

Table 3.2 compares multiple datasets that we encountered in the research for this work.

Next to the number of utterances we compare the amount of dialogue turns and the number

of references. The latter value denotes how many distinct references are responding to

the same source sequence.

While there are various task-speci�c datasets available [68], we will only cover open-

domain datasets. The following part gives some details about the datasets in Table 3.2.

Daily Dialog contains 13,000 samples about topics surrounding daily life. The corpus is

manually annotated with an intent and an emotion [46].

The Ubuntu Dialog Corpus contains conversations surrounding the Linux distribution

Ubuntu. The corpus contains almost 1 million dialogues with over 7 million dialogue turns

in total. While the dataset’s domain is limited to the Ubuntu distribution, the dialogues

are not limited to a speci�c task [49].

For the creation of the Persona-Chat dataset crowd workers are used. For each of the

10,000 dialogues the workers have a persona description assigned and are then asked

to have a conversation as that person in which they get to know the persona of the

conversation partner [88].

In CMU Document-grounded conversation (CMU DOG) participants talk about 30 movies.

The grounded information is provided with a Wikipedia article [93].

Texts from Wikipedia are also used for the Wizard of Wikipedia dataset. For over 1,000

di�erent articles each conversation consists of a expert and a learner, where the latter does

not have access to the article and wants to learn about the topic [21].

For the 7th Dialog System Technology Challenges (DSTC7) a guide was published to

create a dataset based on Reddit. The 2.8 million conversations each contain an URL to a
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website that contains the grounded information. The validation part of the dataset contains

6 reference responses to the same source sequence [60].

The Reddit dataset created for this work is similar to the one from the DSTC7, however

it provides multiple references for train, test, and validation split – which is crucial for

both training and evaluation of our models.

Topical Chat is designed for conversations around various topics. The reading material

for workers included Wikipedia articles, Washington Post articles, and fun facts about

speci�c topics [32]. The workers were asked to have conversations with both: partners

with the same reading material as well as partners with di�erent reading material [32].
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3.3. Metrics

In section 2.3 Metrics of the Fundamentals chapter we introduced commonly used metrics

in response generation. With increased research in diversity and informativeness several

works started to criticize existing metrics. In this section we aim to give an overview of

that criticism. Later in section 5.1 we introduce our evaluation scheme to potentially tackle

the shortcoming of existing metrics, by evaluation on a multi-reference dataset.

Serban et al., 2016 wrote that previously used metrics such as "cosine similarity, BLEU,

Levenshtein distance (...) will primarily favor models that output the same number of

punctuation marks and pronouns as are in the test utterances, as opposed to similar

semantic content (e.g. nouns and verbs)". They further state that these metrics are "known

to lack diversity" [69].

Liu et al., 2016 published a study of unsupervised evaluation metrics for response

generation. The results show that commonly used metrics "do not correlate strongly with

human judgement" [47]. They did not propose a metric with better positive correlation to

human judgement, [47] leaving an open research question.

Bowman et al., 2016 introduced adversarial evaluation, where a discriminant function

is trained to distinguish between machine- and human-generated responses [12]. Other

works have proposed metrics such as Rouge, Entropy [89], or precision and recall based on

BLEU [26]. However none of these metrics have shown signi�cant positive correlation

to human evaluation of diversity and informativeness, which is why they are generally

accompanied by an additional manual evaluation [37, 90].
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Diversity and relevance in dialogue systems has been discussed in previous works. Two

recent deep learning publications that published state-of-the-art results are based on an

adversarial [89] and a recurrent S2S approach [26].

This chapter starts by describing the underlying training data and then introduces six

models:

• Baseline: the baseline is a encoder-decoder model based on Gated Recurrent Unit

(GRU) [15]

• Adversarial: informativeness and diversity based on a GAN

• Recurrent

– Geometrical: an approach to increase diversity based on GRU

– Geometrical Hierarchical (ours): advances the geometrical model in order

to leverage the hierarchy of the multi-turn dialogue input

• Transformer

– Masked Transformer: model that incorporates attention.

– Geometrical Transformer (ours): combines the geometrical approach with

the Masked Transformer

4.1. Datasets

The research community has gathered a wide variety of datasets for training dialogue

systems [68]. For the automated evaluation of this work it is crucial to have multiple

responses, also called references, to the same dialogue source (see chapter 5 Evaluation).

Therefore single-reference datasets such as OpenSubtitles [75] and AmazonQA [34] are

not suitable to evaluate the models discussed in the following. In this work we train and

evaluate on data from Reddit.
The dataset we created contains comments posted on the platform between 2011 and

2013. Each training sample consists of at least two dialogue turns. After the last dialogue

turn there are at least 10 comments, or targets, referencing the same previous comments,

which is the case in about 5 % of all Reddit comments gathered in that period of time.

Conversations with more than two dialogue turns were also incorporated by concatenating

multiple comments before the �rst dialogue turn. The data is shu�ed and split into 70 %

training, 15 % test, and 15 % validation data.
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Figure 4.1.: Example of Reddit comments and how they appear as source and target in our

dataset. Source: reddit.com

Our Reddit dataset contains 7.3 million comments with an average target length of 12.1

words. Figure 4.1 shows an example of several comments that are concatenated to resemble

a dialogue with two turns.

The data has been cleaned from noise by removing URLs and non-ASCII characters. All

characters are made lower-case. The vocabulary contains the 10,000 most common words

in the dataset for the adversarial and recurrent approaches.

For the Transformer-based approach the vocabulary was bound to the one used in

pre-training, which contained 30,000 words from the Wikipekia and BookCorpus dataset

[71].
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4.2. Baseline

Figure 4.2.: From left to right: RNN, LSTM, and GRU with 0, 3, and 2 gates respectively.

