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Abstract

[mprovements in automatic speech recognizer systems have led towards a
new generation of applications which can be controlled by a user’s voice. The
acceptance of this new input modality is highly depending on its naturalness
for the user. Hands-free far field recordings are by far the least intrusive
approaches and should therefore be preferred. To achieve an acceptable signal
quality in these far field recordings, beamforming can be used to reduce
noise, disturbances and reverberation. In this diploma thesis we compare
three beamforming algorithms in the special context of automatic speech
recognizer svstems. We evaluate the elassical delay and sum beamformer,
an adaptive MVDR- and a new maximum likelihood HMM beamformer. We
show how both adaptive algorithms can be formulated as a Kalman filter.
Using a square root information filter implementation, we are able to add
diagonal loading as well as process noise to the Kalman filter. We show,
that the design of the HMM beamformer is especially well suited to improve
recognition accuracy of ASR systems as it directly uses the feedback of the
recognizer to adapt its beamforming weights.
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Chapter 1

Introduction

[mprovements in automatic speech recognition have lately led to a growing
number of applications which can be controlled by a users voice in addition to
classical input devices like a keyboard or mouse. The acceptance of this new
input modality is highly depending on its naturalness for the user. Close-
talking microphones offer the best audio quality, but also foree the user to
focus on them, while using a device. In addition, they might further disturb
the user and reduce his Hexibility, if for example he has to wear a head-
mounted microphone, Far-field microphones on the other hand offer the least
intrusive technique to record a speakers voice but also increase the amount
of additional noise and disturbances in the recordings. Beamforming offers
one way to reduce this disadvantage in far-field recordings significantly.

Originally developed for radar and sonar, beamforming has been eventu-
ally adapted to the acoustic field. Given an array with multiple microphones,
beamforming can be used to focus on an acoustic source while suppressing
noise and disturbances from other directions. To measure the performance
of beamformers, most papers and articles evaluated the gain in the signal-
to-noise ratio (SNR) and used this criterion to optimize the beamformers.
Unfortunately. improvements in the SNR do not necessarily transform into
a better performance of an automnatic speech recognizer (ASR).

All state of the art ASR systems do not use a plain signal for speech
recognition but extract several features like Mel frequency cepstral coeffi-
cients, which are used instead. Seltzer |Seltzer03| was able to demonstrate
that the SNR therefore is not an optimum criterion to optimize the output of
a beamformer. Instead he suggested to incorporate the ASR system into the
beamforming algorithms, using Mel features and the log likelihood of an ASR



hypothesis as a minimization criterion to optimize their performance. With
this new approach called LIMABEAM, Seltzer could reduce WER compared
to standard beamforming techniques significantly. His best approach used a
Fast Fourier Transformation (FFT) filterbank and adapted the beamformer
in the different subbands. Raub presented a similar approach [Raub04] with
an FFT filterbank but working in the cepstral domain with comparable re-
sults.

In this diploma thesis we want to further investigate the performance
of adaptive beamformers for ASR systems. We implemented two classical
approaches and one new beamforming algorithm using a cosine modulated
filterbank for all three beamformers. In contrast to the FFT filterbank used
by Seltzer and Raub, this filterbank does not disturb the acoustic signal but
allows a perfect reconstruction. We evaluate the three beamformers, namely
a standard non-adaptive delay and sum (DS) beamformer, an adaptive min-
imum. variance distortionless response (MVDR) and a new adaptive Maxi-
mum Likelihood Hidden Markov Model (HNMM) beamformer, with a state of
the art speech recognition system.

1.1 Outline

Chapter 2 gives an overview of classical beamforming techniques and intro-
duces the DS- and MVDR beamformer. We show, how to formulate the
adaptive MVDR beamformer as a recursive least squares (RLS) algorithm
and introduce a technique called diagonal loading to increase the stability of
beamformers.

As the RLS algorithm offers no easy way to implement diagonal loading,
we introduce the concepts of Kalman filtering in Chapter 3. We present
a Kalman filter based on a square root algorithm and show how it can be
used to implement an adaptive MVDR beamformer with diagonal loading.
Chapter 4 focuses on a new approach specially designed for antomatic speech
recognition - the HMM beamformer. One important aspect of this diploma
thesis is our implementation and first evaluation of this new beamformer.

Before deriving the HMM beamformer, we briefly present the concepts
of modern ASR systems and the features used to recognize speech. These
concepts will play an important role in a gradient derivation. which we can
use to optimize the HMM beamformer performance.

The experimental setup and the results for the different algorithms are
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presented in Chapter 5 as is a description of the ASR system used in our
experiments. A final conclusion and motivation for future work is the topic
of Chapter 6. Appendix A describes filterbanks and their advantages in
beamforming applications. Furthermore, it introduces the cosine modulated
filterbank: a perfect reconstruction filterbank, that was used in our beam-
forming experiments.
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Chapter 2

Classical Beamforming
Algorithms

The main goal of beamforming is to focus on one audio target while trying
to suppress noise and disturbances from other directions. This chapter gives
an introduction to beamforming and describes two of the three algorithms
we used in our evaluation. the DS beamformer and the MVDR beamformer.
Most of the examples and derivations in this chapter are taken from Van
Trees [VanTrees02]. Both beamformers are designed to improve the SNR of
a recording, while the HMM heamformer in Chapter 4 is specially designed
to improve the output of an ASR svstem.

The DS beamformer is one of the oldest classical approaches, but still
widely used for beamforming applications. With a complexity of O(N) it is
fast enough for realtime applications. The MVDR beamformer on the other
hand can be formulated as an adaptive algorithm. It is able to deal with
changing scenarios at the cost of a higher complexity.

In all examples given throughout this chapter we will use a linear micro-
phone array with equidistant spacing as used in our experimental setup.

2.1 Delay and Sum Beamformer

The DS heamformer is one of the oldest algorithms in beamforming, yet it is
still the reference to other approaches as it is computationally simple as well
as stable and reliable under most acoustic conditions.

Throughout this diploma thesis, we assume the microphone array to be
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Figure 2.1: Linear array and plane wave
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linear, located on the x-axis of a 3 dimensional room, as shown in Figure
2.1(a). Reducing the observation space to two dimensions, the incoming
signal is assumed to be a plane wave from direction # as shown in Figure
2.1(h).

Given a linear array with N microphones, the position of each microphone

N-1
Dy = (n — T) - d

where d is the inter-sensor distance. The input y, at each microphone is a
filtered and time shifted version of the original speaker output:

ig

Yu(t) = x(¢) * hy(t) (2.1)
where # is the convolution formula, x(#) is the original signal and h,,(f) is the
room impulse response

hn“) = % )-(f + T”J

with 7, as the time delay for the n-th microphone. If we know the position
of the speaker and microphones, the time delays of arrival (TDOAs) 7, can
be calculated by

g, 2 -
I = sl /(e — 50 + By = 8" + (02, — 52)°

(4 b

(2.2)

n

where py is the position vector of the n-th microphone. s the position of the
acoustic source and v a scalar. indicating the speed of sound through air.

4}



For a narrowband signal with center frequency w, the time delay corre-
sponds to a phase shift, which can be applied by the multiplication of ¢/*<™
in the frequency domain. Transforming (2.1) in the frequency domain, the
convolution becomes a simple multiplication:

Y,(w) = X(““) Hy(w),

with frequency response

Figure 2.2 shows the two approaches working either in the time or fre-
quency domain.

Figure 2.2: DS Beamformer [VanTrees02, Chap. 2|
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The DS beamformer improves the SNR by compensating this time delay
and summing up all microphone channels. If the time delay is calculated
correctly, the different signals of the speaker will overlap while noise from
other directions won't.

Figure 2.3 demonstrates this idea: An acoustic signal and a noise source
are located at different positions in front of two microphones. The signal is
closer to the right one, hence, this microphone will record the signal earlier
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than the left one. Similar, the noise source will be recorded earlier by the left
microphone. The DS beamformer compensates the time delay between the
two microphones for the signal, and sums up both channels. As the recording
of the signal is now overlapping, the amplitude of the signal is almost doubled
while the amplitude of the noise source stays the same. This results in a SNR
almost twice as high as in the original signal.

Figure 2.3: Delaved and summed signal
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The interactions of the array with any plane wave arriving at the micro-
phones can be summarized by an array manifold vector v:

VH'(/‘,:) _ [fjprnk: 1 E\Jb'{‘k: l ] (f_jp;’,-k;

with wavenumber k. = —"T_ cos #: the direction of an arriving plane wave
with wave length A. Given the array manifold vector, the output £ of a D5
beamformer is the inner product of X and v:

F(w) = X" (w)v(k:)

2.1.1 Computational Complexity

The computational complexity for the DS beamformer is very low. Beside
the calculations inside the analysis and synthesis filterbank, the beamformer
just requires the caleulation of the array manifold vector v(k.) and an inner
product between v(k.) and the input signal X(w). The complexity is growing

linear in O(N), where N is the number of microphones in the array. It is
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therefore perfectly usable for real time applications even with a high number
of microphones.

2.2 Beampatterns

The effect of a beamformer can be visualized by a so called beampattern
[VanTrees02]. A beampattern shows the response of a beamformer steered
into a certain direction where steering can be applied by the phase shift. The
beampattern is given by

N=1
B(f) = e d(5F)55n0 3™ g ginRteond, (2.3)
n=f(

where wu,, describes the beam weight of the n-th microphone. With v = cosfl
equation (2.3) becomes

N-1
if N=13Y2rd, P A
Blu) = e/ (5F)F Y rein’fhu, (2.4)
n=0
and with i = %u (2.4) can be further reduced to
NI
B(f'ﬁ,‘) = ¢ -]( b )'. Z “l,:‘?FJJH.L ) (2))
n=f

Let us show some relevant properties of a beampattern on the example
of the DS beamformer. As stated in Section 2.1, the DS beamformer uses
uniform weighting, hence we set the beamforming weights to w), = % . This
reduces (2.5) to

sy N-1 1
Bps(v) = C’_"(T)""' Z v pdnl
n=0
: N-1
= i\f éf-”%)’-*’ Z edny
]
‘ n=i

Figure 2.4 shows the beampattern of a DS beamformer in ¢'-space. steered
perpendicularly to the array. At ¢» = 0 a main lobe with high response is

12
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visible. This main lobe should always be steered towards the acoustic source,
in order to process the signal without distortion: this is equal to a frequency
wavenumber response of one. Several sidelobes are located next to the main
lobe. They have a smaller response than the main lobe but still the response
is greater than zero, thus noise from these directions won’t be completely
suppressed. Beside those sidelobes you can see two other big lobes in the
picture at approximately «» = —6.3 and ¢» = 6.3. They are called grating
lobes and have the same magnitude as the main lobe. If a noise source
matches the direction of a grating lobe, it won't be suppressed at all.

The wisible region of a microphone array indicates the space where an
acoustic source can be located. It is usually given by =907 < 8 < 907 where
fl = 0° equals a look direction perpendicular to the array. In u-space this is
similar to —1 < u < 1 and in ¢*-space to —"L\” <P = i}’

The distance between main lobe and first grating lobe is directly affected
by the interdistance d of the microphones. To avoid grating lobes inside the
visible region, the interdistance between the microphones must be

where A\ equals the wave length [Johnson93|. Figure 2.5 (a) to (c) shows the
visible region of a DS beamformer with d = 2, d = A and d = 2\. For d = )
the first grating lobes appear at the outer rim of the visible region. As soon
as the array is steered to another than the perpendicular direction, one of
these grating lobes will move into the visible region, with a serious influence
on the beamforming performance.

For uniformly weighted beamformers, the magnitude of the peak of the
first side lobe is approximately —13.5 dB. This indicates the possible im-
provement for a uniformly weighted beamformer, like the standard DS beam-
former, in the worst case, when the position of the noise source matches the
first sidelobe. To further increase the SNR, it is necessary to influence the
shape of the beampattern with respect to the speaker position and potential
locations of noise sources. This is possible by adjusting the beam weights w
for each microphone non-uniformly. We will show how to get different beam
weights in the following sections.