With hidden layer vector ht , output vector xt , and σ , tanh activation functions

[64]

4.2. Baseline

The baseline for this work is a encoder-decoder model. Encoder and decoder both consist

of three GRU [15] layers. The GRU is similar to a LSTM [36], however features one less

memory gate. This leads to less parameters than the LSTM. Despite the less parameters

GRU has shown to be on par with LSTM results for music and speech signal modeling

tasks [16]. For faster computation we use the GRU over the LSTM.

Every GRU cell consists of 128 hidden units. Based on Zhao et al., 2017 [92] and Gao

et al., 2019 [26] we use softmax sampling to generate multiple hypotheses. Figure 4.2
illustrates RNN, LSTM, and GRU cells and shows the 3 input, output, and forget gates of

the LSTM compared to the 2 input and forget gates of the GRU.

For word representation we train embeddings with vector size 128. This is done for all

recurrent models.
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4.3. Adversarial Approach

pe(X,Y)
Source X

Source X

Synthetic
Target Ys

Target Y
p(X,Y)

D

qϕ

pθ

Figure 4.3.: The GAN model with the generator above creating synthetics targets YS by

approximating p(X ,Y ) from the training data (bewlow). Both synthetic and

original source, target pairs are input for the discriminator D

Semisupervised and unsupervised learning with GANs has allowed for several advance-

ments in computer vision in recent years [18]. While the application of GANs to language

problems conveys some problems, they have been successfully applied to language tasks

in some works [59, 88].

In adversarial training the generator G generates responses in a dialogue, while the

discriminator D judges the quality of this response by either categorizing it as a real sample

or rejecting it as a synthetic response that has been generated. This setup allows to employ

a discriminator that explicitly promotes diversity and informativeness.

While the original GAN framework proposed by Goodfellow et al., 2014 set new stan-

dards on real-valued data such as images [31], generating sequences of discrete outputs

comes with additional challenges [38, 84, 86].

For one, the gradient of D is calculated based on the sequences generated by G. This

gradient is used to change G’s parameters in order to generate potentially more realistic

outputs [86]. This approach is �awed with discrete outputs. While a slight change in

an image does not inherently change the image, with a con�ned number of words in a

dictionary, this change will most likely not map to an actual word [29, 86].

Secondly, D can only judge a complete sequence of tokens. In a setting where a RNN is

employed as generator one token is being generated per time step. Assessing the quality

of partial sequences on the other hand is not trivial [86].

Yu et al., 2017 introduced the idea of treating the problem as a sequential decision

making process [86] based on Bachman and Precup, 2015 [4]. In this setting G is an agent

in a reinforcement learning problem, where the generated token acts as state and the

action is the next token to be generated. Which action is executed is de�ned by the policy

function π (a |s,θ ), a probability distribution over actions a given state s .
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x1x1

x2x2

… H0H0

Word embedding Convolving Convolving

ZZ

y1y1 y2y2

LSTM LSTM

H3H3

y3y3

LSTM

soft-argmax

H1H1 H2H2

Figure 4.4.: Architecture of the GAN’s Generator G Source: [91]

Sequences are then generated by the optimal policy π ∗ with the optimal parameter θ ∗. To

�nd the optimal parameter Yu et al. used policy gradients [86].

For word vector representation we employ word2vec [54] which is a pre-trained word

embedding from Mikolov et al., 2015 at Google. It contains 3 million 300-dimension English

word vectors and was trained on the Google News dataset with around 100 billion words

[2].

4.3.1. Adversarial Information Maximization

Yu et al. manage to generate sequences in an adversarial framework. The model evaluated

in this work leverages this approach to explicitly improve diversity and relevance of

those sequences. The following examines the learning method Adversarial Information

Maximization (AIM) proposed by Zhang et al., 2018 that encourages informative and

diverse response generation [91]. Let pθ (Y |X ) be a generative model for or an input

sequence X = {x1,x2, ...xm} and a corresponding target sequence Y = {y1,y2, ...yn}.
Figure 4.3 gives an overview of the adversarial training process, where the discriminator

D distinguishes between "real" (X ,Y ) pairs from the training data and "fake" pairs (X ,Ys),
that contain synthetic Ys from the generator model pθ (Y |X ).

The following section lays out the framework’s generator and discriminator architecture

followed by an introduction to the backward model, that aims to increase relevance of the

generated answers.

4.3.1.1. Generator

For a source sentence X the generator G outputs a sequence Y . The architecture of G
illustrated in Figure 4.4 consists of an encoder and a decoder. 3 convolutional layers encode

X into a hidden vector H0. A vector Z containing random noise is then added to H0 in

order to produce more diverse responses.

The decoder part consists of 3 LSTM layers, which generate each word yi given the

hidden states H0, Hi−1 and Z . The original LSTM introduced by Hochreiter and Schmidhu-
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ber, 1997 samples words from a multinomial distribution [36]. Zhang et al. aimed to use

the reparameterization trick by Kingma et al., 2013 [39], which is possible by using the

soft-argmax operation, an approximation using the Softmax function.

4.3.1.2. Discriminator

Given a source sentenceX the discriminator needs to di�erentiate between targets from the

training data Y and generated targets Ys . Using two embedding networks based on CNNs

the sequences are projected onto an embedding space with �xed dimensions. The source

embedding network Es maps X into the embedding space, while the target embedding

network Et maps both Y and Ys into �xed-sized space. These vectors are then compared

by their cosine similarity dcos .

Discriminator D’s objective is to maximize the di�erence between dcos (Y ,X ) and

dcos (Ys ,X ), while G tries to minimize the same. Formally the loss is described as:

LGAN = −ET ,Ts ,S = [2 tanh
−1(dcos (Y ,X ) − dcos (Ys ,X ))],

where 2 tanh
−1

is used to smooth the gradients. The idea of an embedding-based discrimi-

nator comes from Wasserstein GAN by Arjovsky et al., 2017 [3].