14



Figure 2.5: Influence of inter-microphone distance to location of grating lobes
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2.3 Generalized Sidelobe Canceler

A generalized sidelobe canceler (GSC) |Griffiths82| is a popular adaptive ar-
ray design which is capable of adjusting the beam weights for each micro-
phone in the array differently. The goal of the GSC is to process the signal
of the active sound source (e.g. a speaker) without distortion (distortionless
constraint [VanTrees02]), while trying to adjust the weights for each channel
according to another optimization criterion, e.g. minimizing the total output
power of the beamformer.

Given the N dimensional weight space (where N equals the number of
microphones), the distortionless constraint is stated as

w v(k,) =1, (2.6)

where w'! is the 1 x N weight vector and v the N x 1 array manifold vector
with wavenumber .. Let us now divide the weight space into a constraint and
an orthogonal space. The constraint space is represented by v, the orthogonal
space is spanned by N — 1 linearly independent vectors of length N, which
are orthogonal to v. They can be summarized by the blocking matriz B of
size N x (N = 1). Thus,

-1
=

0
Let us assume that w, is the optimum weight vector for the given acoustic
condition. We can describe w, by

w, =w, — Bw,,

where w, is the projection of w, on the constrained space and w, the projec-
tion of w, on the orthogonal space. We call w, the quiescent weight vector
which is determined by the distortionless constraint and w, the active weight
vector which has to be determined by some sort of optimization criterion. As
w, only affects the orthogonal space, we can manipulate w, without affecting
w,. We will show how to use different optimization criteria to calculate w,
with respect to the distortionless constraint in Section 2.4 and Section 4.2.
The total output of a GSC is the difference between an upper branch
Yu(w). which calculates the distortionless constrained output and a lower

16



Figure 2.6: Configuration of a generalized sidelobe canceler |VanTrees()2]
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branch g (w) which works in the orthogonal space and usually tries to adapt
to a noise source:

."/u(“v‘-") = XH(""")WW (28)
pw) = x"(w)Bw, (2.9)
ylw) = yulw) —u(w) (2.10)

Figure 2.6 shows the general configuration of a GSC.
[t is possible to apply additional constraints like nulling out the signals
in special directions. For M different constraints, (2.6) becomes

wl O=g

where C is an N x M constrained matriz and g an 1 x M constrained vector.
Similarly, (2.7) can be written as

B i€=7%

where B is the N x (N — M) blocking matrix and Z an N x (N — M) matrix
with zeros. Obviously, with each additional constraint, the degree of freedom
to manipulate w, will be reduced by one. In the future discussion, we will
focus on using only the distortionless constraint. Algorithms using other
constraints are e.g. presented in Van Trees [VanTrees02].

Besides calculating w,. the computational complexity of a GSC depends
on the elements of C and B. In the worst case, we will have to recalculate B
every time C changes. In our case, where C is zero except the first column

17



Figure 2.7: GSC with pre-steering

x(t}ﬁ xs(tl | | vu D— yit)

which is set to v(k,), we would have to re-estimate B every time the speaker
changes position as this changes the array manifold vector. We can avoid this
recalculation by applying v to the input signal x before the beamforming.
This will reduce C to a unity vector and allows us to use the constant blocking
matrix

I =1 0 - 0
B! = T 4 = [ (2.11)
:
0 0 1 =1

X, (w) = x(w)v(k,) (2.12)
1

Yu(w) = x (W) | : (2.13)
I}

y(w) = x¥(w)Bw, (2.14)

y(w) = yu(w)—wy(w). (2.15)

Figure 2.7 shows the GSC configuration with pre-steering. Notice that for
all GSC configurations the output of a GSC is identical to a DS beamformer
if wil =1[0--.0].

18



2.4 Minimum Variance Distortionless Response
Beamformer

In this section we describe the non-adaptive MVDR beamformer. It is based
on the assumption that the signal is nonrandom but unknown. The derivation
of the adaptive MVDR approach follows in Section 2.5. All derivations are
primarily based on Van Trees [VanTrees02].

As beamforming is usually done in the subband domain, we assume to
have a subband domain snapshot X(w) of the input signal. The snapshot
consists of frequency bins of the signal plus noise for each microphone channel

X(w) = X (w) + N(w).

We get these snapshots of the original signal from a filter bank (in our case
a cosined modulated one). Appendix A presents the cosine modulated filter-
bank and shows how to generate snapshots.

The signal vector can be written as

Xs(w) = F(w)v(w: k),

where F(w) is the frequency-domain snapshot of the source signal and v(w :
ko) is the array manifold vector for a plane wave with wavenumber k..

The noise snapshot N(w) is a zero-mean random vector with spatial spec-
tral covariance matriz S, (w). defined as the sum between colored and white
noise.

S, (w) =S.(w) + o L (2.16)

Recall from Section 2.3 that we want to optimize the beamforming weights
w,, in the orthogonal subspace with respect to the distortionless constraint

w(w)v(w: k) = 1. (2,17

In the absence of noise, the distortionless constraint implies for the array
output Y(w) :

Y (w) = F(w)
for any F(w). Under this constraint, the optimization criterion for the lower
branch of a GSC for the MVDR beamformer is to minimize the variance of
Y (w) in the presence of noise. With

Y (w) = Fw) + Ya(w)

19



Figure 2.8: MVDR processing chain [VanTrees02]

X (0) v(@)S,() Y(w)
vi(m)S, (0)v(w)

this is equal to minimizing E {|Y.(w)|"}.
The mean square of the output noise is

E{|Yn(w)"} = w! (w)Sn(w)w(w). (2.18)

We can solve for the optimal weights by applying the method of Lagrange
multipliers:

F o= wh(@)Su(w)w(w) + Aw) [Wi(@viw: k) — 1] +
+A"(w) [v”(m sk )w(w) — l] g

Taking the complex gradient with respect to w' (w) and solving with respect

to (2.17), it can be shown after some algebra, that
Hg-1
wh = ="l (2.19)
muds V”SH . .
where we suppressed w and k, for convenience. Figure 2.8 shows the MVDR
processing chain.

2.5 Adaptive MVDR Beamformer

The non-adaptive MVDR beamformer assumes that the spatial spectral co-
variance matrix 5, is known. In actual applications, this matrix has to be
estimated from the incoming acoustic signal. Thus, the algorithm has to
be changed to be able to adapt while receiving new data. Given the noise
snapshots N, we can estimate the spacial spectral matrix S,, with

S, == N(EN(), (2.20)



hence equation (2.19) becomes

Hg-1
- H v'S,

mudr — = %
HQ—1
viS=ly

For the MVDR beamformer, we must only adapt the beamformers weights,
when no desired speech is present. If we update the beamformer when speech
is present, there is a risk that the algorithm will assume the signal to be noise
and try to cancel it out. A speech activity detector can be used to indicate
whether a speech signal is present or not.

If we estimate S,, according to (2.21), all noise snapshots from the distant
past up to now have the same influence to spatial spectral matrix. It would
be more convenient if we could weight the new update. We therefore present
two recursive algorithms which allow this sort of weighting.

First, we introduce the recursive least squares (RLS) algorithm. It uses a
forgetting factor to weight the influence of past estimations to the current one.
After that, we show how measurement mistakes either in speaker position
estimations or in the microphone configuration can lead to instability of the
beamformer and present a solution called diagonal loading. To apply this
diagonal loading we will find it useful to transform the RLS equations into a
Kalman filter, presented in Chapter 3.

2.6 Recursive Least Squares Formulation

The RLS algorithm offers the possibility to update a state, using just the old
state estimate from the last time step and the input. The influence of past
values and the current update is weighted by a fixed factor,

Let us rewrite (2.20):

7

®(T) = > pu"'N(HN"(¢t), (2.22)
t=1

where the matrix ®(#) represents an exponentially weighted sample spectral

matrix |VanTrees02| and je(0. 1) is a forgetting factor, which is usually set

close to one. The forgetting factor indicates the influence of past observations

to the current state.

For a recursive update of ®(t) we can rewrite (2.22):

®(t) = pu®(t — 1) + N(H)N(1). (2.23)



Formula (2.21) requires the inversion of S, (or ®(#) in case of an recursive
update), which can be calculated according to the matrix inversion lemma.

Matrix Inversion Lemma: Let A and B be two positive definite N x N

matrices related by
A=B'+C'D"'C

where D is a positive-definite L x L matriz and Cis an N x L matriz.

Then the inverse of A can be expressed as

A-'=B-BCT (D+CBC")"' CB

Using the matrix inversion lemma with relations

$(t) = A
(et —1) B!
N{i#) = C7

1 D

we can invert (2.23):

p2 et = NN (HBe 1t - 1)

1 — =l@=ls — 1) — 9 9,
) = =) - T AN (@1 (2 — DN() e
Defining
P(t) =& (1) (2.25)
and \P(t - IN()
- i t— ; o
) = TF - INA(@P( - UN(D) )
we can rewrite (2.24) to
P(t) = u'P(t— 1) = p~'g(t)N"(t)P(t - 1). (2.27)

which is the well known Ricatti equation'. The Kalman filter we present in
Section 3.1 is also based on the Ricatti equation, although in a form that

must be modified to account for the process noise.

! Named after Count Jacopo Francisco Riceati
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2.7 Diagonal Loading

Up to this point, we had assumed that we exactly knew the position of the
speaker and the microphone array. We have also assumed that the inter-
distance between two microphones is exactly the same. Under realistic con-
ditions it is most likely that there are inaccuracies in the position of the
sensors and the estimated position of the speaker. These inaccuracies lead
to a reduced performance of any beamformer. In the worst case. when the
signal and noise source location is completely wrong, we might even cancel
out the signal of the speaker and enhance the disturbances from the noise
source. As shown in [VanTrees02, p. 505 ff], the sensitivity of beamformers
to these inaccuracies increases as ||w||? increases. VanTrees demonstrates,
that it is useful to apply a quadratic constraint

lw|[* < T, (2.28)

with 7 as a design parameter to limit the magnitude of w,.

As stated in Section 2.4, the MVDR beamformer tries to minimize the
variance of the array output in the presence of noise and with respect to
the distortionless constraint (2.17). Thus, VanTrees adds to the Lagrange
multiplier function a term corresponding to the quadratic constraint:

wilw — T, =0,

which leads to

F = wis, w+ )\ [w”w— 'I;.] b
+Ao [w”v— i] + A3 [v”w - I‘] , (:

2
v}
Je|

Differentiating (2.29) with respect to A} and equating to zero gives

VH |:§H. = ’\ll]
Wi =wl = —. (2.30)

mudr 2
vil {S,, +)\|I] v

Hence, applying the quadratic constraint is equal to adding a diagonal matrix
to the spatial spectral matrix S, . This is called diagonal loading. The value
of A depends on the choice of Tj. It can either be set to a fixed value or be



adapted with the incoming signal. In general, the active weights of a GSC
beamformer will get smaller with increasing values for A;.
To prove this statement, we solve (2.29) with respect to w and set the
result to zero:
wis, + X\ wi + vl =0,
or
; ‘ -1
wh = —dov NI+ 8,7 .
Solving for A, gives
) - ) =1
H V” [E_‘,’,, + -“\II}

= e (2.31)
vi (S, + NI v
With
Wose = Wy — BWH‘
and
BB =1,
equation (2.31) can be used to derive
w, = [B"S,B+ 1] BYS,w, (2.32)

To show that the norm of w, decreases as A, increases, let us rewrite (2.32).
By setting

S. = BPS,B
P: = BHSan-

we ;‘_','(at\
w, = [S. + M0 7' ps,

The squared norm of w, is then given by
¥ 1 —2 - iy
wiw, =pl (S. + MI) 7 p.. (2.33)
Taking the partial derivative of (2.33) with respect to A gives

owlw, ; o5
— % = —2pf (S, + \I) 7 p.. (2.34)

dAl -
For A; = 0. the diagonally loaded matrix [S. + A I] is positive definite, hence
p (8. + b L p- s positive, therefore (2.34) is always negative. Thus,
increasing Ay decreases the norm of w, |\-'§111'1"rr'(-]‘ﬁ[}2|.
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Without diagonal loading it is very likely that the beamforming weights
will grow above all reasonable values and the beamformer will become unsta-
ble. The RLS algorithm offers no easy way to directly add diagonal loading,.
though several approximations for this problem exist,

[n contrast to RLS algorithms, Kalman filters are based on a state-space
equation which includes process noise in its caleulation. We will show how we
can easily apply diagonal loading to S, by adding a diagonal matrix to the
verse of S(t + 1|t), when formulating a Kalman filter as innovation filter.
The next chapter gives an introduction to Kalman filters and shows how to
implement the MVDR beamformer with this technique.
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Chapter 3

Kalman Filter

This chapter summarizes the basic ideas of Kalman filters, following the de-
scription in [Haykin96]. It demonstrates how Kalman filters based on the
Ricatti equation can become unstable and presents a solution to this prob-
lem with a square root implementation. After introducing the theoretical
backround we show how to implement an adaptive MVDR beamformer as a
Kalman filter.

3.1 Kalman Filter Based on the Ricatti Equa-
tion

The basic idea behind Kalman filters is the formulation of a state-space model
consisting of a process and an observation equation

X(t+1) = A()X(t) + W(1) (3.1)
Y(t) = CHX(t)+ V(t). (3.2)

The only observable value is the observation Y (t) while the state X(t) is
not observable but has to be estimated. Inside the process equation, X(f+1)
is calculated by multiplying X(¢) with fransition matric A(t) and adding
process noise W (t). The next observation can be predicted by multiplying
state X(t) with observation matriz C(t) and adding observation noise V(t).
Both observation and process noise are assumed to be zero mean, white
random processes and statistically independent.
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Based on these formulae the predicted state estimate X(t+ 1|#) is defined
in addition to the filtered state X(t). It can be calculated by
X(t+ 1]t) = AKX (tt)
Also define the predicted observation vector Y( t 4 1|t), which can be calcu-
lated by
Y(t+ 1]t) = CHX(t + 1]t) (3.3)
With (3.3) Haykin formulates the innovation term as the difference between
the filtered and the predicted observation
a(t) = Y(t) = Y(Ht - 1) (3.4)
= ¥(t)=gt= 1)X{E - 1) (3.5)
The correlation matrix of the innovation term can be formulated as
F(t) = E{n t)a'( t)}
C(t)K(t|t — 1)C(t) + R(¢t),

where K(#|t — 1) is the correlation matrix of the predicted state error
e(tlt—1) = X(t) - X(#[t —1)
K(tlt—1) = E{e(t|t —1)e"(tt - 1)} (3.6)

and R(#) equals the correlation matrix of the observation noise vector V.
The correlation matrix K(#) of the state error ¢(t) is given by

e(t) = X(t) - X(t[t)
K(t) = E{et)e"(t)}. (3.7)
The Kalman gain is defined as
G(t) = E{iw+1mmﬁn}F4u)
= A()K(tt - 1)CT()F~ (). (3.8)

[t is a weighting factor for the next state update, depending on the confidence
of the last state estimation. Before we can caleulate G(t) we have to know the
correlation matrix K(¢[t — 1). It can be estimated with the Ricatti equation

K(t+1t) = AMOKHAT(t+1]t) +Q(t) (3.9)
K(t) = K(t|t—1)— AHGHCHK(HE - 1)
= [I-A(H)GHCH)]K(tt - 1). (3.10)
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Figure 3.1: Graph of a one step prediction Kalman filter [Haykin96|
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Figure 3.1 shows the signal flow graph of a one step prediction Kalman
filter and Algorithm 1 summarizes the calculations for a Kalman filter based
on the Ricatti equation.

3.2 Extended Kalman Filter

Kalman filters based on the Ricatti equation assume the process matrix A(f)
and the observation matrix C(/) to be linear. Though this assumption holds
true for the MVDR beamformer, we will show that it is not true for our
third algorithm: The HMM beamformer, that we will derive in Chapter
4. Its measurement matrix is nonlinear and can therefore not be used in a
standard Kalman filter.

With nonlinear measurement matrix, the state space formulae become

X(t+1) = ABX(t)+W(t)
Y(t) = C(tX(t)+ V(t).

The extended Kalman filter is an extension to the standard Kalman filter,
which can deal with nonlinear observation and process matrices C (. X(#))
and A (t,X(#))" [Haykin96]. It splits the state estimation formula into two
steps, X(t[t) and X(t + 1]t) and uses a partial derivative with respect to

'In our presentation we focus on non-linear abservation matrices only.
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Algorithm 1 Kalman filter based on Ricatti equation
Input process: Y(1),Y(2),...,Y(¢)
Known parameters:

e Transition matrix A(t)
e Observation matrix C(1)

e Covariance matrix of process noise Q(t) = E {W (LW (t)}

e Covariance matrix of observation noise R(t) = F {V JVT(t)}
Computation t = 1.2, 3, ...
G(t) = A@MK(tlt—1)CT(t) [CHK(tt — 1)CT () + R(t)]
alt) = Y() - Y( f\f—l
X(t+1t) = ABX(tt— 1)+ G(t)alt)
K(1) = [I- A()GHCH)] Kt - 1)
K(t+1[t) = AM®K(EAT(H) +Qt)

X(t|t = 1) to linearize the non-linear measurement matrix

dC(t. X :
C(t) = —.( ) , : (3.11)
OX  x=x-1)
Figure 3.2 shows the general configuration and Algorithm 2 shows the
calculations for an extended Kalman filter.

3.3 Information Filter

The Kalman filtering equation can be alternatively formulated to use the in-
verse of the correlation matrices K(t) and K (t + 1|t) respectively. These in-
verse matrices are called information matrices and the corresponding Kalman
filter is named information filter |Fraser67|. The information filter has the
advantage, that it can calculate updates even with very little information
about the initial state of the system.



Figure 3.2: Signal flow of an extended Kalman filter
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In our case, a second advantage arises: RLS estimators and Kalman filters
are strongly related as shown for example in [Haykin96]. Comparing the RLS
equation

P(t) = u~'P(t — 1) — p~'g(t)N"()P(t - 1)

from Section 2.6 with the necessary variables from the Kalman filter, namely
the correlation matrix of the state error K(#). the Kalman gain G(#). the
innovation factor a(f) and the predicted state vector X(t + 1|t), Haykin
shows the following correspondences:

Kit-1) = pu'P(t-1) (3.12)
G(t) = p~'*g(t)
aft) = p"E()

X+ 1)) = p ED2%(t),

where p~"/2€*(t) equals the a-priori estimation error and D (L) s
the estimate of the weight vector. With (3.10), we can see from (3.12) that
K(t) equals the inverse of the spatial spectral covariance matrix S, of the
MVDR beamformer.

As stated in Section 2.7, we want to apply diagonal loading to increase the
stability of the beamformer. This can be done by adding a diagonal matrix
to the spatial spectral matrix S,,. Hence if we used a standard Kalman filter,
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Algorithm 2 Extended Kalman filter
[nput process: Y(1).Y(2),.... Y(t)
Known parameters:

e Process matrix A(f)

e Non-linear observation matrix C (t, X(¢))

e Covariance matrix of process noise Q(t) = E { W(t)WT(t)}

» Covariance matrix of observation noise R(t) = E {V(t)vi(t)}

Computation t = 1,2,3, ...

G(t) = K(t[t—1)C"(t) [C(t)K(t]t — 1)C"(t) + R(t)]
alt) = Y(!J—C(t.f((tl‘f— 1))

X(tt) = }ﬂ{(t|a‘,—l)+G(th(t)

K(t) = [I-G(t)C(t)|K(tt—1)
K(t+1]t) = A(f)K( )A”( t)+ Q(t)
X(t+1t) = A@B)X(Ht)

C(t) is calculated from the non-linear measurement matrix C (t,X(t)) ac-
cording to (3.11).

we would have to invert K(#) every time we want to apply diagonal loading:

K(t) = [n®(t)] " =S;'(¢)

"

Kpi(t) = [(K_lff)) l+ﬂ'lf)1}

As the innovation filter uses K~1(¢). we can directly add the diagonal matrix:
K'(t) = 8,(t)
Kpu(t) = K7'(t) +opl.

Algorithm 3 shows the calculations for the innovation filter based on the

Ricatti equation. The write-up follows the NAG C Library description of
time series analysis.
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Algorithm 3 Information filter
Input process: Y(1),Y(2).....Y(¢)
Known parameters:

o Transition matrix A(t)
e Observation matrix C(f)

e Covariance matrix of process noise Q(t) = E {W(t)W”'(i')}

e Covariance matrix of observation noise R(t) = FE {V (f)}
Computation t =1,2....:
K Wt+1t) = [I—-P(t)]M(t)
“Ht+1) K'(t+ 1)+ CTt + DR (t+ 1)C(t + 1)
where M(#) (A1) K= (t) A~ (1)
and P(t) = M(t) [Q'(t) + M(t)]
alt+1t) = T—P)] (A1)  a)
ait+1) = a(t +1|f )+ CTE+ DR+ DY (E+1)
where a(t + 1|t) K~ (l+l|lX/+l|f
and a(t+1) = K '(t+1)X(t+1)

3.3.1 Square Root Implementation of Innovation Filters

The Ricatti equation suffers from numerical instability. Numerical problems
arise as in (3.10) the non-negative definite matrix K(t) is calculated as the
difference of two other non-negative definite matrices. After multiple iter-
ations it is therefore possible that K(#) loses its Hermitian symmetry and
hecomes indefinite.

To avoid this numerical problem a square root implementation can be
used. A good overview of this technique is given in [Kaminski7l, et al.|. As
shown in [Dyer69)|, it is possible to extend the square root filtering algorithm
to include process noise and therefore make it applicable for Kalman filters.
The square root implementation requires the construction of two matrices:
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The pre-matriz

Q-/2(¢) 0 0
['=| K '2(t)A- (1) K-12(1) K-'2()X(t)
0 R12(t+1)Ct+1) RVt +1)Y(t+ 1)
and the post-matriz
F~12(t 4 1) s #
Q= 0 K12(t+1) £(#+1)
0 () *

here K-1/2 ()=1/2 _1/2 ” ; ;
where K='2, Q"2 and R~'/? are the upper triangular parts of the Cholesky
factorized matrices K=', Q7! and R~'. The values in the post-matrix are
defined as

P

Folit+1) = QY1)+ (A1) K (A~ () (3.13)
Et+1) = K2 X

4+ D)X(t+1). (3.14)

All # entries are not relevant for our algorithm.
A transformation matrix U, is used to transform I into €2

U.r' =8

U, is an orthogonal transformation, which restores the pre-matrix to upper
triangular form. In so doing, the algorithm calculates the post-matrix, which
contains all values necessary to perform the update in the (extended) Kalman
Filter. This transformation can be easily achieved by a Householder trans-
formation |Steinhardt88|. All values for the next time step can be directly
obtained from the relevant blocks of the second matrix. As K- V2(t 4+ 1) is
upper triangular, the inversion of K=1/2(f 4+ 1) in (3.14) to get X(¢ + 1) is
trivial.

3.4 Square Root Information MVDR Beamformer

With the relations between RLS filters and Kalman filters stated in Section
3.3, it is straight forward to transfer the MVDR algorithm formulated as
RLS filter into a square root information filter. The pre-matrix becomes
Q-Y2(t) 0 0
Si/(t) 0 S,/ (t)wal(t)
0 R+ Ly(t+1) R+ yu(t+1)
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and the post-matrix is given by

F-12(t 4+ 1) E *
0 S¥+1) e(t+1) |,
0 0 "

where y, and y, are given by the upper and lower branch of a G5C and
calculated as shown in Section 2.3,

As stated in Section 2.7, diagonal loading is necessary to increase robust-
ness of the beamformer against signal delay-of-arrival mismatch and array
perturbations. We showed, that this is equivalent to adding a diagonal matrix
to the spacial spectral matrix S,.. Again, we can use the Householder trans-
formation to perform the necessary calculations: By constructing one pre-
matrix with S,l;/z(t +1) and the diagonal matrix o3I and performing another
Householder transformation, we sweep the diagonal matrix into E}},/ 2( t+1)
and restore its upper triangular shape:

§/%(t+1) SY2(4 4+ 1)
U_g —————— = —_ — — = =—— ('3.]._)}
ap(t)I 0
pre — matrir post — matrix

The complete computations for the adaptive MVDR beamformer, imple-
mented as square root information filter is shown in Algorithm 4.