The gradients from D are propagated to pθ (Y |S) with Deterministic Policy Gradient

(DPG), as opposed to the policy gradient applied by Yu et al., 2017. For the generated

response Ts(S,Z ) DPG estimates gradients with a Monte carlo approximation:

∇ϕD(Ts , S) = EZ∇TsD(Ts , S)∇ϕTs(S,Z )

4.3.1.3. Mutual Information Objective

Mutual information (MI) has been applied to neural response generation by Li et al., 2015

[42], after being introduced to speech recognition by Bahl et al., 1986 [7]. Li et al. suggested

that previously used objective functions, such as the likelihood of the target given the

source, produce less diverse, less interesting, and less appropriate responses than the

proposed MI objective.

While previous works used to re-rank responses based on MI [35], Zhang et al., 2018

leveraged MI in training as well. The informativeness of a response in this model is judged

by the mutual information of the source-target pair (X ,Ys). Therefore the unknown joint

distribution p(X ,Y ) is approximated by

pest (X ,Y ) = pθ (Y |X )p(X ),

where the forward model pθ (Y |X ) is trained to make pest (X ,Y ) approximate p(X ,Y ), but

still maintain high MI in pest (X ,Y ).
To save computational cost [9] MI is calculated based on a variational approximation

proposed by Barber et al., 2003 [9]. The MI between X and Y is de�ned as:

Ipe (X ,Y ) := Epe (X ,Y ) log
pe(X ,Y )

p(X )pe(Y )

= H (X ) + Epe (Y )dKL(p
e(X |Y ),qϕ(X |Y )) + Epe (X ,Y ) logqϕ(X |Y )
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≥ Ep(X )Epθ (Y |X ) logqϕ(X |Y ) =: LMI (θ ,ϕ),

where qϕ(X |Y ) is a backward model approximating pe(S |T ), H is the entropy of a random

variable and dKL is the Kullback–Leibler divergence measuring the di�erence between

two probability distributions. qϕ(X |Y ) is implemented with the same CNN and LSTM

architecture as the generator, see Figure 4.4
With the Monte-Carlo variant of policy gradients called REINFORCE [80] and the empirical

average as baseline b Zhang et al. approximate the gradient as follows:

∇θLMI (θ ,ϕ) = Epθ (Y |X )[logqϕ(X |Y ) − b] · ∇θ logpθ (Y |X ),

∇ϕLMI (θ ,ϕ) = Epθ (Y |X )∇θ logqϕ(X |Y ),
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zENCEncoder
x Decoder y

Figure 4.5.: The architecture of the standard encoder-decoder baseline.

Autoencoder zAE

zENCEncoderx

y

Shared
parameters

Decoder

Decoder

Figure 4.6.: Architecture proposed by Luan et al., 2017

4.4. Geometrical Approach

S2S models often produce relevant responses that tend to be bland [89, 26]. The following

section presents the Geometrical Approach by Gao et al., 2019.

The idea of combining two models for response generation by sharing a decoder between

both encoders in a multi-task setting has been introduced by Luan et al., 2017. Their work

is not aimed at increasing diversity speci�cally and leverages additional persona context

to generate responses. It does however propose an additional Autoencoder and shared

parameters for the decoders [50], as used in the model proposed later on.

Luan et al. introduce a multi-task learning framework that is shown in Figure 4.6.

It consists of an encoder-decoder model and an Autoencoder. For an input sequence

X = {x1,x2, ...xm} and a corresponding target sequence Y = {y1,y2, ...yn} the S2S model

Figure 4.7.: Hidden representations of source (red) and target (blue) sequences from Luan

et al., 2017 (left) and Gao et al., 2019 (right) [26]
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Figure 4.8.: Architecture of the geometrical approaches in section 4.4 and 4.7

Autoencoder zAE

zINTERP

zENCContext

Encoder

Encoder

Shared
parameters

x1

x2

y

Shared
parameters

Decoder

h1

h2 Decoder

Decoder

Figure 4.9.: Our architecture of the recurrent hierarchical approach, see section 4.5

uses a LSTM layer to encode X . The last hidden state of the LSTM hm is then used to

initialize the decoder LSTM, which predicts yt using hm and yt−1.
Similarly the Autoencoder is made up of an encoder and a decoder based on LSTM. While

the S2S encoder maps from source to target, the Autoencoder predicts its input sequence.

It shall be noted that in Luan et al.’s work the input sequences are persona data, which

is not the case for the model proposed in this work later on. Persona data is additional

information about a participant in a dialogue. The personas are often described in a textual

pro�le [88].

The parameters of both decoders are shared.

The training process computes the gradients of the S2S model and updates its weights

based on the loss function before updating the weights of the Autoencoder based on another

batch with the same target user and persona data [50].

Gao et al., 2019 adapted the architecture shown in Figure 4.6 for diverse response

generation. In their work the target sequences Y is fed to the Autoencoder. While the

encoder of the S2S model produces a hidden representation of the source sequence X , the

Autoencoder produces such a representation given the target responses Y corresponding
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to the source. This is in contrast to Luan et al. that used the Autoencoder to encode persona

data. The targets Y in the training data potentially include diverse responses.

The hidden space in this setting forms two di�erent clusters, as the left part of �gure

4.7 shows. The cluster of red dots contains the hidden vectors representing the source

sentence, while the blue cluster contains hidden representations of target sequences. Both

representations are in clearly separate areas of the hidden space. However in order for

the encoder to leverage the information learned from the Autoencoder a hidden space

with fewer gaps between the two is desirable for Gao et al. [26]. Their goal is to create a

hidden space where hidden representations of corresponding source target-pairs have a

short distance between them. When that is the case, the geometrical relationship between

source and target has a semantic meaning.

This is archived by structuring the hidden space based on source and target sentence.

In a Gaussian distribution sampling further from the mean to increase diversity tends to

make samples infrequent and less relevant [26]. However in this geometrical approach the

distance from the predicted response shall match the relevance, and the direction must

indicate the diversity [26]. The following section presents an approach to archive such a

relationship between source and target representations.

Bringing the hidden spaces of both models closer together can be archived via regular-

ization based on minimizing the distance between both hidden vectors:

Linterpolation =
1

|y |
logp(y |zinterpolation),

zinterpolation = uzS2S + (1 − u)zAE,

where u ∈ U (0, 1) is a uniform random variable and |y | is the word count. Linterpolation

enforces an interpolation between zS2S and zAE , in order for both of them to generate the

same response and also prevents di�erent responses from pointing into a similar direction.

The loss further incorporates a term to ensure that the hidden vectors are scattered over

the entire space instead of forming clusters, while still keeping corresponding zS2S and

zAE pairs close together:

L f usion =
∑

i∈batch

d(zS2S (xi), zAE(yi))

n
−

∑
i,j∈batch,i,j

d(zS2S (xi), zS2S (xj))

n2 − n
−

∑
i,j∈batch,i,j

d(zAE(yi), zAE(yj))

n2 − n
,

d(a,b) =
√
(a − b)2,

where n is the batch size.

The �nal loss then combines Linterpolation and L f usion with a standard multi-task loss:

L = −
1

|y |
logp(y |zS2S ) −

1

|y |
logp(y |zAE) + αLinterpolation + βL f usion (4.1)

The regularization results in a mapping between semantic characteristics and geometry

of the hidden space. More speci�cally the semantic diversity maps to the geometrical

direction, while the semantic relevance corresponds to the geometrical distance. Both are

archived by Linterpolation and L f usion regularization respectively.
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4.5. Recurrent Hierarchical Approach

This section starts by explaining shortcomings of the above Geometrical Approach and

addresses them with a novel approach that adds a hierarchical structure to the Geometrical
Approach. In order to avoid confusions with the Transformer model – that will be introduced

later – we call this the Recurrent Hierarchical Approach.

While research in dialogue modeling often focuses on a single-turn conversation, in real-

life scenarios conversations span over multiple dialogue turns. Creating relevant responses

therefore requires incorporating long-term dependencies into response generation.

The underlying RNN in the previous section su�ers from vanishing gradients when

dealing with long sequences. This is partly mitigated by the memory gate of a the GRU,

however detecting dependencies becomes harder with longer sequences. This work

therefore proposes a hierarchical structure in order to make responses more informative

based on long input sequences.

A conversation turn in a dialogue consists of a sequence of tokens c = t0, t1, . . . , tm.

More than one of such sequences form a multi turn-conversationmc = c0, c1, . . . , cn, where

n is the number of conversation turns.

Based on Serban et al., 2016 this work models this hierarchy with GRUs:

• Encoder GRU: models the token-level sequences c .

• Context GRU: operates on the sequence-levelmc .

The Encoder GRU receives the source dialogue turns xi as inputs and creates the hidden

representation hi . These are then fed to the Context GRU, which is one level higher in the

hierarchy and stores past sequences. After processing all c , the hidden state of the context

module contains information about all utterances.

The decoder part of the framework then receives the hidden representation of all past

utterances, whereas in the basic Geometrical Approach it would receive the information

from the encoder directly. The parameters in the encoder and in the decoder are shared

in order for them to be able to generalize across all training data. The entire architecture

is illustrated in the Appendix (A). The general framework – without speci�c layers – is

illustrated in Figure 4.9.

The hierarchical structure is set up to enable the model to capture more information

from the input sequences. Based on that additional information the generated responses

can potentially be more informative by leveraging the additional input.

4.5.1. Training

In training the Adam optimizer has been shown to speed up training compared to Stochastic

Gradient Descent (SGD) without noticeably decreasing accuracy.

The non-hierarchical geometrical model has been trained for 3 epochs on a Nvidia
1080 TI GPU. The hierarchical version trained for 4 epochs on the same hardware. The

hierarchical model required roughly twice the time to train for one epoch, thus leaving

room for optimization of the concatenation of both encoder outputs.
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X6

X8_ X7X1 X2 _ _ _ _ _ _ X4 X5X3

Encoder Decoder

__

X3 X5X4

Attention

Figure 4.10.: Masking scheme of the Transformer encoder-decoder framework. [71]

4.6. Transformer Approach

Starting in 2018, pre-training has become a very active area of research [20, 61]. Based

on the Transformer several works have started pre-training models on large amounts of

unlabeled data available on the internet. Especially in language understanding BERT, GPT
and XLNet have set a new state-of-the-art [20, 85]. For generation tasks those models have

not had the same signi�cant impact [74].

With the Masked Transformer Song et al., 2019 introduced a Transformer-based pre-

training approach that outperforms previous architectures in several S2S tasks [71].

In the following the (Masked) Transformer approach is introduced, followed by the novel

Geometrical Transformer approach, which is designed to increase diversity in response

generation.

The Transformer has an encoder-decoder architecture. Both parts are based on a Trans-
former. Song et al., 2019 proposed a masking scheme in the training process, which is

discussed in the following section.

The adversarial model build their vector representation of words based on word2vec
[54], which is a static word embedding. For the recurrent approaches embeddings of size

128 were trained from scratch. In the Transformer architecture we employ pre-trained

contextualized word embeddings. The embeddings of the non-Transformer models are

context-independent, which means one word always has the same static representations.

The contextualized embeddings of the Transformer’s have a dynamic representations based

on the surrounding words [13]. Note that in a recurrent network words are fed word

by word and in the adversarial approach we employ convolution. Both make use of the

sequence order. In the Transformer however information about the position needs to be

additionally provided [76].

The Masked Transformer model consists of 6 encoder and decoder layers respectively.

See Section 2.1.2 Transformer for more details. The masking scheme proposed by Song et

al., 2019 [71] is explained below.

4.6.1. Training

The Transformer encoder and decoder are jointly trained with a masking scheme. This is

opposed to BERT, which employs separate training [20]. For each input sequence xu,v ∈ X
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(see chapter 2.1.1 Sequence to Sequence Learning) the tokens from positionu tov are masked

with 0 < u < v < |x |. Let k = v − u + 1 be the number of tokens being masked.