3.4.1 Computational Complexity

The computational complexity of the MVDR square root information filter
during training is basically determined by the Householder transtormation
of the pre-matrix

Q~12(t) 0 0

&1/2 B L/2 a1/2
S (1) 7 (1) i (Hwal(t)
0 R+ 1y(t+1) R+ Dyu(t+1)

A Householder transformation for an m x n matrix needs n*m — %n:‘ opera-
tions. In case of the MVDR pre-matrix, m equals n and with N microphones,
the size of the pre-matrix is equal to:

mxn = ([N=1+[N=-1+1)x([N=1]+[N=1]+1)
— (2N —1)x (2N =1).
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Algorithm 4 Adaptive square root information MVDR beamformor

Known parameters:

Observation vector y, ()

Upper triangular Cholesky decomposition of inverse process noise co-
variance matrix at t = 0: Q~Y2(0)

Upper triangular Cholesky decomposition of inverse observation noise
covariance matrix at t = : R‘W(())

Upper triangular Cholesky decomposition of inverse spatial spectral
1 - 2
matrix at t =0: S, 1 (0)

Initial state estimate w,(0) = [ 0 --- 0 ]T

[f no speech is present:
— Fill pre-matrix:
Q-agn 0 0

Sat2(t) 85 3(8) 872 (tywa(t)
0 R4+ Dyi(t+1) RVt + 1)y (t+1)

Perform Householder transformation on pre-array to get upper
triangular post-array:

F-Y2(t 4 1) + "
0 S, +1) €(t+1)
0 0 "

Calculate new weight estimate with S}'/z(t + 1) and £(tF 1):

wo(t+1) =81t +1)E(t+1)

— Add diagonal loading to E}rl,/z(f +1).
g
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This leads to a total number of

(2N —1)* - %(BN —1)% = 16N® — 24N? + 4N -2
operations®. We have to perform these calculations for all 2K subbands,
hence the computational complexity in total is O (K« N*). The computa-
tional complexity to fill the pre-matrix and to obtain w,(f+1) can be ignored,
as R™Y?% y, and y, are scalars and gL 2(n‘.)v'ur,,()‘) = £(t) which is initialized
with zero and in each following step obtained from the post-matrix.

In case of the MVDR beamformer, the computational influence of the
cubic complexity is reduced by the fact, that we only have to update the
filter (and therefore only have to calculate the Householder transformation)
in silence regions. During a talk or meeting, the parts of the signal, which only
contain silence will be small compared to the total length of the recording.
Still, complexity is much higher compared to the DS beamformer which limits
the use of the MVDR beamformer in a real time application to a smaller
number of microphones.

*A detailed overview of operations in square root filters is given in [Kaminski71].
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Chapter 4

HMM Beamformer

The two beamforming algorithms we presented so far are both trying to max-
imize the SNR of an incoming signal as shown in Figure 4.1(a). Though both
techniques improve the quality of the speech signal, they are not designed to
optimize the output of an ASR system. As we want to maximize the perfor-
mance of an ASR, it would be preferable if we could incorporate its output
in the optimization step as shown in Figure 4.1(h). This chapter presents

Figure 4.1: Beamforming concepts
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an HMM beamformer, which is designed according to this idea. The beam-
former is a further development of M. Seltzers [Seltzer03|, J. McDonoughs
[McDonough04], and D. Raubs [Raub04] approaches and derived from the
ideas in [McDonough05]. Its implementation and evaluation was one of our
main goals in this diploma thesis.

Before deriving the HMM beamformer, it is worth summarizing the basic
ideas of automatic speech recognition systems to briefly present the main
techniques that the HMM beamformer is based on.

4.1 Automatic Speech Recognition

The HMM beamforming approach presented in this thesis incorporates the
output of an ASR system in its adaptation step. It is therefore important to
understand the basic concepts of modern speech recognizers. This section will
give a short introduction to ASR systems. It will present some basic problems
of automatic speech recognition and briefly explain common techniques in
modern approaches.

4.1.1 Feature Extraction

Modern ASR systems use statistics and pattern classification to recognize
speech [Rabiner93, et al.|, as there is no easy way to compare a plain audio
signal with another one to find a word or sentence. Figure 4.2 shows two
recordings of the same utterance. Though the speaker had tried to repro-
duce exactly the same words, the length of the recordings and the amplitude
differ a lot. Instead of using the plain signal. modern systems extract spe-
cial features from the recording, which contain all necessary information to
do speech recognition and are easily comparable. To extract those features,
ASR systems do not use a complete utterance but separate speech into short
overlapping frames with an analysis window (e.g. a Hamming window). The
length of this window is usunally between 10 ms and 25 ms: within this win-
dow length, a speech signal is approximately stationary. A feature vector is
extracted from these segments and used as an input for the speech recognizer.
The next section presents one of these feature vectors called Mel Frequency
Cepstral Coeflicients and shows how to derive it from a given input signal.
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Figure 4.2: Two audio recordings of the same utterance
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Mel Frequency Cepstral Coefficients

To extract a feature vector, the speech signal is usually windowed and trans-
formed in the spectral domain by a discrete Fourier transform (DFT)

Xi(e™) = > x[n]wln — tle~d" (4.1)

where x represents the speech signal, X the signal in the spectral domain and
w a windowing function. Speech is usually neither static nor periodic over a
whole utterance but at least static within short segments. Hence, by applyving
the window function we get static segments which we assume to be periodic.
After the Fourier transformation, Mel warping is applied by weighting the
magnitude squared frequencies with several overlapping triangular functions.
the so called Mel filter. This can be done by a simple matrix multiplication
with the Mel matrix A:

" (4.2)

Mel-warping usually implies a big dimensional reduction of X: Before Mel-
warping X is a K-dimensional vector, where K equals the FFT filter length
(usually in a range between 256 and 2048). After Mel-warping X refers to
an M-dimensional vector, where M equals the size of the Mel-matrix and is
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usually much smaller than K (e.g. about 30).

By applying vocal tract length normalization (VTLN), we can improve
speaker independent recognition. Finally, cepstral features ¢ can be com-
puted by taking the natural logarithm and doing a discrete-cosine-transform
(DCT). Given L subband samples and an inverse discrete Fourier transform
(IDFT) the n-th cepstral coefficient can be expressed by

I-1
o, = % Z log X cos(wn). (4.3)
=0
Cepstral features give information about the rate of change in the different
spectral bands. Mel warped cepstral features (also called Mel frequency cep-
stral coefficients (MFCC)) are widely used in ASR systems |Davis80|. Often,
to further reduce the dimension of the feature vector, only the first 13 MFCCs
are used. They will be the base for our HMM beamforming approach later
on.

4.1.2 Statistical Pattern Recognition

Speech recognizer use statistical methods to do the pattern classification

|[Rabiner93]. The basic problem of recognizing speech can be described with

Baves' rule:

P(yle) - P(o)
P(y)

Given an acoustic input sequence y we look for the most likely class ¢

to which y belongs e.g. the most likely word sequence w for a given audio
signal. With (4.4) this corresponds to

(Pwﬁ@fwg

As P(y) stays constant when maximizing with respect to ¢, we can sim-
plify this formula to

Plely) = (4.4)

= ‘rl‘l'g max
o

w = arg max (P(y|c) - P(e)) (4.5)

From this formula the basic configuration of all speech recognizers can be
derived. Modern ASR systems can be roughly divided into three components:
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1. An acoustic model P(y|e¢)
2. A language model P(c)

3. A decoder

The calculations for the a-posteriori probability in (4.5) are done in the acous-
tic model. It searches for the most likely input sequence y given the word
sequence ¢. The second probability of (4.5) is represented by the language
model. It calculates the likelihood of different word sequences in a langnage
(e.g. the word sequence “How are you?" is more likely than “How house
red?”). The decoder combines the input from the acoustic and the language
model and calculates the most likely word sequence based on the input se-
quence and the likelihood of a specific word sequence in this language in
general. |
[n the development of our HMM beamforming algorithm, we will just try
to maximize the output of the acoustic model, hence (4.3) can be further
simplified to
w = argmax (P(yle)). (4.6)
.

4.1.3 Hidden Markov Models

From the point of view of ASR systems, words and sentences are random
concatenations of phonems'. While we are talking. our vocal tract is contin-
nously changing between different states forming lauds. The idea of having
several states which are connected by some sort of transition is presented
by an HMM. Figure 4.3 shows a set of different HMMs which varies in the
complexity and number of allowed transitions. Taking each phonem as a
state, we can recognize all existing words by finding the correct connection
between possible states. Figure 4.4 shows, how the word “hallo” might be
represented by a linear HNIM.

A good introduction to HMMs is for example given in [Rabiner86. et al.|.
Rabiner states that an HMM is a tuple of five elements:

1. The set of states S = {s1, 99, ..., n}.

LA phonem is the smallest unit in speech to distinguish the meaning of a word, Chang-
ing the phonem in a word either changes the complete word or produces nonsense. There
are about 40-50 phonems in English.



Figure 4.3: HMM models
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Figure 4.4: HMM model for the word “hallo™

2. The initial state distribution 7(s;), >, 7(s;) = 1, indicating the prob-
ability that state s; is the first state in the Markov chain.

3. The state transition probability distribution A = {a;;} where a;; is the
probability that state s; follows state s;.

4. The discrete or continuous set of possible symbol observations V' =

{L‘l. T ’(.-‘m}.

5. The observation symbol probability distribution B = {b;(v)} in state
j. where b;(v) is the probability to observe ¢ while the system is in
state S

For our HMM beamforming algorithm, we need an answer to the decoding
problem which is given by the Viterbi alignment |Viterbi67|. Given an input
sentence, the Viterbi algorithm aligns the most likely states with the input
sequence. The observations v, of each state are usually Gaussian mixture



models and stored in a codebook. They represent the distribution of feature
points over a feature space (in our case, we use MFCC as feature)

Thus, given a correct Viterbi alignment for an input sequence. we can
get the associated state to each sample and use it to get the corresponding
MFCC means y and variance ¥ from the codebook. We will show. how we
can use g and 2 in our HMM beamformer to update the beam weights in
the following section.

4.2 HMM Beamformer Derivation

After briefly having summarized some basic concepts of modern speech rec-
ognizers in the last section, we now present the derivation of the HMM beam-
former based on [Seltzer03]. The HMM beamformer is designed to improve
the output of an ASR system by optimizing its beamforming weights with
respect to the output of a speech recognizer. While Seltzer used an FFT fil-
terbank and Mel features for his beamforming approach, this new algorithm
uses a cosine modulated filterbank and MFCC for the optimization of the
beam weights. The FFT filterbank uses overlapping filters which can lead to
distortions in the signal. In difference to this the cosine modulated filterbank
allows the perfect reconstruction of a signal without aliasing of distortion, as
described in Appendix A.

During the optimization, a known input signal x(f) is processed by the
HMM beamformer in GSC configuration and an ASR system. The output
of the beamformer is used to calculate MFCC. These features are compared
with the MFCC of the ASR system. which we get from a Viterbi alignment.
The weighted difference AMFCC is eventually used as observation term in
a Kalman filter to estimate a weight update for the active weights of the
GSC. Figure 4.5 (a) shows the processing chain in the training step. After
adapting the beamforming weights, we can use the beamformer to pre-filter
the signal before performing speech recognition (see Figure 4.5 (b)).

4.2.1 Formulating the HMM Beamformer as GSC

Similar to the MVDR beamformer, we want to formulate the HMM beam-
former as a generalized sidelobe canceler. Let us define snapshot X(#). as an
N x 1 vector, containing the array input for one subband at time ¢ and the
active weight W(#) as an (N — 1) x 1 vector, which contains the weights for
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Figure 4.5: HMM beamforming configuration for training and speech recog-

nition
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N — 1 microphones for one subband.

[n all following equations we present the calculations for one subband
only. It is important to realize though. that all calculations have to be done
2K times in a real application, similar to the other beamforming algorithms.

For example, if the equation states
Y(t) = X" (H)B(H)W(t)
with B(#) of size N x (N — 1), the correct caleulations are given by

Ya(t)

with



where X} and W} represent the k-th snapshot. An explanation why we can
treat the different subbands independently is given in Appendix A.