In pre-training the model is fed xu,v and predicts the masked sub-sequence xu,v . Figure

4.10 illustrates the training process for u = 3 and v = 6, where the model decoder outputs

the initially masked tokens x3,6, based on the decoder input x3,x4,x5. Note that if only one

token of the encoder input is masked, the decoder input is entirely masked.

Song et al. argue that the masking scheme they propose "forces the encoder to under-

stand the meaning of the unmasked tokens", while encouraging "the decoder to extract

useful information from the encoder side". [71]

As for the training data of the Transformer we used weights that were pre-trained on

the Wikipekia and BookCorpus data. The �ne-tuning on the Reddit dataset trained for 10

days on a Nvidia 1080 Ti.

4.7. Geometrical Transformer Approach

The novel approach proposed in this work adapts the multi-task setting to structure the

latent space discussed in 4.4. The architecture of both encoders are based on the (Masked
Transformer), see Figure 4.8 for the architecture.

As in the recurrent approach, the encoder models transform a input sequence into

hidden representations. More speci�cally both encoders take a sequence and a masked

fragment as input and output a hidden state and a padding mask.

Source and target sequence are transformed into hidden states hsrc and htдt by two sep-

arate encoders. Each encoder consists of 6 Transformer layers with multihead attention.

Based on Vaswani et al., 2017 dropout and layer normalization is applied after the self-

attention layers [76].

Based on Gao et al., 2019 the hidden representations of source and target sentence hsrc
and htдt are interpolated:

hinterpolated = uhsrc + (1 − u)htдt ,

with the uniform distribution u U (0, 1).
The resulting three hidden representations of source and target sentences hsrc , htдt , and

hinterpolated are passed to three decoders. All of them share weights. Using this information,

the decoder generates a response. The architecture of the decoder, like the encoder, is

based on 6 Transformer layers.

In this multi-task setting there are 3 di�erent loss terms that are combined to adjust the

network’s weights and biases, see equation (4.1).

4.7.0.1. Training

While the basic (Masked) Transformer from the previous section was trained with a batch

size of 2000 and a maximum token size of 4096, the architecture with two encoders was too

large to �t those batches into memory. Therefore the maximum token size was reduced to
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256 tokens, to allow for a batch size of 2000. Since the Reddit data has an average sequence

length of 12 tokens, this did not come with a decrease in accuracy.

The model has 189 million parameters, compared to 123 million parameters of the model

with just one encoder. As with the other models the training dataset included 5 million

source-target pairs of reddit data.

For reference this implementation is based on the Transformer with a embedding hidden

size of 768, feed-forward size 3072, and 16 attention heads, while Song et al., 2019 uses

models with hidden size 1024 for the embeddings and 4096 in the feed-forward layers. For

this work this model proved not feasible since this architecture wold not �t in the 11.7

Gigabyte (GB) memory of a Nvidia GTX 1080TI.
The Transformer encoders and the decoder were pre-trained on the 2016 Conference on

Machine Translation (WMT16) News Crawl datasets with 190 million sentences in English

language.
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The models from the previous chapter are evaluated in the following.

All evaluation is done using multi-reference conversations from Reddit. The automated

evaluation on our Reddit corpus is based on 1000 source sentences and an average number

of 14.35 references.

5.1. Metrics

Finding appropriate automated evaluation metrics for neural response generation is an

active area of research [47]. Most publications rely on BLEU [58] in addition to human

evaluation [47, 72, 77]. Liu et al., 2016 showed that automated metrics such as BLEU only

show a small correlation with human judgments when looking at a single reference [47].

This is in contrast to machine translation, where BLEU has a signi�cant positive correla-

tion with human evaluation [24]. For translation systems the evaluation typically factors

in multiple references.

Therefore the evaluation setup for this work is based on more than one reference.

For BLEU and METEOR the evaluation of this work employs a metric based on Gao et

al., 2019 that calculates Precision f as an approximation of informativeness, and Recall f
for diversity. Given Nr references for a context x , a single source is evaluated as follows:

Precision f =
1

Nr

Nr∑
i=1

max

j∈[1,Nr ]
f (rj ,hi)

Recall f =
1

Nr

Nr∑
j=1

max

i∈[1,Nr ]
f (rj ,hi)

F1f = 2

Precision f ∗ Recall f

Precision f + Recall f

where f is the respective metric 4-gram BLEU or METEOR.

Further evaluation for diversity is solely based on hypotheses. This is opposed to

above metrics that take into account the references from the dataset. We calculate those

reference-only scores for two underlying metrics:

Diversityд = д(h0....,hNr ),

where д stands for the two metrics Entropy and Distinct.
While above metrics evaluate multiple hypotheses to the same source sentence, in a

typical use case, the interaction with one source sentence would only require one generated
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hypothesis. For all references (r0, ..., rNr ) we calculate the score of a metric f with the

single highest ranked hypothesis:

Sinдlei = h(r0, ..., rNr ,hbest ),

where hbest is the hypothesis with the highest rank, and i refers to BLEU, METEOR, and

Rouge.
In summary there are 11 metrics to rate informativeness:

• PrecisionBLEU−1

• PrecisionBLEU−2

• PrecisionBLEU−3

• PrecisionBLEU−4

• PrecisionMETEOR−1

• PrecisionMETEOR−2

• PrecisionMETEOR−3

• PrecisionMETEOR−4

• PrecisionRouдe−1

• PrecisionRouдe−2

• PrecisionRouдel

As well as 10 values to asses the diversity:

• RecallBLEU−1

• RecallBLEU−2

• RecallBLEU−3

• RecallBLEU−4

• RecallMETEOR−1

• RecallMETEOR−2

• RecallMETEOR−3

• RecallMETEOR−4

• DiversityEntropy

• DiversityDistinct

The informativeness and diversity metrics are combined by harmonic mean to provide

a single value to asses the model quality:

• F1BLEU−1

• F1BLEU−2

• F1BLEU−3

• F1BLEU−4

• F1METEOR

To further rate the general quality of the model outputs we calculate 5 scores based on

a single hypothesis, while above metrics worked on multiple hypotheses:

• SinдleBLEU−4

• SinдleMETEOR−4

• SinдleRouдe−1

• SinдleRouдe−2

• SinдleRouдe−l
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5.2. Baseline

A encoder-decoder model with GRU is the baseline model for this work. After training for

3 epochs, the model evaluates to a F1BLEU−4 of 0.059.

The encoder-decoder architecture in this baseline and in other works however has

shown to generally learn universal replies (dull response problem [6, 43, 69]).

This bears the question why replies are this generic. The reasoning behind this has

been studied in previous works. Wu et al., 2018 have decomposed the problem into two

sub-problems:

1. Target word selection: based on the hidden representation of the input a set of target

tokens is selected

2. Word ordering: The selected tokens need to be ordered in order to be grammatically

correct.

As for the �rst part, the tokens with the highest frequency in the training data have the

highest probability to appear in any sentence. Thus often used words are predicted more

often than speci�c ones that could convey more information.

This happens because of the conditional likelihood objective. The objective has shown

to be suitable for machine translation [6], where source and target sentence share the same

semantics. In response generation however, there can be a variety of di�erent answers to

the same source sentence and employing the likelihood objective leads to dull responses.

As for the word order Wu et al. attribute generic responses to the fact that tokens are

generated based on the previous token and are selected by the high transition probability

from the training data [81].

We observe this behaviour in our baseline results as well. Not only are responses often

generic such as "I don’t know", they frequently start with the same tokens. The generated

sequences for the test dataset start with the letter "I" in 57.3 % of cases and in 41.1 % of the

cases the word is followed by the token "am".

The following models in this work try to mitigate this behaviour by producing more

diverse responses that carry relevant information.

5.3. Adversarial Approach

During training the GAN approach (based on the original author’s published code [89])

did not converge. While the results lack semantic meaning, for the sake of completeness

the evaluation results are included in tables 5.2, 5.3, and 5.1 anyways.

While the results that take references into account are worse than the baseline, the

results on the hypothesis-only metrics are outperforming other models.

In 4-gram DiversityEntropy the GAN archives higher scores than the baseline and the

Transformer. As for 4-gram DiversityDistinct , the model archives the second highest score

behind the Geometrical Hierarchy model. During testing we did not �nd any sentences

that are grammatically correct or carry semantic meaning.

As an example: for the source sentence "tom cruise is not doing the reboot of ’the mummy’"
the GAN generates "multiplayer multiplayer accuse accuse ba�ed ba�ed ba�ed ba�ed
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ba�ed ba�ed bosses bosses bosses bosses bosses bosses bosses bosses bosses bosses bosses bosses
bosses bosses endorsement endorsement endorsement endorsement endorsement endorsement
endorsement endorsement endorsement endorsement endorsement endorsement endorsement
endorsement endorsement endorsement endorsement endorsement endorsement endorsement
endorsement endorsement endorsement endorsement endorsement endorsement endorsement
endorsement endorsement".
The possibly high Diversity scores for outputs such as the one above show the importance

of multiple metrics and a human evaluation, since a high score in some diversity metrics

can be archived with responses that are semantically incorrect.

5.3.1. Training

GANs have shown to be di�cult to train in multiple works [31, 53]. This is mostly due to

the fact that training two models, namely generator and discriminator, makes the training

process increasingly volatile [31, 29, 40, 53]. Parameter tuning for this work proved di�cult,

since training was limited to one GPU. For comparison: Zhang et al., 2018 trained on

8 GPUs [89]. However their results show that semantically coherent responses can be

generated in an adversarial framework. They archive a BLEU-4 of 0.016.

In the set up for this work however the GAN did not output any semantically coherent

sentences. After pre-training for 3 epochs the losses in joint training of both models

decreases, however the output was either random words or in some scenarios no words at

all. Increasing the learning rate from 0.0001 to 0.001 and 0.01 did not yield better results,

neither did switching between word2vec and one-hot encoding.

5.4. Geometrical Approach

This section evaluates the results of the model based on the geometrical approach intro-

duced by Gao et al., 2019 [26], while the section after discusses the Hierarchical Geometrical
Approach.

After training for 3 epochs the non-hierarchical recurrent model archived an F1BLEU−4
score of 0.075. Except for DiversityDistinct and DiversityEntropy , the model outperforms

the baseline and the GAN in both diversity and informativeness metrics.

The model’s main improvement has been proposed by Gao et al., 2019. It is a regular-

ization that structures the hidden space. This results in a mapping from distance in the

hidden space to relevance, meaning closer vectors are more relevant. Also, sampling in

di�erent directions leads to potentially diverse answers. The evaluation on the Reddit
dataset backs this theory.

For all diversity metrics except Distinct the geometrical approach is superior to the

baseline further suggesting the bene�ts of structured latent spaces that Gao et al. reported

[26].
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5.5. Geometrical Hierarchical Approach

Gao et al. structure the hidden space to make informative responses have a small distance

from the hidden representation of the input. This brings improvements over the encoder-

decoder baseline. This work tries to further improve the amount of information that

is conveyed in the hidden representation of the input. This is done to detect longer

dependencies in the input sequence. The hierarchical structure does this by adding

multiple levels, where each level creates an input representation of a di�erent dialogue

turn.

This leads to an increase of RecallBLEU−4 by 32 % from 0.071 to 0.094. Compared to the

three models above (baseline, adversarial, and non-hierarchical), this model shows the

strongest results in the general metrics, except for SinдleBLEU−4 and SinдleMETEOR . Since

the latter metrics compare n-grams in hypothesis and references this result could have

two explanations:

• The model produces an informative and diverse response with n-grams that do not

appear in any references. This could very well be, since the number of references is

limited and does not cover all possible meaningful answers.