Recall from Section 2.3, that the quiescent weights in the upper branch
of a GSC are determined by the distortionless constraint given by (2.6),
while the active weights on the lower branch are determined by optimizing a
criterion, such as minimizing the total output of the beamformer. Hence, the
GSC partitions a constrained optimization problem into a set of constraints
and an unconstrained optimization problem.

For the upper branch, we simply multiply the input X(t) with the quies-
cent vector VV(Ir

Y;J(f) = XH{-"‘,‘)wq(t)' ('17)

When calculating the lower branch, we first have to multiply the input X(t)
with the blocking matrix B(#), which is orthogonal to w, (1), and second with
the active weight vector w, given by W(t)

Yi(t) = X7 (t)B(t)W (¢). (4.8)
The output of the beamformer is obtained by subtracting (4.8) from (4.7)
Y (t) = Yu(t) = Yi(t) = X*(t) (w,(t) - B(HW(2)). (4.9)

In the end of Section 2.3 we showed. that we can set

1
Wq(ﬂ =
l
1 —1 0 0
B(t) = 0 1 -1 L . .
L0 -0 1 =1

if we pre-steer the input with array manifold vector v(k,)
X(t) = X(t) - v(ks),

where -, in this case, indicates an elementwise multiplication.

We now have to find an optimization criterion for W(#). Our intention is
to choose W (f) so as to maximize the likelihood of an utterance in a training
set which is equal to minimizing an auxiliary function.
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4.2.2 Gradient Derivation

In [McDonough04| it was demonstrated that the likelihood of a training set
{c(t)} can be maximized by minimizing the auxiliary function

K:%Ejmﬂ—ﬂmﬂz*uuqn—mm. (4.10)
t

where p(t) and E(t) denote the mean and variance associated with the cep-
stral feature ¢(t). The contribution of one snapshot at time f is then given
by

K@) = =[c(t) = pu®)]" T7HE) [e(t) — p(t)]

[ () (t)e(t) — 2T (1B (B)u(t) + p" (OB p(t)]4.11)

BI| bS] =
I
o

To minimize the auxiliary function using the active beam weights W (#),
we want to derive the gradient 9K (t)/0W (). This can be done by splitting
the formula into three separate pieces. Using the chain rule, we get

mm_imm.mm;“mm&w)wm i1
OW() g deca(t) OW(H) 2z da(t) Oy(t) oW T
Derivation of dK()/de, (1)
Taking the partial derivative of (4.11) with respect to c(#) gives
OK()
. = (F) — p(t)]. =K
S == felt) = (o) (413

To reduce complexity, most ASR systems use a diagonal covariance matrix,
hence with .J cepstral coefficients, £(#) can be expressed as

[ do(t) 0 0 .. 0 ]
0 () 0 o 0
»lt)y=| 0 0 dy(t) -~ 0 ‘ (4.14)

®

0 0 0 0 ¢
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This allows us to calculate (4.11) with respect to the n-th cepstral coefficient

OK(t) _ ca(t) = palt)

Jen(t) On(t)

which is the first expression for (4.12):

OK(t)
OW (t)

OK(t) dealt)  y(t)
den(t)  dy(t) OW(t)

= S all =il dalt) Oy(l)
Du(t) dy(t) IW(t)

(4.15)

Derivation of de, (1) /y, ()

We now have to find an expression for de, /dy(t). Let us repeat the feature
extraction process of ASR systems from Section 4.1, equation (4.1) to (4.3).
The input signal = is windowed (e.g. with a hamming window W iram) and
Fourier transformed
0
Xo () = Y x[k]Wrram[k — fle <. (4.16)

h=—nc

Mel-warping and VTLN is usually applied afterwards and done by simple
matrix multiplications with Mel-matrix A and VTLN-matrix © -

X, = AOX,
The MFCC ¢[n] associated with X, are then defined as

: | S
ci k] = 5 | log

Xy, (¢7)| ek (4.17)

tor:all & = 0pEl; 28041 AH‘X; (e/#)| has even symmetry, we can use Euler’s

formula to rewrite (4.17) to

1L {*
Cg[/ﬁf] = o / log

X (/) U cos(wk)dw. (4.18)

As ¢[k] has even symmetry we can reduce caleulations to £ =0,1,2,... .
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In our beamforming algorithm, we want to calculate the cepstral coef-
ficients with the beamformed and re-synthesized output y(f) as shown in
Figure 4.5 (a).

Working in the discrete time domain, we can rewrite (4.16)

K

Y, (¢*) = Zy[k]wm,,r,[k = tle~duk, (4.19)

k=0
Mel-warping and VTLN is applied and the square magnitude of the matrix
product is calculated:
= |AQY[ (4.20)

= |T-Y,
with T = A-0,

~ |2
¥

where we suppressed the time index t and /% for convenience. Recall from
Section 4.1.1 that Mel-warping usually reduces the dimension of the input
vector to M, where M equals the number of Mel features.

Defining the cosine transformation matriz S with components

] 1 nm ) i _ .
Spm = S5 7 0<n<J 0€m< M (4.21)
we can rewrite (4.18) as
M1 5
Cn = Z Sf!-!fll”g Y (_’__22]
m=0

where again M equals the number of Mel features and .J equals the number
of cepstral coefficients (usually J < M).
Taking a partial derivative on both sides with respect to y gives:

(4.23)

i
To calculate o ‘Y‘ /Ay, let us rewrite (4.19) as the product of the win-
dowed signal y,, with the DFT matrix Wppr

= H
Y =Wierye
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Thus

2 - ".i -r
IYI = 'Wf)f- T¥w ‘ (yu‘) WUF"T'WgFTy;.('
= y'Hy,
where H denotes the matrix obtained from the outer product

H
H=(WprrWam) (W prrWiram)

We can now use (4.24) to calculate the partial derivative

o[Y| _orIYP TolY)?
dy dy  dy
= TdyrHy 2yTYH
dy
= 70

with G = TH.

Substituting (4.27) into (4.23) gives

’HI

dey, — 9 1 an
i — ”l
z
)y rie=0) ‘
-
= ¥ qu
where
A -1 1
rer
=2 E G
=0 JY

(4.31)

and G, equals the m-th row of G. Note that we can calculate and store G

in advance to save computational time.
Using (4.29) in (4.15) we get

J=
(_)f\ f - n o F {‘}y(!)
f = (f)n y ( )L”. {‘.)W(f)

n

{t)

Finally, we have to derive f;\'}’v‘( 7 to complete the formulation of (4.12).
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Derivation of dy(t)/0W (t)
As shown in (4.9), the output of the GSC equals
Y(t) = X(t) (wy(t) — B(t)W(t)).

To get the audio signal y(#) we have to resvnthesize the subband snapshot
Y (1) with a synthesis filterbank. As explained in Appendix A, the synthesis
filterbank is a delayed chain of filters, that can be presented by one polyphase
matrix P of size 2K x (2L — 1). The output of the synthesis filter is

L—1 L—1
p(t) =Y PY(t) =Y P [X"(t) (w,(t) - B{l)W(1))] . (4.32)
=0 {=0

[t contains one half of the complete output signal y (), which can be presented
as stacked column signal

pr-1(0) \ pr-1(1) PL-1(2) \
- Pnh“) , - Pn-(l,) HgY Dn‘(g)
y=1 "9 [¥=p @ [YP=] par) |
\ 0 ) \ Pn({]) \ poll)

where p;(t) indicates the [-th element of p at time t. Defining

pr-1(t) \ / 0 \
and pV(t) = PI—UIUJ

{:) / \ PI'»E*) /

the complete output signal y(#) is given by

pO(#) = Pu((]f)

y(t) =p () +p'(t - 1).

Taking partial derivatives on both sides of the last equation with respect to
W(f) gives

dy(t) op(t)  ap(t-1)
OW(t)  OW(t) OW(t)
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where dp'(t) /W (t) is calculated by taking the partial derivative of (4.32)
with respect to W(t)

L—1

‘)p =Y P/ [-X"(1)B(t)] .

[=0

With this derivation, we are finally able to solve (4.12)
IR (t) OK(t) Oeq(t)  dy(t)
W (t) dey(t)  dy(t) IW(t)

nt) = inlt) 1 {ap””(r) Lo -1)
Gult) OW(t) ~ OW(1)

We can now use this gradient to optimize the HMM beamforming weights.

(4.33)

n=f]

4.3 Optimizing HMM Beamforming Weights

The difficulties to optimize the beamforming weights depend strongly on the
available information about the speech data. In the best case, we have hand
labeled training utterances to calculate the gradient. in the next best case,
we have a known training sentences but the Viterbi alignment is done by the
speech recognizer, in the worst case, there is no training data and we have
to use an ASR system to produce MFCC on the fly. In the first case we talk
of oracle data, in the second one of calibrated data and in the last case of
unsupervised data. If the entire training utterance is available, we can use
a global optimization procedure based on a gradient of the whole utterance.
if the training data is only available sample by sample, we need an iterative
optimization algorithm.

As the quality of the beamforming weight training with unsupervised and
calibrated data is highly depending on the quality of the speech recognizer,
we will focus on oracle data in our future discussion. Thus, we assume that
for each sample in the training data, the correct cepstral mean p and variance
¥ are given by the ASR system.

4.3.1 Global Optimization Algorithms

The least complex case arises when a complete utterance is available during
the training. To update the beam weights, we first calculate the sum of the



auxiliary function

K = i Y " le(t) = p(D] B [e(t) — plt)]- (4.34)

5

Using the gradient }))-‘%- we then adjust the active weights of the beamformer

to minimize K. Several algorithms exist which require only the gradient
for eiven beam weights and a stopping criterion to run the optimization
automatically. In our global optimization experiments we used a modified
version of the “Multimin” package of the GNU Secientific Library, which is a
conjugate gradient search, to perform these optimization.

We still have to take care of the problems with array perturbations and
mismatches between the estimated and the actual position of the speaker as
described in Section 2.7. Without diagonal loading, the global optimization
algorithm suffers from the same problems as the MVDR beamformer: The
beam weights may grow extremely large and the algorithm becomes unstable.

As the global optimization algorithm offers no easy way to directly im-
plement diagonal loading, we simulate a quadratic constrain by adding a
penalty function to (4.34):

K=K+aP,
with penalty factor o and penalty term

P = agsmy - w,ﬂ"w”.
where @y, is a constant factor, depending on the number of samples in the
relevant utterance. This penalty function will grow quadratically with grow-
ing beam weights. As the global optimization algorithm tries to minimize
the auxiliary function (4.34), it will therefore try to keep the magnitude of
the beam weights below a certain level, depending on penalty factor o.

4.3.2 [Iterative Optimization Algorithms

If we don’t have access to the complete utterance for example because we
want to train the beam weights on the fly, while recording a speaker, we can-
not use a global optimization algorithm. Instead of using the complete sum
in (4.34) we can just calculate the weighted difference between our calculated
cepstral feature and the cepstral means for one time step:

K(t) = % [c(t) — u(®)]" =7Y) [e(t) — u(t)]. (4.35)
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With (4.33) it is straightforward to derive an LMS optimization equation

r Az H
W(t+1) = W(t)—alt) %}
_— | H
- _ Gl en(t) — pn(t) ‘_C)r"rr‘("‘)
= WO -e0 | 2 =Som™ v

L n=f)

where () is a time dependent step size. Unfortunately, the step size of an
LMS algorithm is restricted to

l

/\mrr.r

0<alt) <

where A, equals the maximum eigenvalue of the gradient. We want to
avoid this restriction and therefore formulate the iterative HMM beam weight
optimization similar to the adaptive MVDR beamformer as square root in-
formation filter.

4.3.3 HMM Beamformer as Square Root Information
Filter

T'he goal of our beamforming algorithm is the optimization of the beamform-
ing weights by minimizing (4.35). Minimizing this function is a least mean
square problem, which can be solved hy a Kalman filter. We want to solve
the optimization problem in a square root information filter implementation.
similar to the one we used for the adaptive MVDR beamformer.

To formulate the HMM beamformer as square root information filter,
we have to find an appropriate correspondence between the square root in-
formation filter variables and those, given by the HMM beamformer. The
necessary variables for the square root algorithms are:

e the estimated state X (),
e the covariance matrix of the state estimation error K(f),

the state transition matrix A(f),

the observation matrix C(1).



e the correlation matrices of the process- and measurement noise Q(7)
and R(f) and

e the observation Y(t).

As the HMM beamformer is formulated as GSC like the MVDR beamformer,
some of the correspondences from Section 3.4 can be directly transferred:
The state estimation X(r} is given by the active weight vector W(t), the
state transition matrix can be set to identity A(f) = I and an appropriate
value for the correlation matrix of process noise Q(#) has to be determined
experimentally. K(#) can be used to apply diagonal loading. Similar to
equation (3.15) of the MVDR beamformer, we just have to construct one
pre-matrix with A(#) and the diagonal loading matrix o*(#)I and transfer it
into a post-matrix by using the Householder transformation:

K-1/2(t+ 1) 23+ 1)
| == s | i ml it . (4.36)

We still have to find corresponding values for Y (#). C(t) and R(f). though.
Let us assume that our observation is an MFCC vector c(f). Then C'(f)
must be able to transfer the weight vector W (#) into a predicted observation
¢(t + 1|t) as in the Kalman filter equation (3.3). This can be done by the
gradient

delt) = dey(t)  Dy(t)
OW(t) ;) aylt) oW (1)
J=1 i
- T/, op(t) | opM(t—1) i
- ;H ()L, - {me + W (4.37)

which was one part of our gradient derivation in Section 4.2.2.
The next observation ¢(t 4 1|t + 1) should be equal to &(t+1|f) plus some
small difference /4:

c(t+ 1t + 1) =&t + 1]t) + 3(¢).

This difference is directly observable as the difference between the calculated
MFCC ¢t + 1) from the beamformed signal and the MFCC mean vector p
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Table 4.1: Correspondences between sqrt. info. filter and HMM beamformer

L SqrtlnfoFilter HMM beamformer ’
X(t) W(t)
V() = 1)+ e = 0]
| C(t) de(t)/OW (t)
At) I
Q(t) ol
B R(t) b3y

from the ASR. Thus, the new observation Y(t + 1) = ¢(f + 1|t + 1) is given
by o

c(t+1jt+1) = e(t+1t)+8(t+1)
= e(t+1t)+[c(t+1) — pu(t+1)]. (4.38)

where ¢(f + 1) is calculated according to (4.22).

Using the MFCC ¢(#|t) as observation indicates the use of the MFCC
variance 3 from the ASR as measurement noise covariance matrix. hence.
all necessary correspondences were found to use the HMM beamformer in
a square root information filter implementation. Table 4.1 shows all corre-
sponding variables.

Given these correspondences and the square root information filter pre-
matrix

Q-1*(t) 0 0
'=| K 'Y@)A~(t) K-1/2(t) K-Y2(4)X (1)
0 RV2(t+1)C(t+1) RVt +1)Y(t+1)

it is straight forward to implement the training of an HMM beamformer as
square root information filter, as shown in Algorithm 5. You may notice, that
it is very similar to Algorithm 4, which allows us to use the same algorithins
for the Householder transformation and diagonal loading,.

4.3.4 Computational Complexity

The computational complexity for the HMM square root information filter is
primarily determined by two calculations: The gradient given by (4.37) and
the Houscholder transformation of the pre-matrix I

o
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Algorithm 5 HMM square root information filter

0
e [nitialize beamforming weights W(0) = | :
0
e [nitialize upper triangular Cholesky decomposition of inverse spacial

spectral matrix at t = 0: K=*(0) = 05 -1

e [nitialize upper triangular Cholesky decomposition of inverse process
noise covariance matrix : Q= V3(t) = oy -1

Computation t = 1.2....:

e Estimate ¢(t) from the output of the beamforming process chain and
calculate

e

AW ()"

e Get p(t) and X(f) from the acoustic model of an ASR for the given
sample.

e Use W(t) and dc/IW (t) to caleulate é(t + 1|t).
o Calculate c(t + 1|t + 1) =c¢(t+ 1]t) + [e(t +1) — p(t + 1))

e Fill pre-matrix:

Q-Y2(¢) 0 0

K-172(t) K-1/2(t) K-Vt W (t)
0 T4+ 1)C(E+1) T2t + De(t + 1t + 1)

e Perform Householder transformation on pre-array to get upper trian-
gular post-array:

F~172(t+1) # *
0 K-Y2(t+1) &(t+1)
0 0 #

e Calculate new weight estimate with K=12(t + 1) and&(t + 1):

Wt +1) = K(t+ et + 1)
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Let us rewrite (4.37):

HC(” = y"l‘(t)Ln {apm)(ﬂ + (:)p“)(t(_) ”J '

Wi OW(t) | OW(i
with N
AM—1 S
? -9 Z nm ,,,
=) ’
and
(")]}{":)(f) — \- 3 H ‘
IW(t) ;” [-X"(#)B(#)] - (4.39)

As stated, we can calculate G, in advance; hence, the computational time
to caleulate L, is negligible. Using the fact, that

I =1 0 0
( =
B(t) = )1 |
0
0 0 1 =1

we can calculate the vector-matrix product X (+)B(#) in (4.39) with

X[0] - X[1]
XAB = s TX[“)] . (4.40)
X[N = 2] - X[N — 1]

where X[i] indicates the i-th element of vector X. Thus, the computational
complexity of (4.37) is determined by the vector product and sum of P, and
(4.40), where P; is a vector of size 2K x 1. As we have to compute this
gradient for each of the 2K subbands, the total computational complexity is
given by O (L - K?. (N —1)).

To estimate the computational complexity of the Householder transfor-
mation in Section 3.4.1. we found that one Householder transformation needs
approximately n*m — %HH operations for an m x n matrix. For the HMM
square root information filter, the pre-matrix is given by

Q—l/l&(t) 0 0
K-123(¢) K-H3() K- Y2(t)W (t)
0 E-120 L DC(E+1) BVt + De(t+1t+1)
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with sizes of

er‘c-'p x N
= *)Vr.'f?p x 1,

QY%(t) = NxN
KVt = (N=1)x(N-1)
Wi(t) = (N—-1)x1
> .1/2(?;) = Now % Nop
(t)

where N, equals the number of MFCC. Thus, the size of the complete
pre-matrix is

(N+ (N =1)+Nup) X (N+ (N=1)+1) = (2N + Ny — 1) X (2N)

and the complete number of operations to perform the Householder trans-
formation is given by

(2N)* - (2N + Ny — 1) = i (2N)* = 8N3 42NN, —4N? - S e

3 3
We have to perform this transformation for all 2K sub samples. Hence the
complete complexity factor is O (K - N*). A detailed overview over the nec-
essary operations for a square root information filter using the Householder
transformation is given in [Kaminski71].

To fill the pre-matrix, additional operations are necessary to calculate
the matrix product E-Y2(¢ + 1)C(t + 1) and 7V2(¢t + 1)e(t + 1|t + 1).
Fortunately, £-? is a diagonal matrix, hence the matrix-matrix product
E‘W(t + 1)C'(t 4+ 1) can be computed in O (K - Neep - N) and the matrix-
vector product X71/2(¢ + De(t+1|t+1)in O (K - Nn):

Overall, we can state that this algorithm is by far the most complex
approach. Though the computational complexity for the Householder trans-
formation seems to be equal to the MVDR algorithm, we have to remember,
that the MVDR beamformer only updates the beam weights, when no speech
is present, while the HMM beamformer uses the complete recording to update
the beam weights. Another important impact on the computational time is
given by the gradient calculation (4.37). As K >> N in most applications.
the gradient calculations won’t get much faster even with a reduced number
of microphones in the array. Thus, the HMM beamformer will hardly run in
realtime even with a low number of microphones.



Chapter 5

Experimental Configuration and
Results

To evaluate the performance of the three different beamforming approaches
in the context of ASR, we used the same configuration as in [McDonough04].
The Millennium automatic speech recognition system, a state of the art
speech recognizer, scored the different beamformers. It is developed and
maintained by the Interactive Systems Laboratories at University Karlsruhe,
Germany. For our experiments, the Millennium used an unadapted HMNMI
with 48 Gaussians for about 2000 codebooks. [t was trained on the English
Spontaneous Scheduling Task (ESST) corpus.

This speech corpus contains approximately 35 hours of speech contributed
by 242 speakers. The recordings consist of speech dialogs between two speak-
ers, talking about oversea business trips and their organisation. Recorded
with Sennheiser head-mounted, close-talking microphones, this clean speech
was used to train the HMM speech recognizer for all experiments.

From the ESST corpus, a test set was extracted and used for our beam-
forming experiments. [t is approximately 3.5 hours in length and contains
58 dialog halves contributed by 16 unique speakers with at total number of
22.889 words. The length of the utterances varies from a few seconds to
approximately 1.5 minutes. To obtain far field recordings from the original
close-talking recordings, the clean speech test data was played through a loud-
speaker into a 6 x 8 meter room with a reverberation time of approximately
350 ms. and then recorded with a linear microphone array. The array con-
sisted of 16 Sennheiser omnidirectional microphones with equidistant spacing
of 4.1 em. To reduce computational complexity, only the first eight micro-
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Figure 5.1: ESST room configuration
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phones of the 16 channel microphone array were used in our beamforming
experiments. The stationary loudspeaker was located 2 m in front of one end
of the array. In addition to the source speech data, interference data was
also recorded by moving the speaker parallel to the array approximately 3 m
from the location used for the source. All speech data was digitally sampled
with 16 kHz. The configuration of the room is shown in Figure 5.1.

We implemented all beamforming algorithms for the experiments in C—+-
and Python. While we used Python primarily to to load and store the data
files, we implemented most time consuming calculations in C++ making
heavily use of the numerical implementations in the GNU Scientific Library.

5.1 Experiments without Interference
In the first experiments, we used the ESST test set without interference

to evaluate the beamformers in a controlled environment without a moving
speaker or cross talk from other speakers. Noise and disturbances from com-
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puter fans and reverberation in the far field recordings are low. To show the
general impact of beamforming to a far field signal, only the first microphone
in the array was used to generated an ASR hypothesis without beamforming.
This lead to a high WER of 63.83% for the adapted decoding step. Compared
to the good performance of the Millennium on a close talking microphone
with only 31.94% WER, this result indicates the big influence of noise and
disturbances to ASR even under good acoustic conditions.

5.1.1 DS Beamforming Experiments

Using a DS beamformer as described in Section 2.1, we could dramatically
improve the WER to 58.35 percent for the adapted decoding run. We use
this result as a baseline for our adaptive beamforming algorithms. With eight
microphones, beamforming was done in almost two hours on an Intel Xeon
3 GHz. This is faster than realtime and shows the good performance of the
algorithm. If we take into account that we have to subtract some time for the
[/ O operations of the system to get the speech data and store the wave files,
there is no doubt that we can easily increase the number of microphones by
a factor of two to four and still be able to process data in real time.

5.1.2 MVDR Beamforming Experiments

The MVDR beamformer was evaluated in a square root information filter
implementation as described in Section 3.4. The longest utterance in each of
the 58 dialogs was used to adapt the beam weights in the training step. In
parallel to the beamforming input, oracle state alignments were used to de-
tect speech pauses; beam weights were only updated when the Viterbi labels
of the Viterbi alignment indicated a silent region. The Viterbi alignment was
obtained using the correct transcription on the output of the DS beamformer.
After training the beamformer, the adapted weights were used to process all
utterances of the test set.

We tried different levels of diagonal loading to increase the stability of
the beamformer. The range for diagonal loading is limited by two facts: If
we increase the diagonal loading too much, the algorithm is unable to adapt.
In the worst case, beam weights are limited to zero and we obtain a DS
beamformer as described in Section 2.7. On the other hand, if we decrease
the diagonal loading too much, the beamweights may grow too much and the
beamformer would become unstable.
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Table 5.1: Results for MVDR beamformer on ESST test set

| Diagonal loading || % WER unadapted | % WER adapted |
-25 dB 63.12 59.04
-30 dB 61.47 57.83
-35 dB 61.33 08.35

| DS beamformer H 61.27 58.35 {

Our best result was obtained with a diagonal loading of -30 dB and pro-
duced a WER of 57.83%. This is an absolute difference of 0.52% compared
to the DS baseline. Table 5.1 shows the complete test set for the NVDR
beamformer with different diagonal loading.