• The geometrical approach has some shortcomings when it is evaluated on a single

response, and its strength lies in generating variety in multiple hypotheses, but does

not outperform the baseline when only looking at the highest-ranked response. This

would make the approach less useful in real-world user scenarios.

When looking at the results for diversity in Table 5.2 the model proves superior to all

previous results. While it is less surprising that the diversity scores lie above the ones for

baseline and GAN, the improvement over the non-hierarchical geometrical approach was

not expected. The hierarchical structure was introduced to be able to process long-range

dependencies in the input, thus improving informativeness, but it seems to also improve

diversity.

That implies that informativeness and diversity do not stand in a trade-o� relationship.

Zhang et al., 2017 argue that "responses of a system may be diverse but uninformative

(e.g.,“I don’t know”, “I haven’t a clue”, “I haven’t the foggiest”, “I couldn’t tell you”), and

conversely informative but not diverse" [89]. Our results suggest that an increase in

informativeness can imply an increase in diversity. Since the encoder of the hierarchical

model captures more information, the diversity of the response might increase due to the

higher density of information available.

While our expectation was that the hierarchical structure only increases informativeness,

it did actually increase diversity as well. Since there was no speci�c advancement for

diversity compared to the non-hierarchical model, it seems that the model produces more

diverse results thanks to the higher information density in the hidden state.

5.6. Transformer Approach

The Transformer has been pre-trained on the WMT16 News Crawl datasets with 190 million

sentences, while the other models have only been trained on the Reddit data.
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5.7. Geometrical Transformer Approach

The informativeness metric PrecisionBLEU−4 of 0.101 is very close to the performance of

the hierarchical geometrical mode, while the RecallBLEU−4 is slightly behind. The METEOR
results are weaker compared to the geometrical models, however it still clearly outperforms

the baseline.

That relevance is increased with this architecture aligns with other works that have

shown that transformer-based models exceed recurrent models at capturing long-range

dependencies [90].

We used the pre-trained weights from Song et al., 2019 [71] before �ne-tuning on our

Reddit corpus. Since we used the same vocabulary as Song et al. 11.6 % of tokens in

the dataset are replaced by the "UNK" token, the so called out-of-vocabulary problem

[10]. Out-of-vocabulary describes all words that appear in a corpus, that are not in the

vocabulary that a model is trained with [10]. Since the pre-training process used books

and Wikipedia articles the words that are commonly used di�er from the more informal

language on Reddit. The Transformer results could be further improved when working on

a vocabulary that covers more words from the Reddit corpus.

5.7. Geometrical Transformer Approach

This model combines the regularization to structure the latent space with the Transformer
architecture that outperformed the GRU encoder-decoder baseline.

TheGeometrical Transformer proves superior in the general metrics F1BLEU−4, SinдleBLEU−4,
SinдleMETEOR . However falls behind the recurrent models in lower n-gram BLEUs, METEOR,

and Rouge scores.

In diversity scores the model archives the highest score for RecallBLEU−3 RecallBLEU−4,
but falls behind the recurrent models in RecallMETEOR .

For informativeness the PrecisionBLEU−4 and PrecisionMETEOR scores are the highest out

of all models. The performance is slightly weaker in BLEU with n-grams 1 to 3, however

most other works focus on 4-gram BLEU for evaluation.

In summary, theGeometrical Transformer shows superiority in informativeness, however

not making signi�cant improvements in diversity compared to the recurrent geometrical

approach. The increase in informativeness can be attributed to the increased size in param-

eters: 189 million parameters compared to the 12 million parameters of the hierarchical

recurrent approach. Only by using the pre-trained weights of Song et al., 2019 [71] was it

possible to train (or �ne-tune) the much larger Transformer models in a similar amount of

time on the same hardware as the recurrent models.

It seems that the results can be largely attributed to pre-training, and diversity results

could be further improved by �ne-tuning on the Reddit dataset, given that the pre-trained

weights used for the Autoencoder are pre-trained as an encoder, not as an Autoencoder
of target sentences. Due to time and resource constraints further �ne-tuning was not

possible for this work.
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5. Evaluation

Source Sentence:

Green day got their set cut from 45 to 25 minutes at the

iheart radio festival so usher could have more time on

stage, here is billie joe ’s reaction...

Note how the bassist instantly follows billie joe’s

reaction and starts smashing his bass. teamwork.

I wish it would’ve panned over to show mike smashing

his bass.

They showed it at the end of the clip looking pristine,

i don’t think he did much damage.

Baseline It’s a lot of people.

Hierarchical Geometrical

I’ve been listening to this.

I think he’s a douche.

That’s the best thing i’ve ever seen.

Geometrical Transformer

This is the best thing i have seen all day.

I love this album so much.

Or i love youtube.

Table 5.4.: Model outputs compared

5.8. Comparison

This work compares 6 models. The underlying neural network architeture can be divided

into three categories: RNN, GAN, and Transformer. The following gives a summary

of results the di�erent technologies have archived. Table 5.4 shows an example source

sentence and the respective outputs of the baseline compared to our novel approaches.

The di�erent approaches to response generation discussed in this work show a fun-

damental di�erence when trying to archive diversity and relevance in dialogues. While

the adversarial approach archives high diversity in some scores, it performs poorly for

relevance. Recurrent and Transformer-based approaches archive higher relevance, but –

especially for the baseline – diversity is low compared to the models that are introduced

in this work.

Generating diverse and relevant dialogues comes with two di�erent challenges for all

architectures. When working with encoder-decoder models and the geometrical approach,

diversity needs to be improved. For the GAN approach, the challenge is to provide relevant

responses.

While other works formulate diversity and relevance as a clear trade-o� [89], the results

in this work show that improving one objective does not mean the other objective will

su�er.

We have seen clear improvements when combining pre-training, Transformers, and Gao

et al., 2019’s geometrical approach.