With eight microphones, the algorithm took about 3 hours on an Intel
Xeon 3 GHz to train the beam weights. Given that the longest utterances
in each of the 58 dialogues had an approximated length of one minute. this
is about 3 times real time.

5.1.3 HMM Beamforming Experiments

Similar to [McDonough04] we used oracle state alignments for all HNM
beamforming experiments. The state alignment was obtained by a Viterbi
algorithm with correct transcription on the output of a DS beamformer.
During the training of the beamforming weights, we only used a single Gaus-
sian component per codebook and only static cepstral features for the weight
optimization.

To caleulate the MFCC with 13 cepstral components, we used the out-
put of the synthesis filterbank as described in Section 4.2.2. Features were
calculated every 10 ms using a 20 ms sliding window. A Hamming window
with a length of 320 samples was applied to each segment of speech. The
windowed segment was padded with zeros to a length of 512 and an FFT was
caleculated. VTLN and mel warping with a mel matrix of size 30 x 512 was
applied to the sample as described in (4.20). The cepstral features were ob-
tained by calculating the logarithm of the squared magnitude of the sample
and performing a cosine transformation as shown in (4.22).
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Global Optimization Algorithm

[n our introduction to HMM beamformers. we distinguished two different
situations: In Section 4.3.1, we assumed, that the complete utterance is
available, while Section 4.3.3 is based on the assumption, that we have to
train the beamformer iteratively.

With respect to the first assumptions, we used a global optimization
algorithm to adapt the beam weights. Similar to the MVDR experiment, only
the longest utterance of each dialog of the ESST test set was taken to estimate
a gradient and a likelihood value for a certain beamformer configuration. We
used an adapted version of the GNU Scientific Library “Multimin” package
for the optimization. It takes the gradient and performs several gradient
descent steps to find a local minimum, then re-estimates the gradient at
this minimum to perform another gradient descent search. The optimization
stops after a given number of iterations or after the improvement is below a
given threshold. We limited the number of iterations to five and the threshold
to LLOE~™. In most cases, the threshold was reached before the maximum
number of iterations.

Using the global optimization algorithms, we cannot easily apply diagonal
loading during the update procedure, but without limitations to the beam
weights, the gradient descent algorithm becomes unstable. Section 4.3.1 pre-
sented another solution: Instead of using diagonal loading, a penalty factor
is added to the auxiliary function (4.34), which stabilizes the optimization
algorithm.

To show the influence of the penalty term, we evaluated the HMM beam-
former with a penalty factor of @ = 1L.OE", o = 1.OE™% a = 1.LOE"7 and
a = 0.0. With a penalty factor of zero and 1.0E~" the weights grew above
all reasonable values, resulting in a low performance of the ASR system. On
the other hand, if the penalty factor is too high, beam weights close to zero
are preferred. In the worst case, w!’ = [0...0] and the resulting beamformer
is identical to a DS beamformer. The best results were obtained, using a
penalty factor of a = 1.0E~° with a WER of 57.98 %, which is 0.37 points
better than the DS baseline. Table 5.2 shows the experimental results for
the HMNM global optimization beamformer.

The computational time to perform the global optimization is depending
on how many iterations the algorithm needs to find an optimum for the
beamforming weights. The more iterations it takes, the more calculations
of a gradient are necessary. In average, a complete experiment took about
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Table 5.2: Results of the HMM global optimization on the ESST set

[ Penalty factor | % WER unadapted | % WER adapted ‘
a=0.0 71.70 70.00
a=10E"" 63.44 60.58
a=1.0E"° 61.05 58.23
a=1.0E"" 61.31 57.98
a=10E" 61.27 58.35

| DS beamformer | 61.27 58.35 |

six days of processing time on 5 Intel Xeon 3 GHz machines to finish. This
excludes the algorithm from any application, where real time processing is
necessary.

HMM Beamformer in Square Root Information Filter Implemen-
tation

[n this experiment we used the square root information filter implementation
as described in Section 4.3.3. It assumes that the input signal is arriving
sample by sample and uses an iterative optimization approach to train the
beam weights. Again, training was only performed on the longest utterance
of each group in the ESST test set, while all utterances in the ESST test set
were used afterwards to evaluate the beamformer. Diagonal loading of -20
dB, -25 dB and -30 dB was applied during the experiments. Unfortunately,
there seemed to be a bug in the implementation of the diagonal loading,
which could not be solved in the time remaining for the thesis. The bug
prevented a correct addition of the diagonal loading after multiple iterations.
Without diagonal loading, a WER of 58.35% was obtained, which is equal
to the performance of the DS beamformer. The computational time for one
experiment is approximately comparable to the global optimization scenario;
using five Intel Xeon 3 GHz PCs, one experiment took about five days to
complete.

Comparing the best results from the different experiments, we obtained
the overall best result with the MVDR beamformer with -30 dB diagonal
loading. For the adapted decoding, we get a WER of 57.83%, which is 0.52%
absolute better than the DS- and iterative HMM beamformer and 0.15 points
better than the global optimization HMM beamformer. Table 5.3 shows the
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Table 5.3: Best Results of the Different Beamformers

| Beamformer | % WER unadapted | % WER adapted |
DS 61.27 58.35
MVDR 61.47 57.83
HMM global opt. 61.31 57.98
HMM sqrt. info. 61.76 58.35 |

Table 5.4: Beamformers with new ASR Decoder

% WER % WER Absolute

standard decoder | improved Decoder | difference
D&S beamformer 58.35 53.65 4.70
MVDR beamformer 57.83 53.45 1.38
HMNM global opt. 27.98 53.62 4.36
HMM sqrt info. 28.35 53.55 4.80

best results for all beamformers.

5.1.4 Evaluation of the ASR Influence to the Beam-
forming Results

To evaluate the influence of the ASR decoder to the experimental result, we
performed a second decoding run, increasing the beam width and retraining
the codebook using VTLN during training. This improved the WER for all
beamformer but also reduced the differences between all algorithms, as the
performance of the DS- and iterative HMM beamformer could improve by
1.70% and 4.80% absolute, while the MVDR- and HMM global optimization
algorithm only gained 4.38% and 4.36% absolute. The MVDR still outper-
forms all other beamformers with a WER of 53.45% but the difference to
the next best system is only (.1 points. Table 5.4 shows the results for the
different beamformers and ASR svstems.

As the HMM beamformer is using the feedback of an ASR system to
train its beam weights, we performed another experiment, addressing this
special 1ssue. During the training step of the HMM beamformer, updates
of the beam weights are highly depending on the cepstral means p obtained
from the ASR svstem. We usually get those means from a Viterbi alignment.
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Table 5.5: HMM beamformer with adaptive cepstral means

Beamformer % WER | % WER | Improved
unadapted | adapted | decoder
i HMM 61.31 57.98 53.62
HMM adaptive cepstral means 61.20 58.43 53.51
MVDR 61.47 57.83 53.45
DS 61.27 58.35 53.65

To test the influence of a good Viterbi alignment to the experimental result,
we used the MFCC produced in the beamforming process chain, to estimate
cepstral means on the fly. As this experiment needs the complete utterance,
we could only use the global optimization algorithm.

Taking our best setting with penalty factor o = 1L.OE™, we obtained a
WER of 61.2% for the unadapted decoding, compared to 61.31% without
adapted cepstral means. This is 0.27 points better then the best MVDR
beamformer. For the adapted decoding. we obtained a WER of 58.43% which
is 0.45% higher than the results obtained when using the Viterbi alignment
from the beamformer. Using the new decoder settings for the last experiment,
the WER of the adapted decoding improved from 58.43% to 53.51%: only
0.06 points worse than the best MVDR result which is a negligible difference.
While the adaptive cepstral means did worse on the old decoder than the
Viterbi alignment, they lead to a better performance when choosing the new
one. The relevant numbers are shown in Table 5.5.

5.2 Experiments on the ESST Test Set with
Additional Interference

All improvements obtained by the different beamforming algorithms in the
previous experiments were based on their ability to reduce the influence of
noise and reverberation in the room. In a final experiment., we evaluated
the performance of the different beamformers on the ESST set with an ad-
ditional interferer. To simulate this interference, the loudspeaker was moved
approximately three meters in parallel to the microphone array and used
to playback another talk as interfering cross talk in the backround. As the
HMM and MVDR beamforming algorithms are especially designed to adapt
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Table 5.6: ESST test set with additive interference

Beamformer % WER % WER
Standard Decoder | Improved Decoder
- DS beamformer 63.74 58.36 ]
HMMI, adaptive cepstral means 62.62 56.89
MVDR 64.17 58.26

to an interfering source, we would expect the differences in performance be-
tween those algorithms and the DS beamformer to increase under these new
conditions.

We added interference of —5 dB to the far field recording and re-run the
beamforming experiments, using the best settings from our earlier evalua-
tions. Using the old decoder, the WER for the DS beamformer increased
from 58.35% to 63.74%. WER for the MVDR beamformer increased from
57.83% to 64.17%, thus the performance is below the baseline of the DS
beamformer. For the HMM global optimization beamformer with adaptive
cepstral means, the WER increased from 58.43% to 62.62% which is 1.12%
absolute better than the DS beamformer and 1.55% better than the MVDR
beamformer. When switching to the new decoder, the DS beamformer pro-
duced a WER or 58.36%, performing worse than the MVDR beamformer,
which generated a WER of 58.26%. Again, the HMM beamformer performed
best with a WER of 56.89%. Table 5.6 summarizes the experiments.

5.3 Summary

Without additional interferences, the MVDR beamformer first seemed to
produce slightly better results than the HMM global optimization beam-
former (about 0.1% absolute gain). Both adaptive beamformers performed
better than the non-adaptive DS beamformer as long as the HMM beam-
former could use the global optimization scheme. Using the iterative HMM
beamformer without diagonal loading resulted in a performance, comparable
to the one of the DS beamformer. It is very likely though, that its perfor-
mance will increase to the level of the global optimization algorithm as soon
as diagonal loading is correctly applied.

Further experiments demonstrated though, that the impact of the ASR
system is large compared to the relatively small differences between the three
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Figure 5.2: Beampattern of the HMM beamformer
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heamformers, especially under good acoustic conditions. We could show, that
only a few changes in the decoder result in big differences in the performance.
Using the new decoder, we observed, that the differences between the beam-
forming algorithms shrunk to a minimum of 0.2% absolute difference in WER
hetween the best and the worst algorithm.

The situation changed when we added an interferer to the speech signal.
While the WER for all algorithms increased significantly, we could observe
a superior performance of the HMM beamformer on both decoding systems.
Compared to the next best system, we saw a gain in performance of ap-
proximately 1%. If we examine the beampattern of the HMM beamformer
in Figure 5.2, we can see, that it tries to steer the main lobe towards the
speaker at approximately ¢/7 = —0.4 and to suppress side lobes in the re-
gion of the interferer at /7 = 0.3. Thus, even without information about
the position of the interference, the beamformer could adapt to it, which
lead to a superior performance compared to a DS beamformer with a static
beampattern.

Overall, both adaptive beamformers could produce better results than
the non-adaptive DS beamformer, but without additive interference. the dif-
ferences are very small.
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Chapter 6

Summary and Conclusion

6.1 Summary

The goal of this diploma thesis was the evaluation of adaptive beamformers
for ASR systems, We presented three algorithms:

1. The non-adaptive DS beamformer. using just the speakers position to
steer the main lobe of a beampattern.

2. The adaptive MVDR bheamformer, which tries to adapt to noise and
interferences during silence regions in the recording.

3. The adaptive HMM beamformer, a new approach we implemented for
the first time, that uses the feedback of an ASR svstem to optimize the
heamforming weights.

[ order to derive an adaptive algorithm for the MVDR- and HMM beam-
former, we introduced the basic concepts of Kalman filters and presented the
square root information filter as a numerically stable solution to update the
beam weights. Using the information filter, we could also directly implement
diagonal loading: a method to prevent an unlimited growing of the beam-
forming weights due to errors in the calculation of the speakers position and
array perturbations.