The number of trainable parameters has made hyperparameter tuning easier for the

recurrent approaches on limited hardware resources. However the large pre-trained model

outperforms all other models in most metrics and still has room for improvement with

further scaling and additional �ne-tuning.
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5.8. Comparison

This work has proposed two novel approaches, namely the Hierarchical Geometrical
(Recurrent) and the Geometrical (Masked) Transformer that combine di�erent techniques

to improve diversity and informativeness.

We have presented evaluation results for 5 informativeness metrics, 7 diversity, metrics,

and 10 general metrics that combine both informativeness and diversity. In all metrics the

highest score has been archived by one of the novel approaches.
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5. Evaluation

RecallBLEU−4 RecallMETEOR
Entropy Distinct
1 2 3 4 1 2 3 4

-0.1248 0.1172 0.1721 0.2281 0.3066 0.3380 0.0165 0.0597 0.1013 0.1506

Table 5.5.: Diversity correlation of human evaluation and automated metrics

PrecisionBLEU−4 PrecisionMETEOR
Rouge

1 P 1 R 1 F 2 P

0.0160 -0.0001 -0.1212 0.0283 -0.0707 -0.0762

Rouge

SinдleBLEU SinдleMETEOR
2 R 2 F L P L R L F

0.0283 -0.0399 -0.1266 0.0317 -0.0880 -0.0150 0.0638

Table 5.6.: Correlations between human and automated evaluation of informativeness

5.9. Metric Evaluation

Automated evaluation metrics are an active area of research. Since multiple works state

that there is no clear indication of a proper metric for informativeness and diversity in

response generation [47, 89, 26], this work evaluates the correlation to human evaluation

for the metrics that have been employed.

Therefore, we randomly select 100 source sentences from the Reddit test dataset. With

the hierarchical geometrical model we generate �ve hypotheses per source. The automated

evaluation of responses is based on �ve references per source.

For the human evaluation, we annotate each hypothesis with an informativeness score

[1, 5], and rank the overall diversity of the answers in the same range.

The Pearson correlation between human evaluation and the respective metrics are

shown in Table 5.5 for diversity and Table 5.1 for informativeness.

The experiment shows the most signi�cant correlation for informativeness with the

human evaluation for the Rouge-L recall, followed by Rouge-1 recall.

For diversity all four Entropy results showed the highest correlation, followed by Distinct,
and RecallMETEOR .

Out of all models in automated evaluation the highest Entropy scores were archived

by the Geometrical Transformer, the highest RecallMETEOR by the Geometrical Hierarchical
model. The latter was also the best in terms of the Rouge diversity metrics.

The Recall diversity metrics are based on both reference and hypothesis, while Distinct
and Entropy are based only on the hypothesis. The latter can rate random responses

without semantic meaning as diverse.

Distinct has shown to be the least coherent metric. Since all the distinct n-grams are

divided by the number of words, models that make use of a very small vocabulary can

archive high evaluation scores, which does not lead to diverse and interesting answers

according to human evaluation.

For informativeness we have seen the highest correlation with Rouge and therefore

propose this for future evaluation rather than BLEU. For diversity Entropy has shown the
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5.9. Metric Evaluation

highest correlation. Since a high score can be archived with semantically meaningless

responses we advise against using this metric without a human evaluation or other metrics

that factor in hypotheses.

Our correlation results are not conclusive when comparing single hypotheses metrics

(SinдleBLEU−4, SinдleMETEOR) with multi hypotheses metrics (RecallBLEU−4, RecallMETEOR)

for informativeness. We observe higher correlations with multiple hypotheses when

using BLEU, however when using METEOR the single hypotheses evaluation shows higher

positive correlation.
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6. Conclusion

6.1. Discussion

The Hierarchical Geometrical model we proposed leverages structured latent spaces and a

hierarchical encoder and provides better evaluation results than our baseline model.

This work has shown that the pre-trained Transformer architecture [76, 20, 71] leads to

signi�cant improvements to diversity and informativeness in response generation.

Combining the regularization that structures the hidden space with the pre-trained

Transformer has further improved results on our evaluation scheme and both novel ap-

proaches beat all other models in di�erent metrics.

While previous works have seen diversity and informativeness as a trade-o� [89, 91],

the results of this work suggest that they can be jointly optimized for S2S models.

A human evaluation to compare the automated metrics has shown the highest correla-

tions with the Rouge score for rating informativeness, and Entropy for diversity. We have

seen little positive correlation for the often used [47, 89, 26] BLEU metric.

6.2. Future Work

This work created a model for more diverse and informative dialogues. While the S2S

approaches already provide a strong baseline in terms of informativeness, this could further

be boosted with additional information – such as the textual information behind the URLs

that are posted [25] – that has been neglected in this work. While additional context

or persona information have been studied, combining this with a diversity-promoting

objective is yet to be explored to the best of our knowledge.

Without additional information the Transformer-based approached could be further

improved in two ways: the out-of-vocabulary problem can be avoided by switching from

word-level to Byte Pair Encoding (BPE) [90, 62], and the informativeness of answers could

be further improved by re-ranking based on mutual information estimation (see 4.3.1.3
Mutual Information).

Structuring latent spaces for more diversity is highly dependent on the underlying

training data. Creating datasets with multiple references that speci�cally contain diverse

responses would bene�t the existing architectures.

While this work has leveraged a multi-reference dataset for automated evaluation, the

automated evaluation on single-reference data needs to be further explored, as there

is currently no metric with signi�cant positive correlation to human evaluation [47].

Embedding-based metrics have shown to be promising in some works [89].
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6. Conclusion

While the above stated future work is purely focused on neural response generation, it

is also possible to extend the frameworks to a dialogue system with a Automatic Speech

Recognition (ASR) component.
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A. Appendix

A.1. Recurrent Hierarchical Architecture

Section 4.5 Recurrent Hierarchical Approach introduces a novel RNN that combines struc-

tured latent spaces with a hierarchical encoder. The following illustrates the speci�c neural

network architecture.
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