In order to evaluate the different algorithms, we distinguished two sce-
narios: In the first scenario, we used the ESST test set without additional
interference to examine the performance of the beamforming algorithms un-
der fairly good acoustic conditions. We could show that the performance of
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the adaptive beamformers is slightly better than the one of the DS beam-
former. While the MVDR beamformer seemed to perform best at a first
glance, we could observe, that this lead was reduced significantly when we
switched to another decoder. The performance of the HMM beamformer was
highly depending on the amount of information available during the training.
While the global optimization algorithm produced results comparable to the
MVDR beamformer, results of the iterative HMM beamforming approach
were just on the level of the DS beamformer.

In the second scenario, an additional interferer was added to the speech
recordings to simulate cross-talk in a far field speech recording. As the adap-
tive beamformers are specially designed to deal with such interferences, we
expected to see a bigger difference between the non-adaptive DS beamformer
and both adaptive algorithms. Surprisingly, only the HMM beamformer
could benefit from its adaptive design, while the MVDR beamformer per-
formed even worse than the DS algorithm. We believe, that the MVDR
beamformer fails to outperform the DS beamformer, because it assumes that
signal and noise are uncorrelated. Given a reverberation time of approxi-
mately 350 ms in our experimental room setup, this assumption is obviously
not true. The HMM beamformer on the other hand doesn’t make any as-
sumptions about the signal but uses only the ASR system to adapt its beam
weights. By examine the HMM beampattern, we could perfectly see, how
the beamformer tried to focus on the speaker while suppressing the signal
from the direction of the interference.

6.2 Conclusion

Beamforming in general can significantly improve the performance of ASR
svstems. Without interferences, a slightly better performance of the adaptive
beamformers compared to the non-adaptive DS beamformers is observable,
but noticing the heavy influence of the ASR system to the WER, these dif-
ferences might be below statistical significance. Evaluating the beamformers
with an additive interferer. we could show. that only the HMM beamformer
was able to reduce the influence of the interferer significantly, while the adap-
tive MVDR couldn’t outperform the DS beamformer.

Beside the performance of the different beamformers on ASR systems, the
choice for one or another beamformer is also depending on its computational
complexity and the amount of information, that is available to train the
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beamformer:

e The DS beamformer is the fastest algorithm that needs the least amount
of information and no training of the beamforming weights. Given a
position estimation of the speaker. this algorithm is capable of doing
realtime beamforming even with a large number of microphones. This
makes this algorithm an excellent choice, when a lot of microphones or
only a source localizer are available and realtime computing is neces-
sary.

* The MVDR beamformer needs the position estimation of a speaker
and a speech activity detector for an accurate weight estimation. Es-
pecially the speech activity detection might become problematic for
this algorithm, as it is very likely to fail in far field recordings. Even
with only a few errors in the speech activity detection, the performance
of the MVDR beamformer will decrease. Taking into account, that the
difference in WER between DS- and MVDR beamformer, even under
perfect conditions, is low, we can hardly imagine a situation, where this
beamformer should be preferred.

e The HMM beamformer has the highest computational complexity. Even

with an average number of microphones, this algorithm will hardly
work in realtime on the currently available PCs. [t needs a position
estimation of the speaker and an ASR system which already performs
reasonably well on the given speech data, in order to produce accu-
rate cepstral means and variances. Without oracle state alignments,
the performance of the algorithm is likely to decrease similar to the
observations made in [Seltzer03], hence, given a high number of micro-
phones and/or good acoustic conditions, the DS beamformer should be
preferred.
Advantages arise, when the speech recordings are completely available
to perform a global optimization. Especially if the recordings are heav-
ily disturbed and the amount of time to perform the training is less
important, this algorithm may be the best choice.

6.3 Future Work

As the impact of the ASR system to the final result is undeniably high,
further investigations are necessary to find standards for beamforming ex-
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periments in order to get statistically significant results, when comparing
different algorithms between different research groups.

The good performance of the HMM beamformer on the distorted signal
indicates its use for highly disturbed far-field signals. To further examine the
good performance of the HMM global optimization beamformer, additional
experiments with moving speakers, cross-talk and non-oracle state alignments
could be of interest. The CHIL database!, consisting of different seminars,
talks and meetings under realistic conditions, might for example be a good
choice for further studies.

!CHIL, Computers in the Human Interaction Loop
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Appendix A

Filterbanks

This appendix introduces the concept of filterbanks and their usage in beam-
forming algorithms. In our beamforming application, we use two filterbank
modules to process a signal: An analysis filterbank and a synthesis filterbank.
The analysis filterbank divides an incoming signal into several subbands, the
synthesis filterbank on the other hand takes the heam-formed subbands and
restores the original signal. A cascade of an analysis filterbank, a beam-
former, and a synthesis filterbank is shown in Figure A.1.

Figure A.l: Analysis and synthesis filterbanks
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Figure A.2: Signal and filtered signal

A.1 Properties of Analysis and Synthesis Fil-
terbanks

The analysis filterbank processes an incoming broadband signal and divides
it into narrowband subbands. Dividing a signal into several subbands has
three advantages for beamforming;

I. We can down-sample the subbands, which reduces the complexity of
many Il(-‘{‘ﬂHHELI'}' (\‘()II[[)lll',E.l‘)iUI'lh'n.

2. The subbands are narrowband, thus we can use beamforming tech-
niques designed for narrowband signals instead of dealing with a broad-
band signal.

3. We can optimize the weights for all subbands independently.

Let ns explain these three points and their influence on our beamforming
algorithms.

The necessary sampling rate to avoid aliasing depends on the highest
signal frequency and is given by the Nyquist theorem, that states:

§ 2 Ailinan
where 5 is the sampling rate and w,,,,, is the highest frequency of the recorded
signal. In standard speech recordings, a sampling rate limited to 16 or 32
kHz is usually sufficient as most relevant parts of speech are concentrated in
the lower frequency regions. To avoid aliasing we therefore have to band-limit
our incoming signal with a lowpass filter to a maximum frequency of e.g. 8
or 16 kHz as shown in Figure A.2.



Figure A.3: M-channel analysis filterbank [Vaidya93]
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[nstead of using one lowpass filter to band-limit the signal, we can also use
multiple bandpass analysis filter to divide the signal into several subbands
with smaller bandwidth. A cascade of these filters and a unit to down-
sample the subbands is what we call an analysis filterbank. Figure A.3 shows
different possibilities how the analysis filters can be designed.

[nstead of having one signal with e.g. w,.. = 8 kHz. we now have for
example four subbands with a bandwidth of w,,,, = 2 kHz each. thus we can
reduce the sample rate for each subband to s > 4 kHz instead of having to
use s = 16 kHz. A set of sub samples is normally called a snapshot.

Using subband samples with reduces sample rate usnally leads to reduced
computational complexity for vector and matrix operations. For example
when doing an FFT, the FFT filter length depends on the sampling rate and
the length of a windowing function. With a hamming window length of 32
ms and a sampling rate of 16 kHz we need a filter length of at least

16000
32
For an FFT the filter length has to be 2%, hence we choose a filter length
of 512, The complexity of an FFT is O (N log,(N)), thus with N = 512 we
have approximately

= 500.

512 log,(512) = 4608
operations. With a sampling rate of 4 kHz for our four subbands we need an
FET filter length of 128 (155% = 125). This reduces the necessary operations
for one FFT to

128 log,(128) = 896.



On the other hand, we now have to compute the FFT four times (one time
for each subband). Still the total reduction of operations becomes

4608 — 4 - 896 = 4608 — 3584 = 1024,

which is a reduction of more than 25%.

Despite the computational savings we now have narrowband subbands
instead of one broadband signal. However if we want to use beamforming
algorithms specially designed for the narrowband case, we require that the
subbands can be processed independently. As proved in [VanTrees02, Chap-
ter 3|, the subbands X (w,, k) are joint circular complex Gaussian random
vectors if we assume the input signal x(#) to be a real vector Gaussian ran-
dom process. This means, that the joint densities of X (w,,, k) for different
m and k is equal to the product of the individual densities. Thus, we can
process the subbands independently and therefore make use of narrowband
beamforming algorithms.

The synthesis filterbank is the counterpart to the analysis filterbank; it
up-samples the different subbands and combines them to rebuild a single
broadband signal. A careful choice of synthesis filters is necessary to achieve
the perfect reconstruction (PR) property and is depending on the analysis
filters as will be shown in the next section.

A.2 Perfect Reconstruction Filterbanks

The PR property states that for a cascade of an analysis and synthesis fil-
terbank, the reconstructed output signal of the synthesis filterbank is equal
to the input signal of the analysis filterbank. As stated in [Vaidya93, Chap.
5|, three problems may arise, if we do not carefully design the filterbanks,
namely aliasing, amplitude distortion and phase distortion.

Amplitude distortion arises, when the filter is not all-pass for all frequen-
cies. We can compensate amplitude distortion by designing filters pairwise
such that the effect of amplitude distortion is canceled out. Phase distortion
arises, when the filters do not have linear phase. We can avoid this problem
by using finite impulse response (FIR) filter, where a linear phase can be
guaranteed. Aliasing arises, as analysis filters do not have zero transition
bandwidth and stop band gain in practical applications. The signal z(t) is
therefore not band-limited and down sampling inside the analysis filterbank
results in aliasing.
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(=]



The design of a filter with sharp transitions is very expensive, hence
we may have to use analysis filters that are overlapping (Figure A.3(a)).
That means that each subband can have substantial energy for a bandwidth
exceeding the ideal pass band region. If we design non-overlapping filter as in
Figure A.3(b), we get an attenuation of the input signal between two filters.
Boosting this frequency region can compensate this effect but will also result
in an amplification of noise. Fortunately aliasing can be avoided by designing
the synthesis filterbank with respect to the analysis filterbank.

Cosine Modulated Filterbanks

The cosine modulated filterbank (CMF) is one example for a PR filterbank.
where the analysis and synthesis filterbank are designed to avoid aliasing,
amplitude-, and phase distortion. It was independently developed by Malvar
[Malvar90, Malvar91|, Ramstad [Ramstad91] and Koilpillai and Vaidyanathan
[Koilpillai9l, Koilpillai92]. The CMF only requires the design of one proto-
type filter, which is used to form all analysis and synthesis filters. As stated
in [Vaidya93, Chap. 8.5.5], the CMF has two outstanding advantages:

L. “The cost of the analysis bank is equal to that of one filter, plus modu-
lation overhead. The modulation itself can be done by fast techniques
such as the fast discrete cosine transform (DCT). See, for example,
[Yip87]. The synthesis filters have the same cost as the analysis fil-
ters.

2. “During the design phase, where we optimize the filter coefficients, the
number of parameters to be optimized is very small because only the
prototype has to be optimized.”

The filterbanks are designed, in the effective polyphase structure. The input
of the analysis filterbank is a stacked vector x(t)eR?M*1,

2a1-1(0) '\ -1 (1) Tap-1(2)
- :T'||'(U) TR -f'{l'( 1) 9y — 'T“Bf\.[(?'}

) = 0 el = ry-1(0) |’ 53 Topr-1(1)
[i) ) -Ttl'“)) / \ (1)
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the output is similarly given by a stacked output vector y(#)eR*E*!, with

(U.!.—I(U}\ (‘.Urx-t('l) (UL—I‘(?“)\

R -;g/;)&.(}) ‘ _ .Unil) = Yo(2)
ﬂ(U) = 0 U(l) = ',UI.—I(U) 1.U(2) = .(l'[.—l({)

\ (-) / \ ‘.Unm) ) ‘.Uu&l) /

Given (4, the polvphase matrices of the analysis filters, the complete analy-
sis filterbank is given by a delay chain followed by down sampling units, the
analysis filters 7, and an inverse FFT. The synthesis filterbank is equiva-
lently designed: After performing an FFT, the signals are processed by the
synthesis filter in polyphase structure (7, and up-sampled. The final output
is obtained by reconstructing the signal over a delay chain. Figure A.4 shows
the analysis and syvnthesis filterbank in polyphase structure.




Figure A.4: Cosine  modulated analysis and synthesis  filterbank
[McDonough03]
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